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A commentary on

On the joys of perceiving: Affect as feedback for perceptual predictions

by Chetverikov, A., and Kristjánsson, Á. (2016). Acta Psychol. 169, 1–10. doi: 10.1016/j.actpsy.2016.
05.005

The intuition that perception relies on prior information when inferring the causes of sensory
input has received strong theoretical and empirical support (for a review see Clark, 2013). In
the framework of predictive coding, it is assumed that that cortico-cortical feedback connections
provide predictions about sensory input, and only the residual errors (prediction errors) are fed
forward in the visual hierarchy to be further processed (Rao and Ballard, 1999; Lee and Mumford,
2003). It has even been suggested that conceptualizing the brain as minimizing surprise can account
for several neurophysiological and neuroanatomical observations (Friston, 2005, 2010). This raises
the question of why organisms are not attracted to sensory vacuums where the prediction error
is zero (referred to as the ‘dark room problem’). Friston et al. (2012) argued that organisms
harbor models of the environment, in which such a scenario does not exist. Changes do occur in
natural environments, and consequently, the cognitive systems of organisms do expect occasional
prediction errors. Leaving a sensory vacuum, such as a dark room, may translate into an attempt to
seek an environment that mirrors the degree of uncertainty the organisms’ mind expects. However,
these frameworks are formulated on an abstract, mathematical level, leaving open the question of
what motivates the organism at a psychological level of explanation.

A framework that has the potential to address this issue was suggested by Chetverikov and
Kristjánsson (2016). Their core assumption appeals to an important psychological concept, namely
affect. It is suggested that successful prediction elicits positive affect1. This way, affect can foster
increasingly accurate predictions. Importantly, it is conjectured that affective feedback is weighted
with the inverse prior probabilities of events. In other words, highly predictable information tends
to elicit no positive affect. Consequently, leaving a dark roomwould be required in order to increase
positive affect.

I conjecture that this explanatory route has something to add to the field of reinforcement
learning (RL). While previous proposals have emphasized the commonalities between the process
of perceptual inference and RL (Rushworth et al., 2010), the exploration-exploitation dilemma in
the latter has remained untouched by the connection.

1The idea has already been formulated by Ramachandran and Hirstein (1999): The authors suggested that perception must
be linked to limbic brain systems in order to provide incentive for discovering image correlations, binding, grouping, and
identifying content.
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FIGURE 1 | Possible goal hierarchy of biological organisms. At the bottom of the hierarchy, organisms may be driven by surprise minimization (Friston, 2010). On the

level of implementation, this may require organisms (i) that apply the principles of predictive coding/Bayesian statistics (Rao and Ballard, 1999; Knill and Pouget,

2004), and (ii) that are driven by the motivation to increase positive affect. Successful predictions possibly elicit positive affect (Chetverikov and Kristjánsson, 2016).

Conversely, the motivation to increase positive affect may promote prediction of sensory input.

The basic tenet in RL is that organisms strive to maximize
their rewards. To this end, they capitalize upon efficient
learning systems that attach values to cues in the environment
which lead to good decisions in the future (Sutton and Barto,
1998). However, this conjecture introduces a conflict between
exploitation and exploration. Given cues that promise rewards,
why should organisms explore novel information for which
there is no reward history? This dilemma in RL has fostered
the development of a plethora of algorithms that address this
issue. For example, the shaping bonus suggests initializing novel
information with a higher value (Kakade and Dayan, 2002).
More recently, it has been suggested that novel information
receives high values via generalization of known stimuli in
the same environment (Gershman and Niv, 2015). However,
whilst these suggestions can explain that organisms choose novel
stimuli rather than ignore them altogether, they are mute on
the question why organisms occasionally even prefer novel to
familiar stimuli2. In addition, there is a puzzling effect of context.
It seems that laboratory rats tend to be more neophilic, e.g.,
preferring novelty even to cocaine (Reichel and Bevins, 2008)3,
whereas rats in the wild showmore neophobic behavior (Barnett,
1958). As of yet, there is no overarching theory that can account
both for a preference for novel to familiar stimuli and such
contextual modulations.

The exploration-exploitation dilemma bears structural
similarity to the dark room problem—how does novelty
come into play when the organism is supposed to be driven
by successful predictions? Possibly, this problem cannot be

2There are a few algorithms that try to address how agents make choices preferably
to uncertain stimuli, e.g., by Szita and Lörincz (2008).
3In the predictable laboratory environment, the neophilic rats may like (have
positive affect for) a novel stimulus enough to override their wanting of the highly
predictable cocaine stimulus.

accounted for by explanations rooted in RL, but requires the
reference to affect and the domain of perception. If feedback
for predictions is weighted with the inverse prior probabilities
of events, then laboratory rats would experience no positive
affect because of the high likelihood of surrounding stimuli, and
consequently, seek out for novelty.

The idea aligns with data from functional imaging: Several
studies have shown that the ventral striatum, a key structure
in reward coding, is also activated by mere novelty of stimulus
material (e.g., Bunzeck et al., 2010). These findings suggest that
novelty may be intrinsically rewarding (Wittmann et al., 2008).

Figure 1 illustrates how surprise minimization, predictive
coding, affect, and reward seeking could be orchestrated. At the
highest level of abstraction, one might conceptualize organisms
as driven by surprise minimization, as captured in the Free
Energy Principle (FEP) (Friston, 2005). At the lowest level of
processes, i.e., perception, the FEP posits that organisms actively
construct hypotheses or predictions about sensory input. Thus,
the Bayesian approach logically follows from the assumption
that organisms must minimize their surprise via the proxy of
the free-energy. This means the “Bayesian brain” hypothesis
rests on the free-energy principle, and adds a functional level of
explanation, i.e., what makes the system operate in a Bayesian
manner (Friston, 2010). Where does affect may come into play?
Biological organisms can be assumed to strive for positive, and
avoidance of negative affect (Panksepp, 2008). This motivational
force may ultimately serve surprise minimization, if one assumes
that positive affect can be achieved by successfully using prior
information (Chetverikov and Kristjánsson, 2016).
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