
Genome analysis

Dot2dot: accurate whole-genome tandem

repeats discovery

Loredana M. Genovese1,†, Marco M. Mosca3,†, Marco Pellegrini1,2 and

Filippo Geraci 1,*

1Institute for Informatics and Telematics, CNR, Pisa 56124, Italy, 2Laboratory of Integrative Systems Medicine

(LISM), Institute of Informatics and Telematics and Institute of Clinical Physiology, 56124 Pisa, Italy and
3Department of Computer Science, University of Liverpool, L69 3BX Liverpool, UK

*To whom correspondence should be addressed.
†The authors wish it to be known that these authors contributed equally.

Associate Editor: John Hancock

Received on March 30, 2018; revised on August 3, 2018; editorial decision on August 23, 2018; accepted on August 24, 2018

Abstract

Motivation: Large-scale sequencing projects have confirmed the hypothesis that eukaryotic DNA is

rich in repetitions whose functional role needs to be elucidated. In particular, tandem repeats (TRs)

(i.e. short, almost identical sequences that lie adjacent to each other) have been associated to

many cellular processes and, indeed, are also involved in several genetic disorders. The need of

comprehensive lists of TRs for association studies and the absence of a computational model able

to capture their variability have revived research on discovery algorithms.

Results: Building upon the idea that sequence similarities can be easily displayed using graphical

methods, we formalized the structure that TRs induce in dot-plot matrices where a sequence

is compared with itself. Leveraging on the observation that a compact representation of these matrices

can be built and searched in linear time, we developed Dot2dot: an accurate algorithm fast enough to

be suitable for whole-genome discovery of TRs. Experiments on five manually curated collections of

TRs have shown that Dot2dot is more accurate than other established methods, and completes the

analysis of the biggest known reference genome in about one day on a standard PC.

Availability and implementation: Source code and datasets are freely available upon paper accept-

ance at the URL: https://github.com/Gege7177/Dot2dot.

Contact: filippo.geraci@iit.cnr.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A tandem repeat (TR) consists in a certain number of copies of a

(typically small) motif sequence that occur adjacent to each other.

More realistic definitions admit a certain degree of heterogeneity

among copies of the motif sequence as well as tiny insertions or dele-

tions. The abundance of these structures in eukaryotic DNAs has

been observed since the first sequencing data became available in the

early 90s (Bacolla et al., 2008). Although TRs functional role is not

completely understood yet, their distribution in eukaryotic genomes

suggests involvement in several cellular processes including gene ex-

pression (Tóth et al., 2000). Besides confirming this thesis, the

steady growth of the number of genetic disorders related to the ex-

pansion of TRs has kindled the hope of associating TRs polymorph-

ism with the etiology of those genetic diseases that are still

unexplained. This trend led the bioinformatics community to focus

on research projects aimed at a large-scale analysis of repetitions.

Unfortunately, validating a new relevant TR can be as difficult as

finding a needle in the haystack and the success of these projects

heavily depends on the sensitivity of the searching algorithms. The

difficulty of capturing the variability of satellites and microsatellites

into a single comprehensive computational model has encouraged

researchers to design new methods for large-scale TR discovery.

VC The Author(s) 2018. Published by Oxford University Press. 914

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(6), 2019, 914–922

doi: 10.1093/bioinformatics/bty747

Advance Access Publication Date: 28 August 2018

Original Paper

http://orcid.org/0000-0001-6993-6761
https://github.com/Gege7177/Dot2dot
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
https://academic.oup.com/


Nevertheless, an agreed computational model for non-naive bio-

logically relevant TRs is still far away.

According to different searching strategies and definitions of

TRs, several algorithm families have been proposed. Dictionary-

based methods (Castelo et al., 2002; Delgrange and Rivals, 2004;

Karaca et al., 2005; Parisi et al., 2003; Pokrzywa and Polanski,

2010) leverage on a pre-determined set of seeds that is searched

along the input sequence and subsequently expanded. This class of

algorithms is particularly efficient in those situations where the user

is interested in a relatively small class of repeats. Exhaustive search

of TRs, instead, is unaffordable because of the exponential growth

of the dictionary size as a function of the allowed motif length. The

dual approach is that of ab-initio methods (Benson, 1999; Boeva

et al., 2006; Girgis and Sheetlin, 2013; Kofler et al., 2007; Kolpakov

et al., 2003; Krishnan and Tang, 2004; Kurtz et al., 2001; Pellegrini

et al., 2010; Sokol et al., 2007; Wexler et al., 2005; Wirawan et al.,

2010; Zhou et al., 2009) that do not require any pre-existing know-

ledge about the input sequence. Although more complex, this class

of algorithms is the most studied and used in practice.

The presence of variations (single nucleotide polymorphisms,

insertions and deletions) in the genomes has directed many research-

ers to develop algorithms in which the distance between units of a

motif is based on the Needleman–Wunsch sequence alignment algo-

rithm described in Needleman and Wunsch (1970). The high quad-

ratic cost of this procedure, however, has convinced researchers to

shift to algorithms that work in Hamming distance. Hybrid

approaches use Hamming distance instead of sequence alignment

but allow insertions between consecutive copies of the motif.

Output filtering is a desirable but not mandatory feature of TR

searching methods. Its main advantage is the elimination/reduction

of redundancy often caused by software artifacts. Aggressive filter-

ing, however, can cause the removal of relevant results and, as a

consequence, the reduction of the algorithm accuracy.

Two distinguishing features have recently gained importance:

the ability of managing multi-sequence files coming from NGS

sequencing and the possibility of scanning entire assembled

genomes. Both these features can involve a potentially huge amount

of data and thus require fast algorithms that avoid computationally

expensive operations without sacrificing output quality.

In this paper, we present Dot2dot, a novel algorithm for TR dis-

covery. Our method borrows some ideas from a widely used tool to

visually display local alignments between pairs of sequences, namely

dot-plots. In particular, we observed that aligning a sequence with

itself, TRs form a regular pattern. Our algorithm mimics such visual

search for these patterns to accomplish TR discovery. One of the

main novelties of our approach is a compact representation of the

dot-plot matrices that: (i) allows us to scale at genome-wide ana-

lysis, and (ii) can find application to other problems where dot-plots

are used. Our algorithm belongs to the class of ab-initio methods, it

allows both a tunable degree of divergence from the consensus se-

quence and a small insertion between two consecutive motifs. Both

fasta and fastq are accepted as input allowing the analysis of NGS

sequences. Dot2dot implements an optional customizable filter able

to: remove biologically irrelevant results, and control the degree of

overlap among TRs in the output list. Under the sensible assumption

that the longest TR in the input sequence is much shorter (by orders

of magnitude) than the entire sequence, our algorithm runs in linear

time, thus enabling the analysis at whole-genome scale. Besides

designing a new searching algorithm, we built five testing datasets

covering diverse applicative areas. In particular: we collected from

several public sources a set of 45 validated pathology-linked TRs;

we compiled the list of coordinates of the CODIS loci including the

seven loci that have been added since January 2017; we mapped on

the hg38 reference genome a set of 620 manually annotated TRs

reported in the Marshfield panel of variable loci; and we computed

a catalog of 15 326 TRs located in upstream regulatory regions.

2 Materials and methods

Our algorithm leverages on a data structure at the base of dot-plots.

Dot-plots are used to gain a visual insight of local alignments between

two different sequences or even a sequence against itself. Matches be-

tween two elements are represented as (typically black) spots. A nat-

ural extension of this visual representation of alignments allows the

use of color graduation to represent degree of similarity between pairs

of elements (Sonnhammer and Durbin, 1995). The underlying data

structure (called dot matrix) is a matrix where the element M[i, j]

stores the degree of similarity between the character in position i of

the first sequence and the element in position j of the other string.

When a sequence s is aligned with itself, M[i, j] stores the degree of

similarity between the element in position i and that in position j of s.

We observed that TRs form a distinctive pattern on self-sequence

alignment dot-plots and, in turn, this pattern reflects on the underly-

ing dot matrix. Consider e.g. a pure TR, since each instance of the

motif perfectly aligns with the first instance, it will form a diagonal

on the dot-plot. All these diagonals will lie stacked over the main di-

agonal. Counting the number of stacked diagonals we compute the

number of copies of the consensus sequence, while from the length

of the diagonals we derive the motif length. Fuzziness of TRs can

easily be captured within this model. In fact, mismatches correspond to

gaps in the diagonals, deletions cause interrupted diagonals and inser-

tions cause the shift of the remaining part of the TR (see examples in

the Supplementary Material). We noticed that the presence in the dot

matrix of the above described pattern is a necessary and sufficient con-

dition for the existence of a tandemly repeated sequence in the input,

thus an algorithm that locates all and only these patterns ensures a com-

putationally correct and complete tool for TRs discovery.

The naive quadratic cost of building, storing and searching the

dot matrix is inadequate for whole-genome analysis. In order to

lower the memory consumption and speed up the computation we

propose an alternative representation of this data structure that can

be built and stored in linear time/space. We also propose a fast

searching heuristic algorithm to enumerate all the instances of the

TR pattern in the dot matrix.

2.1 Data structure
In this section we provide details on how to infer the dot matrix M

without explicitly building it. Let S ¼ s1s2 . . . sn be a sequence of

length n over a finite alphabet R (where R ¼ fA;C;G;Tg in our

case). Given a character x 2 R we define P(x) as the set of positions

of S where si ¼ x. The comparison of the character x and the se-

quence S induces a row M[x] of M whose content does not depend

on the position of x in the sequence but only on the content of S. As

a consequence, comparing the sequence S with itself, the resulting

matrix M has jPðxÞj rows identical to M[x].

Following the above observation, building the whole M it suffi-

ces to compute only the vector M[x] for each x 2 R. In order to ob-

tain a direct positional access to the induced dot matrix we build an

auxiliary vector V of length n where in position i we store a refer-

ence to M½si�. Figure 1 shows an example data structure.

Since jRj is a constant much smaller than n, building the data

structure inducing M has time/space cost linearly proportional to n.

In fact, both V and the M½x�s are vectors of size n that can be filled

with a single scan of the sequence S.

Dot2dot: tandem repeats discovery 915

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data


2.2 TR searching procedure
Searching is a relatively simple procedure that scrolls a window of

fixed length along the sequence and, for each position, checks for a

stacked diagonal in the matrix M.

Let DMði; j; lÞ ¼ fV½i�½j�;V½iþ 1�½jþ 1�; . . . ;V½iþ l � 1�½jþ l �
1�g be a l-long sequence of adjacent cells along M starting from pos-

ition (i, j) such that two consecutive elements have coordinates that dif-

fer by 1 in terms of both rows and columns and let

WMði; j; lÞ ¼
Pl�1

k¼0 V½iþ k�½jþ k� be the summation of the scores of

M over the positions DMði; j; lÞ. DMði; j; lÞ is a diagonal if and only if

WMði; j; lÞ > l � d where d 2 ½0; l� is a user-defined threshold. Given a

certain position i on the sequence S, the event WMði; iþ l; lÞ ¼ l corre-

sponds to a pure TR of motif length l and copy number at least 2 start-

ing from position i. Again WMði; iþ l; lÞ ¼WMði; iþ 2l; lÞ ¼ l

corresponds to a pure TR with copy number at least ¼3 and so on.

The parameter d is used to control the degree of fuzziness of TRs. In

fact, the event WMði; iþ l; lÞ ¼ l � d means that the second copy of the

repeat contains d mismatches. In its simplest form, the core of our

searching procedure (depicted in Algorithm 1) scans the sequence S (see

line 1) and checks for different values of l (see line 2) if the event

WMði; iþ l; lÞ � l � d is verified. When this happens, the algorithm it-

eratively attempts to locate further diagonals in positions iþ 2l; iþ 3l

and so on (see lines 7–10). The procedure stops when an integer c such

that WMði; iþ cl; lÞ < l � d is found. The sequence S½i; iþ cl� is

reported as a TR with motif length l and copy number c.

We further refined our procedure to deal with insertions and dele-

tions. We restrict to the most significant class of these variants. In par-

ticular, insertions can occur only between two copies of the motif

sequence and their length is limited to be lower than the motif length l

(see line 12). In addition, the length of insertions is fixed within the same

TR. This means that, if a TR contains two or more insertions, they must

have the same length to be correctly detected. Deletions are modeled as

the insertion of a spurious sequence between two copies of the motif

string. Although this model can appear limited, it has practical advan-

tages and it is consistent with the replication slippage process described

in Viguera et al. (2001). In fact, without a limit on the length of an inser-

tion nearly every genomic sequence can be confused with a TR. The con-

straint on the equality of the insertion lengths within the same TR helps

to predict the correct motif length and copy number when dealing with

impure TRs. From the biological point of view, according to the model

described in Viguera et al. (2001), the polymerase is arrested after repli-

cating a unit of the repeat. Then, the realignment between the new

strand and the template causes the insertion/deletion to happen between

two copies of the TR motif sequence. In presence of an insertion

between two copies of the consensus motif the condition WMði; iþ
cl; lÞ >¼ l � d becomes false for a certain c. In this case (see lines

12–16), we seek for a gap checking for a possible diagonal in at most

the next l � 1 positions (i.e. iþ cl þ 1; iþ cl þ 2, etc.). In case of

success we take note of the gap and its length and continue the

standard searching procedure checking the next diagonal at distance l.

When the condition on WðÞ becomes false again we do not test all the

possible sizes of the gap but only the previously annotated length.

In order to enable Dot2dot to identify the longest possible TR,

the searching procedure still has to check whether the sequence im-

mediately downstream a TR is a prefix of the consensus sequence,

even though it does not satisfy the condition WMðÞ < l � d. In this

case, however, we seek only for perfect matching so as not to reduce

TR’s purity. We perform this test iteratively verifying (see lines

22–25) that the i-th character in the downstream sequence matches

the i-th character of the motif (i.e. the first instance of the TR). If a

suitable prefix is found, it is included in the output TR.

In terms of asymptotic analysis, the overall computational cost

of Dot2dot is proportional to the number of times the condition

WðÞ > l � d is tested. A single computation of WðÞ takes O(l) time

since it costs l accesses to the matrix M. Given a certain position p 2
½1; jSj � 2l� of S, there are two cases: either there exists in S a TR

with kp copies starting in position p or not. In the first case WðÞ is

computed kp þ l times while in the latter case WðÞ is computed only

once. In general, however, l is constant, but kp cannot be bounded

and, thus, it can hold k ¼ maxp2½1;jSj�2l�ðkpÞ ¼ jSj=l in the worst

1

T

T

A

C

G

A

C

1

1111 1 1

1 1

T T A C G A C G T A C G A T G A C G A C G T

1

1 1 1 11

1

111

...

V

1 1
C

G

T

M[T]

M[G]

M[C]

M[A]

Fig. 1. Sample data structure for the matrix associated to the sequence

TTACGACGTACGATGACGACGT

Algorithm 1 Tandem repeat searching procedure

Require: sequence S, dot matrix M, parameter d
Ensure: list R of tandem repeats

1: for all i 2 ½1; jSj� do

2: for all l 2 range of motif lengths do

3: cn 1;

4: gap offset gap 0;

5: repeat

6: can extend false;

7: while WMði; iþ gap offset þ ðcn � lÞ; lÞ < d� l do

8: cn cnþ 1;

9: can extend true;

10: end while

11: if gap ¼ 0 then try to guess gap length

12: for k 1; gap ¼¼ 0 and k < l; k kþ 1 do

13: if WMði; iþ gap offset þ kþðcn � lÞ; lÞ<d� l then

14: gap k;

15: end if

16: end for

17: end if

18: gap offset gap offset þ gap;

19: until can extend is true;

20: if cn � 2 then Found a valid TR

21: gap offset gap offset � gap;

22: last 0;

23: while last< l and S½iþ last� ¼ S½iþ gap offset þ ðcn �
lÞ þ last� do

24: last last þ 1;

25: end while

26: R.append (S½i; iþ gap offset þðcn � lÞþ last�, copy_num-

ber ¼ cn, motif_length ¼ l);

27: end if

28: end for

29: end for

916 L.M.Genovese et al.



case. Moreover, a similar condition can hold for every position p. As

a result, the overall running time of the searching procedure would

be jSjlk ¼ OðjSjkÞ ¼ OðjSj2Þ in the worst case.

In terms of average-case analysis, we have to estimate the value

k̂ � k that balances the high cost paid every time a new TR is found

and the low cost paid otherwise. Dealing with real genomic sequen-

ces we observed that the probability for a given position to be the

starting point of a TR is fairly low. Moreover, the longest TR is

order of magnitude shorter than the input sequence. These assump-

tions would lead to an expected linear running time of our algo-

rithm. To confirm our hypotheses we estimated the value of k̂ over

the entire hg38 reference genome. According to our experiments we

measured k ¼ 300 and lk ¼ 2495. Moreover, the probability of a

random position p to be the starting coordinate of a TR ¼0.0051.

Consequently, the expected value of k̂ is 1.53.

2.3 Filtering
Exhaustive approaches to TR discovery suffer from the fact that

many reported results may be artifacts rather than proper TRs. For

example, finding a TR of copy number c, this class of algorithms

returns also all the sub-instances of copy number c – 1, c – 2, etc.

Since this behavior has also a strongly negative impact on running

time, it would be better avoiding computing these artifacts instead of

filtering them a posteriori. In order to solve this problem, we main-

tain a bit vector to mask those positions that will certainly produce

such an undesired result. Once our searching procedure identifies a

new TR, it sets the bit corresponding to the first position of each

copy of the motif sequence. Marked positions are ignored during the

subsequent searching. We notice that this filter applies not only to

pure TRs, but its benefits partially extend to fuzzy TRs. Suppose e.g.

that we want to find TRs within the toy sequence ACG AGG ACG

ACG ACG AGT AGT and let suppose d ¼ 1. In this case, Dot2dot

would return the TR ACG AGG ACG ACG ACG which is not pure

because of the substitution C/G in the second copy of the motif.

However, our filtering would avoid computing two uninteresting

TRs consisting in: the last three instances of the motif (ACG ACG

ACG), and the last two instances (ACG ACG). A tandem beginning

with the motif AGG, instead, needs to be searched since it could be

the starting point of a second TR not entirely included in the first re-

sult (in the case of the example AGG ACG ACG ACG AGT AGT).

A second class of artifacts is that of pairs (or groups) of overlap-

ping results consisting in the same TR (with the same motif length

and copy number) shifted one position forward along the sequence

(namely starting and ending positions differ by only 1 bp). This case

arises only when the initial characters of the TR match the corre-

sponding characters immediately after the TR. Dealing with this

class of artifacts, the searching procedure attempts to expand a

retrieved TR allowing it to have a final (fractional) pure motif (see

lines 22–25 of Algorithm 1). The resulting extended TR is conceptu-

ally equivalent to merging together a sequence of shifted TRs into a

longer result. The above equivalence suggests a sufficient condition

to determine whether searching from a given position would lead to

find an artifact. In fact, since a TR with a 0 < l̂ < l long final motif

is equivalent to a sequence of l̂ TRs in which motifs are shifted by

1 bp, all the positions at distance at most l̂ from a marked element

in the bit vector must be the starting coordinates of a sub-TR of the

expanded one. As a result, these positions can be ignored.

A last class of artifacts derives from the fact that the same TR

can admit several distinct combinations of period length and copy

number. Since Dot2dot increasingly tests several possible motif

lengths (see line 2 of Algorithm 1), the absence of a specific

mechanism to filter (or to avoid the computation of) all the possible

combinations of the same result would lead to a potentially huge re-

dundancy in the output. Dealing with impure TRs the only available

option is that of computing all the combinations and then evaluating

which one better fits a pre-determined criterion (in our case we pri-

oritize the purest one). Pure TRs, instead, do not require computing

all the possible combination. In fact, testing for multiples of the

motif length can only produce either TRs of the same size or shorter.

Consequently, once we find a pure TR we do not need to test multi-

ples of its motif length.

3 Results

We experimentally tested our software to assess whether it is able to

find non-naive biologically relevant TRs. Moreover, we thoroughly

scanned the literature to find the widest possible pool of alternative

algorithms to compare with. As a testing dataset we used five collec-

tions of TRs: 45 disease-related TRs, the 20 extended CODIS repeats,

a set of Y-STR loci, 620 markers from the Marshfield panel and a

wide list of TRs located in the regulatory regions. Although it could be

considered inconsequential for our purposes, we choose to map all

TRs and genes onto the most recent main release of the human genome

(namely hg38). We manually mapped genes querying the UCSC gen-

ome browser (https://genome-euro.ucsc.edu) while we used the batch

LiftOver interface (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to con-

vert the coordinates of TRs. Results show that our method is able to

find biologically relevant repeats not reported from the other methods.

3.1 Tandem repeats discovery tools selection
Despite the vast literature on TRs discovery tools [see Lim et al.

(2013) for a recent survey], only few algorithms are usable in practice.

In fact, most tools seem to be no longer available or no longer sup-

ported (Abajian, 1994; Krishnan and Tang, 2004; Kurtz et al., 2001;

Parisi et al., 2003; Pokrzywa and Polanski, 2010; Sokol et al., 2007;

Taneda, 2004; Wirawan et al., 2010; Zhou et al., 2009); some other

is still available but no longer maintained [this is the case e.g. Wexler

et al. (2005)] that is distributed only in binary form and requires an

obsolete version of the operating system). Some algorithms are sub-

jected to limitations that make comparing with them unfair. In par-

ticular: STAR (Delgrange and Rivals, 2004) uses a dictionary-based

approach that makes its computational cost unaffordable even using a

small dictionary; MsDetector (Girgis and Sheetlin, 2013) and IMEx

(Mudunuri and Nagarajaram, 2007) are designed only for microsatel-

lites with motif length �6; the approach in Thiel et al. (2003) lever-

ages on a species-specific database; E-TRA (Karaca et al., 2005) can

only find perfect TRs; and Pop (2015) provides only a visual represen-

tation of the distribution of TRs over the input sequence.

At the end of our investigation we identified only seven algo-

rithms that can be realistically employed in daily TR discovery tasks:

tandem repeats finder (TRF) (Benson, 1999), mreps (Kolpakov

et al., 2003), tandemSWAN (Boeva et al., 2006), TRStalker

(Pellegrini et al., 2010), SciRoKo (Kofler et al., 2007), TROLL

(Castelo et al., 2002) and RepeatMasker (Smit et al., 2017) (http://

www.repeatmasker.org). Since all these methods are provided with

a default set of parameters that perform well in most cases, after ver-

ifying that they match the characteristics of our datasets, we always

used them (see details in the Supplementary Material).

3.2 Disease-associated tandem repeats
Due to the proven relationship between repeat expansion and a con-

sistent number of neurological and neuromuscular disorders

Dot2dot: tandem repeats discovery 917

https://genome-euro.ucsc.edu
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.repeatmasker.org
http://www.repeatmasker.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data


(Mirkin, 2007), we tested our algorithm with the aim of evaluating its

ability to locate significant TRs associated with diseases. To obtain a

convincing list of pathology-related TRs we built our dataset collect-

ing information from several sources. In Castel et al. (2010) a list of

44 well-known polymorphic TRs (36 of which confirmed to be asso-

ciated with a pathology) is given. We removed from this list two

entries: SCA31 because the associated repeat is not present in the ref-

erence genome since the Spinocerebellar Ataxia type 31 is caused by

the insertion of the entire repeat (Sato et al., 2009), and

Facioscapulohumeral muscular dystrophy because the 3.3 k D4Z4

macrosatellite repeat is too long for all the tested algorithms. Due to

the lack of the chromosomal coordinates in the above list, we

extracted this information from other sources. In a master thesis

(Mador-House, 2014) of the same research group of the article in

Castel et al. (2010), the authors extend the list including four new

TRs (two of which linked with a pathology: C9ORF72 and SCA36)

and removing two [one linked with the fragile X tremor/ataxia

syndrome and one (FRA16A) not directly linked with a specific path-

ology] providing the coordinates of the TRs in the hg19 reference gen-

ome. From the list in Mador-House (2014) we removed 12 elements

corresponding to TRs with not confirmed association to a pathology

(at the time of this publication) because (as the author mentioned in

the thesis) they have been located using the Tandem Repeat Finder

software. Since some of the TRs in Castel et al. (2010) have now been

confirmed as associated with a pathology, and thus their sequence

and genomic position is known, we could manually extend our list

exploiting blastn (http://blast.ncbi.nlm.nih.gov) to locate them.

In particular: according to Todd et al. (2013) the sequence of the

TR causing the fragile X tremor is an almost pure CGG sequence; in

Wieben et al. (2012) the authors provide the sequence of a repeat

expansion in the transcription factor 4 (TCF4) causing the Fuchs cor-

neal dystrophy; in DeJesus-Hernandez et al. (2011) the authors report

the motif of a pure TR whose expansion in the non-coding region of

C9ORF72 is associated with FTD and ALS; and in Grube et al.

(2011) the trinucleotide expansion in KCNN3 reported in Chandy

et al. (1998) appears to be associated with schizophrenia. We further

extended our list including other notable TRs reported in the litera-

ture. In Pellegrini et al. (2012) the authors list 29 TRs two of which

(one in PHOX2B and one in SOX3) were not included in our list. In

Winnepenninckx et al. (2007) an expansion of a pure CGG-repeat in

the 5’ UTR of the DIP2B gene is associated with the FRA12A disease.

In de Pontual et al. (2003) a mutation of the proneural HASH-1 gene

is associated with CCHS. Finally, a CAG repeat in POLG1 has been

associated with male infertility in Aknin-Seifer et al. (2005) and re-

cently with breast cancer risk in Azrak et al. (2012). Our final dataset

consists in 45 TRs with: a disease-associated polymorphism, period

ranging from 3 to 24 bp, and size ranging from 15 to 405 bp (see

Supplementary Material for the complete list and coordinates).

3.3 DNA profiling tandem repeats
As a consequence of their contribution to DNA profiling in forensic

sciences, a large database of short TRs [STRbase Ruitberg et al.

(2001)] has been made publicly available on the web (http://www.

cstl.nist.gov/strbase/). Although STRbase does not report the exact

genomic location of the censused STRs, it provides useful informa-

tion that we exploited to pinpoint the coordinates of the two most

commonly used collections of TR listed in it: CODIS and Y-STR.

3.3.1 FBI CODIS

The Combined DNA Index System (CODIS) database consists of

13 tetra-nucleotide TRs spread in 12 chromosomes. As of January 1,

2017 this dataset has been extended with 7 new tetra-nucleotide

TRs: D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433

and D22S1045. We collected the coordinates in hg19 of the 13

CODIS core STR loci from the lobSTR (Gymrek et al., 2012) web-

site, while we manually retrieved the coordinates of the new TRs.

3.3.2 Y-STR

Y-STR is a collection of short TRs in the Y chromosome with period

lower than 6 and size ranging from 24 to 166 bp. These repeats are

often used for paternity or genealogical tests as well as for forensic

purposes. An almost complete list of these loci has been published in

Gymrek et al. (2013) and the genomic coordinates in hg19 are avail-

able in the lobSTR website. The two markers DYS448 and DYS449

are not TRs in a strict sense and consist of two pure STRs inter-

rupted by a small spurious sequence. According to Gymrek et al.

(2013), for these markers we included both: the entire STR and the

two parts. We completed our list including two extra TRs not men-

tioned in Gymrek et al. (2013) but present in the lobSTR website:

DYS640 and DYS464. The forensic value of DYS464 is studied in

Butler and Schoske (2004). The final collection of Y-STR consists of

86 loci.

3.4 Marshfield linkage panel
The Marshfield linkage panel (Rosenberg et al., 2005) consists of

more than 600 loci distributed across the autosomes each of which

containing a short and highly polymorphic TR. The main purpose of

this panel is that of exploiting the great degree of polymorphism of

TRs to conduct genome-wide population analyses. The original work

in Rosenberg et al. (2005) neither describes in details the structure of

the TRs nor reports their coordinates. Thus, some authors used TRF

to pinpoint the repetitive structures. This choice is sensible for certain

problems [e.g. in Willems et al. (2017) where the Marshfield panel is

used as a benchmark for genotypization], but it is inappropriate for

our purposes. In the Supplementary Material of Pemberton et al.

(2009), the authors provide the PCR primers, the RefSeq sequences,

as well as a manually curated description of the TR structures, for

627 of the Marshfield loci (see the file Pemberton_AdditionalFile1_

11242009.txt in the Rosenberg’s website https://web.stanford.edu/

group/rosenberglab/data/pembertonEtAl2009/). Using the RefSeq

sequences as input for blastn (http://blast.ncbi.nlm.nih.gov) we

located 598 loci. We further obtained the hg38 coordinates of another

22 loci by means of the UCSC’s in silico PCR tool (https://genome.

ucsc.edu/cgi-bin/hgPcr). Finally, we pinpointed the exact coordinates

of each TR by a local alignment of the flanking regions of the TR in

refseq and the locus in hg38. The resulting dataset consists in 620

microsatellites with size ranging from 8 to 270 bp.

3.5 Tandem repeats in the regulatory regions
Despite being ubiquitously distributed in eukaryotic genomes, TRs

have been reported to be more abundantly present in regulatory

regions and in particular in promoters (Sawaya et al., 2013; Vinces

et al., 2009). Their great variability as well as intrinsic instability

suggests that mutations of this class of genotypic variation in the

promoter regions can influence the observed phenotype (Gemayel

et al., 2010). Notwithstanding their importance, a manually curated

reference database of variable TRs in promoter regions is not avail-

able yet. Partial lists of pure TRs are reported in Heidari et al.

(2012) and Ohadi et al. (2012) while in Bolton et al. (2013) the

authors describe a resource where a partial list is obtained by means

of the only TRF software. Besides the database resource, the authors

of Bolton et al. (2013) provide a description of a sensible

918 L.M.Genovese et al.

http://blast.ncbi.nlm.nih.gov
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
http://www.cstl.nist.gov/strbase/
http://www.cstl.nist.gov/strbase/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
https://web.stanford.edu/group/rosenberglab/data/pembertonEtAl2009/
https://web.stanford.edu/group/rosenberglab/data/pembertonEtAl2009/
http://blast.ncbi.nlm.nih.gov
https://genome.ucsc.edu/cgi-bin/hgPcr
https://genome.ucsc.edu/cgi-bin/hgPcr


methodology that we used to recompute the list of TRs in the pro-

moter regions using all the algorithms available to us.

Following the procedure in Bolton et al. (2013) we downloaded

the coordinates of the human genes from the UCSC table browser

(Karolchik et al., 2004), then we removed non-coding and putative

genes as well as genes not in haplotypic regions. After removing dupli-

cations we obtained a list of 36 096 elements including coding genes

and isoforms. In order to ensure that the promoter regions have been

entirely covered, as an input sequences we used a 3 kb interval from

�2 kb to þ1 kb from the transcription start sites. We run all the algo-

rithms on these sequences limiting the TR period up to 9 bps, discard-

ing results with purity lower than 90% and removing TRs shorter

than 25 bp. Given the reasonably limited number of results, we could

refine the list of TRs by: re-estimating the correct period length, and

trimming spurious endpoints. Estimating the period length, we used a

brute force procedure that tested all the possible combinations and

decided for the shortest value maximizing purity. Then we compared

the first and the last instance of each TR motif with the corresponding

consensus sequence and trimmed those not matching. Finally, we get

rid of overlapping TRs by means of an iterative procedure that, at

each step, removed the less pure overlapping TR or, in case of tie, the

overlapping TR with higher motif length or the shortest one. At the

end of this procedure we obtained a final list of 15 326 TRs.

3.6 Evaluation metrics
Assessing quality of TR discovery algorithms via comparing results

with a gold standard requires a few caveats. A first issue is the defin-

ition of matching. In the most restrictive setting, one could be inter-

ested in the exact match of the starting and ending coordinates, while

in general a limited degree of divergence is acceptable. A perfect match

is very hard to achieve and it could not be significant because of the

subjectivity of the identification procedure. In fact, the coordinates of

(more often impure) TRs can slightly differ according to the interpret-

ation given by the curator during the manual annotation phase. In add-

ition, when a TR is adjacent to a region similar enough to the repeat

itself, many alternatives are equally possible. In this case, establishing

which is the ‘correct’ repeat, results in an arbitrary choice.

Another relevant issue is that of redundancy (namely, the pres-

ence in the output of overlapping TRs). Despite often due to soft-

ware artifacts, a moderately redundant output may not be

problematic when the subsequent analysis is automated, while it

could defeat the purpose of an algorithm when only a restricted

number of results can be analyzed. An evaluation based only on the

score of the best hit can penalize those algorithms that employ filter-

ing to reduce the number of biologically irrelevant results.

Finally, the possibility of defining the concepts of true/false posi-

tives/negatives, that are at the base of measures like sensitivity and

specificity, should be critically examined. As observed in Saha et al.

(2008), evaluating an ab-initio method through a gold standard data-

set (either the output of another algorithm or a collection of TRs) the

true positives are easily defined as the algorithm results that are also

listed in the gold standard, while the false negatives are sequences of

the testing dataset not reported in the list of results. The problem

arises with the other two classes. In particular, it is questionable

whether a result reported by the tool but not present in the reference

dataset is a false positive or it is a new legal TR that was not previ-

ously known. The difficulty of defining the concepts of false positives

and true negatives has the effect of hindering the estimation of speci-

ficity. Sensitivity, instead, can be computed through the standard for-

mula. However, since sensitivity and specificity are dual evaluation

functions that need to be considered as a whole, we decided to use al-

ternative measures. In particular, we used precision and recall.

In order to address the issue of matching algorithm results with

the gold standard, we used the Jaccard coefficient. This score has

originally been employed to measure the degree of similarity be-

tween sets. Subsequently, it has been extended to measure the over-

lap between intervals. In short, the Jaccard coefficient is defined as

the ratio of the length of the intersection of two intervals divided by

the size of their union. Its value is bounded in the range ½0; 1� and to

a higher value corresponds a higher degree of matching. Entirely

covering a TR is necessary but not sufficient to get the highest score,

in fact, the Jaccard coefficient has value 1 only when the comparing

intervals have exactly the same coordinates.

Dealing with redundancy, we used three measures: the average

number of results covering an element of the gold standard, the aver-

age precision and the average recall. Let T ¼ ft1; . . . ; tng be a data-

set of TRs, R be the set of results of a given algorithm, and RðtiÞ be

the subset of R overlapping with ti by at least 1 bp. We further de-

note jacðÞ as the Jaccard coefficient between two genomic intervals.

The average precision and average recall are defined as follows:

rPðT;RÞ ¼
1

n

Xn

i¼1

P
x2RðtiÞ jacðx; tiÞ
jRðtiÞj

 !

rR T;Rð Þ ¼ 1

n

Xn

i¼1

max
x2R tið Þ

jac x; tið Þ
 !

:

The above measures have several advantages. Firstly, they are in-

dependent from the arbitrary choice of a threshold value. Secondly,

results over different datasets can be merged into a single score or

can be compared directly. Lastly, it is possible to compare algo-

rithms that apply filtering with methods that do not use it. In fact,

even in a case where the filtering phase removes the most overlap-

ping repeat, causing the Jaccard score of the second best hit to drop

under threshold, the removal of a promising repeat could be bal-

anced by the removal of a certain number of irrelevant repeats with

low Jaccard score.

4 Discussion

In this section we discuss the outcome of our comparative evalu-

ation. We run Dot2dot using two sets of parameters: one with the

default values but without any filtering, and one with the same val-

ues but enabling the most stringent filtering (see Supplementary

Material for details). TRStalker was run in multiprocessor mode

using 64 threads. We also set a time limit of four days to accomplish

a single run over a sequence. Because of the severe restrictions on

the input length due to the computational cost of TRStalker, we run

this software also on trimmed subsequences of length at most

10 kbp centered on a TR (notice that this had no effect on the TRs

in the regulatory regions since the input is always shorter). Although

a direct comparison of TRStalker on the diseases and CODIS data-

sets with or without shortened input reveals a remarkable advantage

in favor of the former (henceforth indicated asTRStalker*), using

trimmed input was the only way to estimate TRStalker performan-

ces on all the datasets.

Table 1 reports the number of TR identified setting Jaccard score

to 0.5 and 0.7 (see results for other thresholds in the Supplementary

Material), the average number of results per locus (RPL), the aver-

age precision and the average recall of each algorithm for the five

test collections. Accepting Jaccard ¼0.5 Dot2dot and TRStalker*

rank alternatively first and second in terms of absolute number of

Dot2dot: tandem repeats discovery 919

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data


located TRs with a negligible gap. TRStalker on the diseases loses

only two TRs, while the other algorithm in general misses a remark-

able number of elements. Increasing Jaccard to 0.7 causes Dot2dot to

became less accurate than TRStalker and TRStalker* but still more

accurate than the others. This higher accuracy, however, is the effect

of a very large redundancy due to the exhaustive enumeration of all

the possible alternative TRs covering the same locus. In fact,

TRStalker and TRStalker cover a locus with an average of over 110

different results.

Although the ability of identifying the repeats of the gold stand-

ard with a reasonably high Jaccard score is a desirable property,

achieving a high recall at the cost of a large output redundancy can

greatly reduce the usefulness of an algorithm in practice. In particu-

lar, a good filtering strategy should increase the average precision at

the cost of a negligible reduction of accuracy.

Table 1 shows that an aggressive filtering typically has a posi-

tive impact on the average precision as well as on controlling the re-

dundancy of the output. In fact, the algorithms implementing the

most aggressive filtering strategy (Dot2dot-Filter, TRF and

SciRoKo) achieve the highest values of average precision. As a not-

able exception, the (embedded) purity-based filtering of

TandemSWAN caused the algorithm to filter out most of the TRs

on the profiling datasets because they were considered uninterest-

ing. A high level of redundancy is not necessarily a guarantee of a

high average recall. This is the case, e.g. of Troll that has the third

highest number of RPL but achieves one of the lowest average re-

call. Dot2dot, TRStalker and TRStalker*, which have the most ver-

bose output, achieve the highest average recall. However, in spite

of having comparable average recall (almost the same narrowing to

TRStalker), Dot2dot returns a number of RPL of the same order of

magnitude of the other methods, while TRStalker produces two

orders of magnitude more RPL.

Comparing Dot2dot run with and without filtering, we observed

how our filtering strategy has a remarkably positive impact in terms

of a drastic reduction of overlapping results, passing from about 5

RPL to �1. Filtering causes an increase of average precision of about

0.15 allowing Dot2dot to attain the highest score over all the tested

datasets at the cost of a limited reduction of average recall (�0.06).

However, this lower recall does not change the relative ranking of

our algorithm in comparison with the other methods.

4.1 Running time
Although running time is a secondary feature for TRs discovery

algorithms, it can still be important to evaluate the feasibility of

large-scale analyses of whole-genomes and NGS data. Assessing the

selected algorithms on whole-genomes, we run them on seven

assembled references with sizes ranging between 1.3 and 27 Mbp,

available on the NCBI website. NGS data, instead, have been tested

on the high-coverage long reads of the NA12878 individual

sequenced with Oxford Nanopore Technology (Jain et al., 2018).

However, since Dot2dot and TRF are the sole two methods that can

directly handle large multifasta files (Mreps, Tandem SWAN can

handle only one sequence at time, Troll and SciRoKo, instead, re-

quire one file for each sequence to be specified in the command

line). We narrowed comparison on NGS data only to them.

Table 1. Average precision rP, average recall rR, average number of reported results covering a target locus (RPL) and total number of TRs

intersected (with Jaccard¼0.5 and Jaccard¼0.7) of the compared algorithms and datasets

Dataset Measure Dot2dot-filter Dot2dot TRF MREPS TRStalker TRStalker* SWAN Troll SciRoKo Repeatmasker

Diseases rP 0.830 0.678 0.722 0.630 0.464 0.491 0.372 0.508 0.724 0.452

rR 0.835 0.899 0.763 0.686 0.901 0.960 0.575 0.571 0.752 0.475

RPL 1.0 6.0 1.4 1.5 155.9 157.5 2.0 4.1 1.1 1.2

#TR j¼0.5 44 45 37 37 43 45 27 29 38 24

#TR j¼0.7 36 42 33 23 43 45 24 18 33 20

CODIS rP 0.860 0.721 0.836 0.659 0.485 0.565 0 0.682 0.819 0.812

rR 0.860 0.899 0.850 0.818 0.839 0.988 0 0.797 0.867 0.822

RPL 1.0 6.3 1.1 2.1 188.2 172.2 0.0 3.2 1.2 1.0

#TR j¼0.5 19 19 20 20 18 20 0 19 20 19

#TR j¼0.7 18 18 15 15 18 20 0 16 16 15

Y-STR rP 0.877 0.706 0.770 0.617 — 0.535 0.021 0.682 0.827 0.721

rR 0.879 0.916 0.786 0.712 — 0.979 0.029 0.777 0.841 0.729

RPL 1.0 6.1 1.1 2.1 — 205.5 2.5 2.8 1.1 1.0

#TR j¼0.5 84 86 70 74 — 86 3 79 80 67

#TR j¼0.7 74 81 65 59 — 86 1 75 69 62

Marshfield rP 0.856 0.637 0.784 0.662 — 0.559 0 0.683 0.810 0.767

rR 0.860 0.905 0.794 0.755 — 0.975 0 0.792 0.830 0.775

RPL 1.0 7.1 1.1 2.0 — 154.3 0.0 3.2 1.1 1.0

#TR j¼0.5 589 609 559 577 — 619 0 583 587 554

#TR j¼0.7 503 557 447 405 — 619 0 490 471 437

Promoters rP 0.825 0.667 0.663 0.575 0.422 0.422 0.663 0.517 0.808 0.743

rR 0.803 0.934 0.548 0.687 0.929 0.929 0.447 0.627 0.709 0.432

RPL 1.0 4.8 1.4 1.9 116.0 116.0 2.2 2.1 1.0 0.6

#TR j¼0.5 13 783 15 192 8864 12 490 15 264 15 264 5156 10 939 12 125 7128

#TR j¼0.7 12 329 14 792 7905 7880 15 098 15 098 3233 5723 10 492 6286

Note: TRStalker run on the trimmed sequences is reported as TRStalker *. (The best value is highlighted in bold).

920 L.M.Genovese et al.



We used a MacOS-based workstation endowed with a processor

Intel Xeon 3.1Ghz and run the software in single thread mode. For

tandemSWAN and Troll, which run only under Linux, we had to

use a different hardware. We computed the performance difference

between the two machines by comparing the speed of Dot2dot over

chromosome 1 of hg38. We found that the Linux server is 1.4556

times faster. As a result, we used this constant to adjust

tandemSWAN and Troll’s running time.

We report in Table 2 the running time of the tested algorithms.

We excluded TRStalker because it cannot run on large sequences

and Repeat Masker because its running time is dominated by the

identification of other classes of repetitions different from TRs.

Since we endorse filtering, we run Dot2dot only with it. We notice

that this choice does not give Dot2dot any advantage in the com-

parison, in fact, without filtering our software would run slightly

faster.

As Table 2 shows, three algorithms are unable to run on the ma-

jority of the genomes. This is mostly due to intrinsic thresholds

hardwired in the software. In particular, Mreps has a constraint on

the length of the longest consecutive stretch of Ns in a sequence,

while Troll, which would be the second fastest software, has a limit

on the overall length of the input that cannot exceed 231 bp (about

2.1 Gbp). Because of these limitations Mreps could not run on rela-

tively small genomes like that of Mus musculus, while to run Troll

on the human genome we had to search each chromosome inde-

pendently and merge results together.

Being based only on the computation of the Hamming distance

with a seed, SciRoKo consistently achieve the highest speed regardless

the sequence length. However, the absence of any corrections to this

simple mechanism causes SciRoKo to have one of the less rich output

in terms of number of results per kilobase (as few as 0.61 TRs per

kbp) with a large predominance of pure (or almost pure) TRs.

Despite the reachest output in terms of results per kBps (see

details in the Supplementary Material), Dot2dot runs consistently

faster than TRF. The gap between the two algorithms is quite negli-

gible for small and medium-sized genomes, while it tends to became

rather large for the two biggest assembled genomes. Comparisons

on the NGS data, instead, show a substantial gap that can have a

crucial weight in large-scale analyses. Moreover, the absence of a

multithread release of the TRF software, and the consequent diffi-

culty of using parallelism of modern CPUs, has the effect of sharpen

this gap even more. In fact, running 24 parallel instances of TRF

(one per chromosome), it still requires more than 22 h to finish

while Dot2dot with 24 threads completes in 5 h.

Data on Table 2 confirm also the average-case cost analysis of

our algorithm. In fact, the Dot2dot running time grows proportion-

ally with the genome’s length with a small stable constant factor.

5 Conclusion

In this paper we presented Dot2dot: a new algorithm for TR identi-

fication in a target genome. Our model of repeat has shown to be

general enough to capture well various classes of TRs with different

characteristics: pathology-linked, forensic, for population analysis,

genealogic-oriented and repeats in the regulatory regions.

Experiments have shown that Dot2dot is fast and effective since it

was able to identify almost all the TRs of our test collections with

an accuracy of at least 0.7 in terms of Jaccard score. Even applying a

severely stringent filtering where overlap among the returned repeats

is not allowed, our algorithm is still more accurate than the alterna-

tive tested tools. Tests over the entire human genome have con-

firmed the hypothesis that the longest TR (with a length of 2495 bp)

is several order of magnitude shorter than any of the input sequences

enabling Dot2dot to run in linear time with the input length.

Dot2dot is freely available and can be used without restrictions.

To make it useful in the daily laboratory practice we enabled it to

read standard formats for both assembled genomes (fasta) and NGS

data (fastq) as well as return its output also in a standard bed format.

Another contribution of this paper is that of proposing a rigor-

ous assessment methodology of TRs discovery algorithms as well as

providing five reference collections of TRs (four of which manually

curated). We hope that the proposed methodology and datasets can

help to facilitate future research in this field.

Funding

This work was supported by the project RepeatALS FGBR 17/2013 funded

by Arisla (Italian Society for Research on Amyotrophic Lateral Sclerosis) and

the project PRIN 201534HNXC. The role of tandem repeats in neurodege-

nerative diseases: a genomic and proteomic approach funded by the Italian

Ministry of Education and University (MIUR).

Conflict of Interest: none declared.

References

Abajian,C. (1994) Sputnik: DNA microsatellite repeat search utility.

Aknin-Seifer,I. et al. (2005) Is the cag repeat of mitochondrial dna polymerase

gamma (polg) associated with male infertility? A multi-centre french study.

Hum. Reprod., 20, 736–740.

Azrak,S. et al. (2012) Cag repeat variants in the polg1 gene encoding mtdna

polymerase-gamma and risk of breast cancer in African-American women.

PLoS One, 7, e29548.

Bacolla,A. et al. (2008) Abundance and length of simple repeats in vertebrate

genomes are determined by their structural properties. Genome Res., 18,

1545–1553.

Table 2. Running time of the compared algorithms over seven common reference genomes

Organism name Size Mb Dot-to-dot filter TRF Mreps Tandem SWAN SciRoKo Troll

Pinus lambertiana 27602.70 12 h 15 min 18 s 16 h 15 min 14 s N/A N/A 2 h 13 min 51 s N/A

Triticum aestivum 13427.40 5 h 57 min 14 s 11 h 13 min 43 s N/A N/A 41 min 59 s N/A

Locusta migratoria 5759.80 2 h 37 min 14 s 2 h 25 min 12 s 11 h 20 min 14 s N/A 18 min 39 s N/A

Homo sapiens 3241.95 1h 24min 15s 2 h 40 min 51 s 2 h 36 min 00 s 12 h 31 min 48 s 10 min 43 s 35 min 14 s

Rattus norvegicus 2870.18 1 h 18 min 52 s 2 h 04 min 44 s N/A N/A 9 min 40 s N/A

Mus musculus 2807.72 1 h 16 min 29 s 1 h 55 min 37 s N/A N/A 9 min 41 s N/A

Danio rerio 1371.72 36 min 29 s 2 h 33 min 36 s 2 h 07 min 54 s 13 h 59 min 40 s 5 min 7 s 17 min 16 s

NA12878 82705.67 1 d 12 h 15 min 18 s 1 d 16 h 15 min 14 s — — — —

Note: The genome dimension is measured as the size in Mb of the corresponding fasta file.

Dot2dot: tandem repeats discovery 921

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty747#supplementary-data


Benson,G. (1999) Tandem repeats finder: a program to analyze DNA sequen-

ces. Nucleic Acids Res., 27, 573.

Boeva,V. et al. (2006) Short fuzzy tandem repeats in genomic sequences, iden-

tification, and possible role in regulation of gene expression. Bioinformatics,

22, 676–684.

Bolton,K.A. et al. (2013) Starrrt: a table of short tandem repeats in regulatory

regions of the human genome. BMC Genomics, 14, 795.

Butler,J.M. and Schoske,R. (2004) Forensic value of the multicopy y-str mark-

er dys464. Int. Congr. Ser., 1261, 278–280.

Castel,A.L. et al. (2010) Repeat instability as the basis for human diseases and

as a potential target for therapy. Nat. Rev. Mol. Cell Biol., 11, 165–170.

Castelo,A.T. et al. (2002) Troll-tandem repeat occurrence locator.

Bioinformatics, 18, 634–636.

Chandy,K. et al. (1998) Isolation of a novel potassium channel gene hskca3

containing a polymorphic cag repeat: a candidate for schizophrenia and bi-

polar disorder? Mol. Psychiatry, 3, 32–39.

de Pontual,L. et al. (2003) Noradrenergic neuronal development is

impaired by mutation of the proneural hash-1 gene in congenital central

hypoventilation syndrome (ondine’s curse). Hum. Mol. Genet., 12,

3173–3180.

DeJesus-Hernandez,M. et al. (2011) Expanded GGGGCC hexanucleotide re-

peat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD

and ALS. Neuron, 72, 245–256.

Delgrange,O. and Rivals,E. (2004) Star: an algorithm to search for tandem ap-

proximate repeats. Bioinformatics, 20, 2812–2820.

Gemayel,R. et al. (2010) Variable tandem repeats accelerate evolution of cod-

ing and regulatory sequences. Annu. Rev. Genet., 44, 445–477.

Girgis,H.Z. and Sheetlin,S.L. (2013) Msdetector: toward a standard com-

putational tool for DNA microsatellites detection. Nucleic Acids Res.,

41, e22.

Grube,S. et al. (2011) A cag repeat polymorphism of kcnn3 predicts sk3 chan-

nel function and cognitive performance in schizophrenia. EMBO Mol.

Med., 3, 309–319.

Gymrek,M. et al. (2012) lobstr: a short tandem repeat profiler for personal

genomes. Genome Res., 22, 1154–1162.

Gymrek,M. et al. (2013) Identifying personal genomes by surname inference.

Science, 339, 321–324.

Heidari,A. et al. (2012) Core promoter strs: novel mechanism for

inter-individual variation in gene expression in humans. Gene, 492,

195–198.

Jain,M. et al. (2018) Nanopore sequencing and assembly of a human genome

with ultra-long reads. Nat. Biotechnol., 36, 338.

Karaca,M. et al. (2005) Exact tandem repeats analyzer (e-tra): a new program

for DNA sequence mining. J. Genet., 84, 49–54.

Karolchik,D. et al. (2004) The ucsc table browser data retrieval tool. Nucleic

Acids Res., 32, D493–D496.

Kofler,R. et al. (2007) Sciroko: a new tool for whole genome microsatellite

search and investigation. Bioinformatics, 23, 1683–1685.

Kolpakov,R. et al. (2003) mreps: efficient and flexible detection of tandem

repeats in DNA. Nucleic Acids Res., 31, 3672–3678.

Krishnan,A. and Tang,F. (2004) Exhaustive whole-genome tandem repeats

search. Bioinformatics, 20, 2702–2710.

Kurtz,S. et al. (2001) Reputer: the manifold applications of repeat analysis on

a genomic scale. Nucleic Acids Res., 29, 4633–4642.

Lim,K.G. et al. (2013) Review of tandem repeat search tools: a systematic ap-

proach to evaluating algorithmic performance. Brief. Bioinform., 14,

67–81.

Mador-House,R. (2014) Investigation of the Epigenetic Landscape at

Disease-Causing Polymorphic Repeat Loci. PhD Thesis, University of

Toronto, Canada.

Mirkin,S.M. (2007) Expandable DNA repeats and human disease. Nature,

447, 932–940.

Mudunuri,S.B. and Nagarajaram,H.A. (2007) Imex: imperfect microsatellite

extractor. Bioinformatics, 23, 1181–1187.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Ohadi,M. et al. (2012) Evolutionary trend of exceptionally long human core

promoter short tandem repeats. Gene, 507, 61–67.

Parisi,V. et al. (2003) String: finding tandem repeats in DNA sequences.

Bioinformatics, 19, 1733–1738.

Pellegrini,M. et al. (2010) Trstalker: an efficient heuristic for finding fuzzy tan-

dem repeats. Bioinformatics, 26, i358–i366.

Pellegrini,M. et al. (2012) Tandem repeats discovery service (treads) applied to

finding novel cis-acting factors in repeat expansion diseases. BMC

Bioinformatics, 13, S3.

Pemberton,T.J. et al. (2009) Sequence determinants of human microsatellite

variability. BMC Genomics, 10, 612.

Pokrzywa,R. and Polanski,A. (2010) Bwtrs: a tool for searching for tandem

repeats in DNA sequences based on the burrows–wheeler transform.

Genomics, 96, 316–321.

Pop,P.G. (2015) DNA repeats detection using a dedicated dot-plot analysis.

In: 2015 38th International Conference on Telecommunications and Signal

Processing (TSP). pp. 1–4. IEEE.

Rosenberg,N.A. et al. (2005) Clines, clusters, and the effect of study de-

sign on the inference of human population structure. PLoS Genet., 1,

e70.

Ruitberg,C.M. et al. (2001) Strbase: a short tandem repeat DNA database

for the human identity testing community. Nucleic Acids Res., 29,

320–322.

Saha,S. et al. (2008) Empirical comparison of ab initio repeat finding pro-

grams. Nucleic Acids Res., 36, 2284–2294.

Sato,N. et al. (2009) Spinocerebellar ataxia type 31 is associated with

“inserted” penta-nucleotide repeats containing (tggaa)n. Am. J. Hum.

Genet., 85, 544–557.

Sawaya,S. et al. (2013) Microsatellite tandem repeats are abundant in human

promoters and are associated with regulatory elements. PLoS One, 8,

e54710.

Smit,A. et al. (2017) Repeat Masker Website.

Sokol,D. et al. (2007) Tandem repeats over the edit distance. Bioinformatics,

23, e30–e35.

Sonnhammer,E.L. and Durbin,R. (1995) A dot-matrix program with dynamic

threshold control suited for genomic DNA and protein sequence analysis.

Gene, 167, GC1–GC10.

Taneda,A. (2004) Adplot: detection and visualization of repetitive patterns in

complete genomes. Bioinformatics, 20, 701–708.

Thiel,T. et al. (2003) Exploiting est databases for the development and charac-

terization of gene-derived ssr-markers in barley (hordeum vulgare l.). Theor.

Appl. Genet., 106, 411–422.

Todd,P.K. et al. (2013) CGG repeat-associated translation mediates neu-

rodegeneration in fragile x tremor ataxia syndrome. Neuron, 78,

440–455.

Tóth,G. et al. (2000) Microsatellites in different eukaryotic genomes: survey

and analysis. Genome Res., 10, 967–981.

Viguera,E. et al. (2001) Replication slippage involves DNA polymerase paus-

ing and dissociation. EMBO J., 20, 2587–2595.

Vinces,M.D. et al. (2009) Unstable tandem repeats in promoters confer tran-

scriptional evolvability. Science, 324, 1213–1216.

Wexler,Y. et al. (2005) Finding approximate tandem repeats in genomic

sequences. J. Comput. Biol., 12, 928–942.

Wieben,E.D. et al. (2012) A common trinucleotide repeat expansion within

the transcription factor 4 (TCF4, E2-2) gene predicts Fuchs corneal dys-

trophy. PLoS One, 7, e49083.

Willems,T. et al. (2017) Genome-wide profiling of heritable and de novo str

variations. Nat. Methods, 14, 590–592.

Winnepenninckx,B. et al. (2007) Cgg-repeat expansion in the DIP2B gene is

associated with the fragile site FRA12A on chromosome 12q13.1. Am. J.

Hum. Genet., 80, 221–231.

Wirawan,A. et al. (2010) Inverter: integrated variable number tandem repeat

finder. In: Computational Systems-Biology and Bioinformatics. Springer,

Berlin, Heidelberg, pp. 151–164.

Zhou,H. et al. (2009) Detection of tandem repeats in DNA sequences based

on parametric spectral estimation. IEEE Trans. Inf. Technol. Biomed., 13,

747–755.

922 L.M.Genovese et al.


	bty747-TF1
	bty747-TF2

