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Machine learning (ML) has been proposed for lesion segmentation in acute ischemic

stroke (AIS). This study aimed to provide a systematic review and meta-analysis of the

overall performance of current ML algorithms for final infarct prediction from baseline

imaging. We made a comprehensive literature search on eligible studies developing ML

models for core infarcted tissue estimation on admission CT orMRI in AIS patients. Eleven

studies meeting the inclusion criteria were included in the quantitative analysis. Study

characteristics, model methodology, and predictive performance of the included studies

were extracted. A meta-analysis was conducted on the dice similarity coefficient (DSC)

score by using a random-effects model to assess the overall predictive performance.

Study heterogeneity was assessed by CochraneQ and Higgins I2 tests. The pooled DSC

score of the included ML models was 0.50 (95% CI 0.39–0.61), with high heterogeneity

observed across studies (I2 96.5%, p < 0.001). Sensitivity analyses using the one-study

removed method showed the adjusted overall DSC score ranged from 0.47 to 0.52.

Subgroup analyses indicated that the DL-based models outperformed the conventional

ML classifiers with the best performance observed in DL algorithms combined with CT

data. Despite the presence of heterogeneity, current ML-based approaches for final

infarct prediction showed moderate but promising performance. Before well integrated

into clinical stroke workflow, future investigations are suggested to train ML models

on large-scale, multi-vendor data, validate on external cohorts and adopt formalized

reporting standards for improving model accuracy and robustness.

Keywords: ischemic stroke, machine learning, deep learning, computed tomography, magnetic resonance

imaging, meta-analysis

INTRODUCTION

Stroke is a life-threatening disease accounting for approximately 10% of all deaths and presenting
an estimated lifetime risk of 25% worldwide (1). Recanalization of the occluded vessels is the only
effective treatment to restore blood flow and prevent neural functional deterioration. Early studies
suggested 4.5 and 6 h as the time window for intravenous thrombolysis (IVT) and endovascular
thrombectomy (EVT) from symptoms onset (2–4). Recent advances in endovascular approaches
have broadened the boundaries of eligible patient selection and expanded the time window to 24 h
by using advanced neuroimaging (5, 6).
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Currently, acute stroke imaging allows estimating the
ischemic core and penumbra by predefined imaging thresholds.
An apparent diffusion coefficient threshold between 600 and
625 × 10−3 mm2/s remains a robust parameter for infarct
core estimation, and a decreased relative cerebral blood flow
(rCBF) threshold of <30% has been extensively used to
quantify final infarct size for CT-based method. The mismatch
between infarct core and perfusion deficit identified by time
to maximum of the residue function (Tmax) with a delay
>6s provides a delineation of tissue at risk (7, 8). Despite the
easy application of using single-valued thresholds to predict
ischemic tissue outcome, conventional thresholds derived from
approximate linear statistic models would probably fail to
capture the heterogeneity of stroke lesion development from
baseline imaging. Moreover, thresholds based on a single imaging
modality disregarded the complementary effect of multimodal
imaging, thus limiting the reliability in delineating infarct lesions.

Recent advances in machine learning (ML) offer promising
applications in medical imaging by learning informative features
and patterns from structured input data. It also drives the
emergence of deep learning (DL) subfield, which has shown
impressive results in medical image processing without prior
selection for relevant features (9, 10). Given the suboptimal
performance of the conventional thresholding methods, initial
studies attempted to apply ML and DL-based approaches
and showed clear advantages for more precise prediction of
the final infarct lesion from baseline imaging (11–17). These
promising results inspired investigators to propose novel model
methodologies by improving algorithm architectures, combining
multi-modality input parameters, and applying in different
clinical scenarios.

Although studies on this topic are growing, there is a lack of
studies that review the general applications of the state-of-the-art
ML-based approaches in ischemic core estimation. Therefore, we
conducted this systematic review andmeta-analysis to provide an
overview of the potential advantages and remaining challenges of
ML-basedmodel methodologies for final infarct lesion prediction
from acute stroke imaging, evaluate the overall performance of
existing approaches, and provide suggestions for future research
to potentially aid in acute ischemic stroke (AIS) management.

METHODS

This systematic review and meta-analysis was performed
following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement (18).

Literature Search and Study Selection
We comprehensively searched PubMed, EMBASE, Cochrane
Library, Science Direct, Springer, and IEEE Xplore Digital
Library databases from inception to May 31, 2022, with the
following keywords: “machine learning”, “deep learning”, “neural
network”, “stroke”, “cerebrovascular event”, “cerebral infarct”,
“computed tomography”, “magnetic resonance imaging”. Studies
that developed ML algorithms for predicting the final infarct
lesion from baseline acute stroke imaging were included. Eligible
studies satisfying the following inclusion criteria were included

in the meta-analysis: (1) study cohort was AIS patients; (2)
study described ML algorithms for predicting ischemic core
tissue from baseline CT or MR imaging; (3) reference standard
(i.e., ground truth) was true infarct lesion segmented on follow-
up imaging; (4) prediction performance was reported as dice
similarity coefficient (DSC) score; (5) imaging sets for algorithm
training and test were clearly defined; (6) published articles
with full text; and (7) English language articles. Review articles,
conference abstracts, letters, case reports including fewer than
10 patients, and non-human research were excluded. If studies
came from the same cohort or compared different algorithms
on the same dataset, we only retained the article with the largest
sample size or the best-performing algorithm in the quantitative
synthesis in case sample duplicate or overlapping would affect the
overall pooled effect size.

One investigator (XW) read the titles and abstracts of all
records. After preliminary screening, potentially eligible articles
were shortlisted. Two investigators (XW and YF) independently
read the full-text articles to assess eligibility, with disagreements
resolved by discussion and consensus.

Data Extraction and Quality Assessment
Two investigators (XW and YF) independently extracted data
from the included studies using a predefined data extraction
sheet. Disagreements were re-evaluated and determined by a
third investigator (NZ). The extracted data included: (1) first
author and year; (2) source of the dataset; (3) sample size
including the total patient number and numbers of the training,
validation, and test sets; (4) model methodology, including
algorithm types, input parameters and standard reference; (5)
predictive performance, including the primary performance
metric of DSC score and secondary metrics of area under
the receiver operating characteristic curve (AUC), sensitivity,
specificity, accuracy, precision, recall and volume error between
the prediction result and the standard reference.

To assess the quality of ML-based diagnostic accuracy studies,
Collins and Moons initially introduced a modified version of
the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis statement specific to
machine learning (TRIPOD-ML) (19). However, the TRIPOD-
ML guideline was complicated and covered a broad range of
ML applications. The Radiology editorial board has developed
a list of nine key considerations to improve the soundness
and applicability of artificial intelligence research in diagnostic
imaging (20). We adapted these items as quality assessment
criteria in our study. Two investigators (XW and YF)
independently evaluated the risks of bias using this questionnaire,
with disagreements resolved by discussion and consensus.

Statistical Assessment
We estimated the overall performance of theMLmodels by using
the DSC score, a commonly used volume-based performance
metric for target segmentation. The DSC score represents the
overlap between the prediction segmentation and the standard
reference, ranging from 0 (indicates no overlap) to 1 (indicates
complete overlap). For effect size calculation in themeta-analysis,
the mean DSC score with standard deviation (SD) or 95%
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confidence interval (CI) was required. When study reported
the DSC score as median and interquartile range (IQR), the
mean and SD was converted using a quantile estimating method
described by Wan et al. (21). The sample mean (X) and SD (S)
were estimated as follows, where q1 referred to the first quartile,
m referred to the median, and q3 referred to the third quartile.

X ≈
q1+m+ q3

3
and S ≈

q3− q1

1.35

A random-effects model meta-analysis was performed, and forest
plots were generated to depict the effect size of individual studies
and overall performance. The heterogeneity across the included
studies was assessed using the Cochrane Q and Higgins I2 tests,
where the p-value < 0.05 in Cochrane Q test and Higgins
I2-value > 75% indicated significant heterogeneity (22). Due
to the high heterogeneity observed in this study, sensitivity
analysis using the one-study removed method was conducted
to explain the heterogeneity of the results. Subgroup analyses
were performed according to algorithm types (conventional ML
classifiers and deep neural networks) and imaging modality for
model input (CT and MR data). Publication bias was examined

by creating a funnel plot and Egger’s bias test (23). Statistical
analyses were performed using the STATA 17.0 statistical package
(StataCorp, Stata Statistical Software). Two-sided p-value < 0.05
was considered statistically significant.

RESULTS

A total of 3,298 publications were initially identified through
database searching. After removing 281 duplicate records, the
remaining 3,017 publications were screened preliminarily. Based
on title and abstract, 2,870 articles were excluded, and 147 articles
were assessed for eligibility by two investigators independently.
After full-text review, 38 studies were included in the systematic
review. Among them, 11 studies that met the inclusion criteria
and provided sufficient quantitative data were included in the
meta-analysis, and 27 studies were excluded for the following
reasons: 14 studies proposed ML models trained and tested on
duplicate datasets, 6 studies didn’t clearly define the training and
testing sets, 7 studies didn’t report a complete DSC score with
standard deviation or interquartile range. The literature search
flow diagram is presented in Figure 1.

FIGURE 1 | Flow diagram of literature review and study selection process.
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Study Characteristics and Model
Methodology: A Systematic Review
Based on full-text evaluation, 38 studies were included in the
systematic review. Study characteristics, model methodology,
and predictive performance are summarized in Table 1. Of
the 38 included studies, 12 studies were based on single-
center datasets (11, 12, 24, 25, 30, 34, 38, 41, 45–47, 52),
and 26 studies were conducted on multicenter datasets,
including 9 on registered clinical trials [13–17, 34–37] and 13
on two publicly available databases (Ischemic Stroke Lesion
Segmentation [ISLES] challenges 2017 and 2018, http://www.
isles-challenge.org) (27–29, 32, 37, 39, 40, 42, 44, 49–51, 53).
All except two studies (45, 48) reported validation methods
for the proposed model including using an independent test
set, k-fold cross-validation, and leave-one-out cross-validation.
External validation was only performed by one study (13).

Thirteen studies adopted conventional ML algorithms
including k-nearest neighbor classification (24), general linear
regression (47), random forest (13, 15, 25, 34, 36, 38, 41, 48)
and gradient boosting (11, 26, 36) classifiers. Twenty-
five studies proposed DL-based approaches consisting of
artificial neural network (ANN) (31) and various types of
convolutional neural network (CNN) with some of the
noteworthy popular architectures, including 2D and 3D U-Net
(12, 16, 17, 27, 28, 39, 40, 43, 49, 50), residual network (ResNet)
(12, 29, 37, 50), recurrent residual U-Net (R2U-Net) (52) and
DeepMedic (32). Four studies applied modifications of the
common rectified linear unit (ReLU) activation function for
non-linear transformation after each convolution operation,
including parametric ReLU, noisy ReLU, and leaky ReLU
activation (32, 33, 40, 51). Given the class imbalance issue, 6
studies used hybrid loss function methods for target lesion
segmentation (12, 16, 17, 29, 42, 52). Four studies introduced
optimization strategies such as data augmentation for the
training procedure (28, 29, 37, 39). The reference standard
for model training was actual infarct lesion manually or semi-
automatically segmented on follow-up CT or MR images
with a wide-range time interval from 1 h to 90 days from
baseline imaging.

Eleven studies used CT perfusion source data and parametric
maps as model input for core infarct estimation (12, 13, 29,
31, 33, 42, 44, 47, 50, 53, 54), including one study generating a
synthesized pseudo-DWI map based on CTP parametric maps
(42). Five studies used source images and features derived from
non-contrast CT (41, 52) and CT angiography (15, 45, 46).
Twenty-two studies adopted different combinations of MRI
sequences including T1WI, T2WI, diffusion and perfusion for
infarct core prediction (11, 14, 16, 17, 24–28, 30, 32, 34–40,
43, 48, 49, 51). In addition to imaging data, 6 studies added
clinical information into the model inputs, such as stroke severity
quantified by the National Institutes of Health Stroke Scale
[NIHSS] andmodified Rankin Scale [mRS] scores, recanalization
status assessed by modified Thrombolysis in Cerebral Infarction
[mTICI] score and time variants of onset-to-imaging time and
onset-to-treatment time (12, 23, 26, 41, 43, 45, 46).

Outcome measures were heterogeneous across studies. As
infarct core estimation is a prediction segmentation task, model

performance was commonly evaluated using the DSC score
in all except 7 studies (14, 24, 26, 30, 41, 45, 46). Other
metrics such as AUC, sensitivity, and specificity for classification
results, accuracy, precision and recall for detection results, and
a clinically intuitive metric of volume error were also employed
and summarized in Table 1.

Performance for Core Infarcted Tissue
Prediction: A Meta-Analysis
Eleven studies were included in the meta-analysis
(11, 13, 16, 25, 31, 38, 40, 43, 50, 52, 54). Methodological quality
assessment of the included studies is shown in Table 2. Three
studies clearly defined all three image sets of training, validation,
and test (11, 16, 31). Only one study determined model
performance using an external test set (13). Imaging data from
one study were collected from four major manufacturers (44),
five studies reported using single-vendor data (11, 25, 38, 40, 54),
and others remained unknown (13, 16, 31, 43, 52). Although
all the included studies clearly defined the validation methods,
the relationship between the number of training images and
model performance (i.e., sample size estimation) was not
carefully evaluated. All studies described the data pre-processing
procedure, trained their models using acceptable reference
standards, and demonstrated the predictive performance
assessed by multiple performance metrics. Algorithms from
two studies were partially publicly available via the website
of GitHub (11, 40).

The overall performance of 11 predictive models is presented
in Figure 2. The pooled DSC score was 0.50 (95% CI 0.39–0.61).
The value of Cochrane Q test p < 0.001 and Higgins I2 of 96.5%,
indicating high heterogeneity across the included studies. We
conducted a sensitivity analysis by removing one study at each
step (Figure 3). The adjusted overall DSC score ranged from 0.47
(95% CI 0.41–0.53) after removing the study by Zhu et al. (54) to
0.52 (95% CI 0.41–0.63) after removing the study by McKinley et
al. (25). Publication bias assessed by graphic funnel plot showed
an asymmetrical shape, and not all studies were plotted within
the area under the curve of the pseudo-95% CI, indicating the
potential publication bias among included studies (Figure 4).
Egger’s test showed no statistically significant publication bias (p
= 0.565).

We made further subgroup analyses by algorithm types and
imaging modality. Forest plot for each subgroup is depicted
in Figure 5. For studies applying conventional ML classifiers,
the pooled DSC score was 0.44 (95%CI 0.34–0.54) for models
inputting MR data (11, 25, 38) and 0.37 (95%CI 0.33–0.41) for
a single model using CT data as a reference (13). For studies
developing DL-based approaches, the pooled DSC was 0.45
(95%CI 0.38–0.53) for models inputting MR data (16, 40, 43)
and 0.63 (95%CI 0.48–0.78) when using CT data (31, 50, 52, 54).
Sustained high heterogeneity was observed in the subgroup of
DL models combined with CT data (Higgins I2 93.9%, p <

0.001). Sensitivity analysis revealed that after removing one study
(54), the adjusted pooled DSC score was 0.59 (95%CI 0.54–0.64),
with a downward trend of heterogeneity (Higgins I2 of 77.3%, p
= 0.012).
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TABLE 1 | Study characteristics, model methodology, and predictive performance of the included studies.

First author and

year

Study characteristics

Dataset source Inclusion/

exclusion

criteria

Total

patient number

(n)

Training and

validation

sets (n)

Test set (n) External test

set

Multivendor

images

Gottrup et al. (24) Single center N 14 Leave-one-out cross validation N NR

McKinley et al.

(25)

Single center Y 61 25 36 N N

Livne et al. (26) Multicenter (I-KNOW study

and the Ischemic

Preconditioning trial)

Y 195 ≈156 ≈39 N Y

Nielsen et al. (14) Multicenter (I-KNOW and

remote ischemic

preconditioning studies)

Y 222 187 35 N Y

Pinto et al. (27) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Winzeck et al. (28) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Clèrigues et al. (29) Multicenter (ISLES 2018

dataset)

Y 103 63 40 N Y

Ho et al. (30) Single center Y 48 ≈43 ≈5 N N

Kasasbeh et al.

(31)

Multicenter Y 103 ≈82 ≈21 N NR

Pérez Malla et al.

(32)

Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Robben et al. (33) Multicenter (MR CLEAN

study)

Y 188 ≈150 ≈38 N NR

Winder et al. (34) Single center Y 90 Leave-one-out cross validation N N

Grosser et al. (35) Multicenter Y 99 Leave-one-out cross validation N NR

Grosser et al. (36) Multicenter Y 99 Leave-one-out cross validation N NR

Hu et al. (37) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Kim et al. (38) Single center Y 92 unsuccessful

recanalization 36

and successful

recanalization 56

53 39 N N

Kumar et al. (39) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Pinto et al. (40) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Qiu et al. (41) Single center Y 257 157 100 N N

Wang et al. (42) Multicenter (ISLES 2018

dataset)

Y 103 63 40 N Y

Yu et al. (17) Multicenter (ICAS and

DEFUSE-2 studies)

Y 182 ≈146 ≈36 N NR

Benzakoun et al.

(11)

Single center Y 394 ≈358 ≈36 N N

Debs et al. (43) Multicenter

(HIBISCUS-STROKE and

I-KNOW cohorts)

Y 109 reperfused 74

and

non-reperfused 35

Reperfused≈69

and non-

reperfused≈28

Reperfused≈15

and non-

reperfused≈

7

N NR

Hakim et al. (44) Multicenter (ISLES 2018

dataset)

Y 103 63 40 N Y

Hokkinen et al.

(45)

Single center Y 83 NR NR N N

Hokkinen et al.

(46)

Single center Y 89 None 89 N N

(Continued)
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TABLE 1 | Continued

First author and

year

Study characteristics

Dataset source Inclusion/

exclusion

criteria

Total

patient number

(n)

Training and

validation

sets (n)

Test set (n) External test

set

Multivendor

images

Klug et al. (47) Single center Y 144 intravenous

thrombolysis (IVT)

80, endovascular

thrombectomy

(EVT) 64

≈115 ≈29 N N

Kuang et al. (13) Multicenter (Prove-IT study

and HERMES collaboration)

Y 205 68 137 Y NR

Modrau et al. (48) Multicenter (TEA-Stroke

Trial)

Y 52 theophylline 27

and control

group 25

NR NR N NR

Pinto et al. (49) Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Qiu et al. (15) Multicenter (Prove-IT study) Y 196 170 26 N NR

Soltanpour et al.

(50)

Multicenter (ISLES 2018

dataset)

Y 103 63 40 N Y

Vupputuri et al.

(51)

Multicenter (ISLES 2017

dataset)

Y 75 43 32 N N

Yu et al. (16) Multicenter (ICAS, DEFUSE

and DEFUSE-2 studies)

Y 185 118 67 N NR

He et al. (12) Single center Y 70 59 11 N N

Lin et al. (52) Single center Y 261 ≈209 ≈52 N NR

Shi et al. (53) Multicenter (ISLES 2018

dataset)

Y 103 63 40 N Y

Zhu et al. (54) Multicenter N 89 ≈71 ≈18 N N

Model methodology Predictive performance

First author and

year

Summary of the model Input parameters Ground Truth Primary metric

(DSC score)

Secondary metrics

Gottrup et al. (24) k-nearest neighbor

classification

MR-CBF, CBV, MTT, DWI,

ADC, T2WI

Infarct lesions manually

segmented on follow-up

T2WI 5 days or later

NR AUC: 0.814 ± 0.001

Sensitivity: 0.73

Specificity: 0.73

McKinley et al.

(25)

Random forest classifier,

including segmentation and

predictive classifiers

Features extracted from

MR-T1 contrast, T2WI, ADC,

CBF, CBV, TTP, Tmax

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by 2

radiologists

0.34 ± 0.22 AUC: 0.94 ± 0.08

Sensitivity: 0.52

Specificity: 0.99

Precision: 0.56

Livne et al. (26) Extreme gradient boosting

(XGBoost)

MR-DWI, T2-FLAIR, and TTP

derived from the concentration

curve; CBF, MTT and Tmax

using oscillatory singular value

decomposition deconvolution;

CBF, CBV, MTT, Tmax, relative

transit time heterogeneity and

capillary transit time

heterogeneity using a statistical

approach

Final infarct lesions

semi-automatically

segmented on follow-up

T2-FLAIR

NR AUC: 0.92

Accuracy: 0.84

Nielsen et al. (14) Modified SegNet MR-mean capillary transit time,

CBV, CBF, cerebral metabolism

of oxygen, relative transit time

heterogeneity, delay, TRACE

DWI, ADC, and T2-FLAIR

Infarcts lesions manually

segmented on follow-up

T2-FLAIR at 30 days by 4

expert radiologists

NR AUC: 0.88 ± 0.12

Pinto et al. (27) Fully convolutional U-Net

combined with a

2D-dimensional gated

recurrent unit layer

MR-ADC, rCBF, rCBV, MTT,

TTP, Tmax and clinical

information-TICI score

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.29 ± 0.22 Precision: 0.26 ± 0.23

Recall: 0.61 ± 0.28

(Continued)
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TABLE 1 | Continued

Model methodology Predictive performance

First author and

year

Summary of the model Input parameters Ground Truth Primary metric

(DSC score)

Secondary metrics

Winzeck et al. (28) Multiscale U-net architecture

trained with negative Dice

score

MR-ADC, rCBF, rCBV, MTT,

TMAX, TTP, Raw PWI and

clinical information

time-since-stroke,

time-to-treatment, TICI and

mRS scores

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.31 ± 0.23 Sensitivity: 0.45 ± 0.31

Precision: 0.36 ± 0.27

Clèrigues et al. (29) 2D asymmetrical residual

encoder–decoder CNN by

using a more regularized

network training procedure,

symmetric modality

augmentation and uncertainty

filtering

CT-raw CTP series and CBF,

CBV, MTT, Tmax

Infarct core manually

segmented by a single

investigator and then

subjected to group review

until acceptance

0.547 ± 0.242 Sensitivity: 0.609 ± 0.250

Ho et al. (30) Unit CNN-contralateral model

including modified input

patches (patches of interest

paired with contralateral

patches), convolutional layer

architecture and unit temporal

filter learning

MR-PWI source image Infarct lesions

semi-automatically

segmented on follow-up

FLAIR at 3–7 days by a

radiologist

NR AUC: 0.871 ± 0.024

Precision: 0.222

Recall: 0.799

Kasasbeh et al.

(31)

Feed-forward ANN CT-rCBF, CBV, MTT, and Tmax acute infarct lesions

segmented on follow-up

DWI at median time delay of

40.5min

0.48 (IQR

0.23–0.70)

AUC: 0.85

Mean volume error: 13.8 ±

13.6 ml

Pérez Malla et al.

(32)

DeepMedic model with PReLU

activation using transfer

learning, data augmentation

and binary morphological

post-processing operations

MR-ADC, MTT, and rCBF Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.34 -

Robben et al. (33) Fully convolutional network

with PReLU activation

CT-native CTP, downsampled

CTP, arterial input function and

clinical data-time between

stroke onset and imaging, time

between imaging and the end

of the mechanical

thrombectomy, mTICI score

and persistence of occlusion at

24 h

Infarct lesions

semi-automatically

segmented on follow-up

NCCT at 1–5 days by an

experienced reader

0.48 Mean absolute volume

error: 36.7 ml

Winder et al. (34) Random forest classifier MR-ADC, distance to ischemic

core, tissue type, anatomical

location, CBV, MTT, Tmax,

CBF and clinical data-NIHSS,

age, sex, and time from

symptom onset

Final infarct lesion manually

segmented on FLAIR or DWI

or NCCT at 5–7 days by an

experienced medical expert

0.447 ± 0.247 -

Grosser et al. (35) Random forest classifier

trained by local and global

approaches

MR-ADC, CBF, CBV, MTT,

Tmax

Infarct lesions manually

segmented on follow-up

FLAIR at 1–7 days by 2

neurologists in consensus

0.353 ± 0.220 AUC: 0.859 ± 0.089

Sensitivity: 0.415 ± 0.231

Specificity: 0.964 ± 0.034

Grosser et al. (36) XGBoost MR-ADC, CBF, CBV, MTT,

Tmax and voxel-wise lesion

probabilities

Infarct lesions manually

segmented on follow-up

FLAIR within 7 days by 2

neuroradiologists in

consensus

0.395 ± 0.229 AUC: 0.888 ± 0.101

Hu et al. (37) Brain SegNet: a 3D dense

segmentation network based

on ResNet and trained with

data augmentation and Focal

loss

MR-TTP, Tmax, rCBV, rCBF,

MTT, ADC

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.30 ± 0.22 Precision: 0.35 ± 0.27

Recall: 0.43 ± 0.27

(Continued)
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TABLE 1 | Continued

Model methodology Predictive performance

First author and

year

Summary of the model Input parameters Ground Truth Primary metric

(DSC score)

Secondary metrics

Kim et al. (38) Random forest classifier Features derived from

MR-ADC and rTTP: range,

mean, median, min, max,

standard deviation, skew,

kurtosis, 10 th percentile, 25 th

percentile, 75 th percentile,

and 90 th percentile

Infarct lesions manually

segmented on follow-up

DWI at 7 days

0.49 (IQR

0.37–0.59)

Unsuccessful recanalization:

AUC: 0.746 ± 0.048 Mean

volume error: −32.5 ml

Successful recanalization:

AUC: 0.764 ± 0.127 Mean

volume error: 3.5 ml

Kumar et al. (39) Classifier-Segmenter network,

using a hybrid training strategy

with a self-similar (fractal)

U-Net model

MR-DWI, ADC, CBV, CBF,

MTT, TTP, Tmax

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.28 ± 0.22 Precision: 0.37 ± 0.29

Recall: 0.45 ± 0.34

Pinto et al. (40) Two-branch Restricted

Boltzmann Machine provides

lesion and hemodynamics

features from parametric MRI

maps, then combined with

parametric MRI maps and fed

to a U-net using NReLU

activation

MR-ADC, MTT, TTP, rCBF and

rCBV

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.38 ± 0.22 Precision: 0.41 ± 0.26

Recall: 0.53 ± 0.29

Qiu et al. (41) Random forest classifier Features derived from NCCT:

Hounsfield units, bilateral

density difference,

hypoattenuation measurement,

distance feature,

atlas-encoded lesion location

feature

Early infarct lesions

manually segmented on

follow-up DWI within 1 h

NR Mean volume error: 11 ml

Wang et al. (42) CNN model with a feature

extractor, a pseudo-DWI

generator and a final lesion

segmenter using hybrid loss

function

CT-CBF, CBV, MTT, Tmax and

synthesized pseudo-DWI

Infarct core manually

segmented by a single

investigator and then

subjected to group review

until acceptance

0.54 ± 0.21 Precision: 51.20 ± 22.00

Recall: 64.20 ± 23.99

Yu et al. (17) 2.5D attention-gated U-Net

using mixed loss functions

MR-DWI, ADC, Tmax, MTT,

CBF, CBV

Final infarct lesions manually

segmented on follow-up

T2-FLAIR at 3–7 days by a

neuroradiologist

0.53 (IQR

0.31–0.68)

AUC: 0.92 (IQR 0.87–0.96)

Mean volume error: 9ml

(IQR −14ml−29ml)

Benzakoun et al.

(11)

Gradient Boosting MR-DWI, ADC, Tmax, MRR,

CBF, CBV

Infarct lesions manually

segmented on follow-up

DWI around 24 h by a

neuroradiologist

0.53 (IQR

0.29–0.68)

AUC: 0.98 (IQR 0.95–0.99)

Mean volume error: 27.7 ±

40.3 ml

Debs et al. (43) U-Net with multi-class Dice

loss functions

MR-DWI, ADC, Tmax, CBF,

CBV

Final infarct lesions

semi-automatically

segmented on follow-up

T2-FLAIR at 6- or 30-day

using intensity-based

thresholding method

Reperfused: 0.44

± 0.25

Non-reperfused:

0.47 ± 0.17

Reperfused: AUC: 0.87

± 0.13

Precision:0.50 ± 0.27

Recall:0.50 ± 0.26

Non-reperfused: AUC: 0.81

± 0.13

Precision: 0.49 ± 0.22

Recall: 0.52 ± 0.21

Hakim et al. (44) 3D multi-scale U-shape

network with atrous

convolution

CT-CTP source data, CBF,

CBV, MTT, Tmax

Infarct core manually

segmented by a single

investigator and then

subjected to group review

until acceptance

0.51 ± 0.31 Mean absolute volume

error: 10.24 ± 9.94ml

Precision: 0.55 ± 0.36

Recall: 0.55 ± 0.34

Hokkinen et al.

(45)

3D CNN CT-CTA source image Infarct lesions manually

segmented on follow-up CT

with median time interval of

36 h

NR Mean volume error: −16.3

ml

(Continued)
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TABLE 1 | Continued

Model methodology Predictive performance

First author and

year

Summary of the model Input parameters Ground Truth Primary metric

(DSC score)

Secondary metrics

Hokkinen et al.

(46)

3D CNN CT-CTA source image Infarct lesions manually

segmented on follow-up CT

or DWI within 5 days by a

radiologist

NR Mean volume error: 13.9 ±

12.5 ml

Klug et al. (47) General linear regression

model

CT-MTT, Tmax, CBF and CBV

and multi-perfusion parameter

analysis

Final infarct lesions

segmented on T2-FLAIR

within 10 days by 2

neuroradiologists

0.155 AUC: 0.89

Volume error: IVT: 4.6ml

(IQR 0.7–19.9),

EVT: 32.8ml (IQR 8.9–64.7)

Kuang et al. (13) Random forest classifier CT-average map, Tmax, CBF,

CBV and clinical

data-onset-to-imaging time,

imaging-to-reperfusion time

PRoveIT study: infarct

lesions manually segmented

on follow-up DWI or NCCT

by 2 experts in consensus;

HERMES collaboration:

infarct lesions automatically

segmented followed by

manual corrections

0.388 (IQR

0.192–0.541)

AUC: 0.81 ± 0.11

Volume error: −3.2ml

(IQR −16.7–6.1)

Modrau et al. (48) Random forest classifier MR-ADC, CBF, CBV, MTT,

Tmax, tissue type probability,

anatomical location, distance

to the ischemic core and

clinical data-age, sex, baseline

NIHSS, time of stroke onset to

medical application

Infarct lesions manually

segmented on follow-up

T2-FLAIR at 24 h

Theophylline

subgroup: 0.40 ±

0.249

Placebo

subgroup: 0.35 ±

0.243

Pinto et al. (49) 2D U-Net with a data-driven

branch computing

spatio-temporal features from

DSC-MRI

MR-DSC-MRI spatio-temporal

information, Tmax, TTP, MTT,

rCBV, rCBF, ADC

Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.31 ± 0.21 Precision: 0.29 ± 0.23

Recall: 0.63 ± 0.30

Qiu et al. (15) Random forest classifier Features derived multi-phase

CTA: average and standard

deviation of HUs across

3-phase CTA images,

coefficient of variance of HUs

in 3-phase CTA images,

changing slopes of HUs

between any two phases, peak

of HUs in 3-phase CTA

images, time of peak HU

Infarct lesions manually

segmented on follow-up

DWI/NCCT at 24/36h by 2

radiologists

0.247 (IQR

0.138–0.304)

Mean volume error: 21.7 ml

Soltanpour et al.

(50)

MultiRes U-Net CT-CBF, CBV, MTT, Tmax,

contrast map, Tmax heatmap

Infarct core manually

segmented by a single

investigator and then

subjected to group review

until acceptance

0.68 ± 0.26 Sensitivity: 0.68 ± 0.15

Mean absolute volume

error: 22.62 ± 7.3 ml

Vupputuri et al.

(51)

MCN-DN: Multi-path

convolution leveraged attention

deep network with LReLU

MR-ADC, CBF, CBV, MTT, TTP Final infarct lesions manually

segmented on follow-up

T2WI at 90 days by a

neuroradiologist

0.47 Sensitivity:0.867

Specificity:0.972

Yu et al. (16) Attention-gated U-Net with

mixed loss functions

MR-DWI, ADC, Tmax, MTT,

CBV, CBF and masks of Tmax

(>6s) and ADC (620 × 10-6

mm2/s )

iCAS and DEFUSE-2

studies: final infarct lesions

segmented on T2-FLAIR at

3–7 days; DEFUSE study:

final infarct lesions

segmented on T2-FLAIR at

30 days

0.57 (IQR

0.30–0.69)

AUC: 0.94 (IQR 0.89–0.97)

Volume error: 0ml

(IQR -44–81)

He et al. (12) 2D U-Net with binary focal loss

and Jaccard loss combined

functions

CT-CBF, CBV, MTT, Tmax Infarct lesions manually

segmented on follow-up

DWI/SWI or NCCT

0.61 AUC: 0.92

Sensitivity: 0.63

Specificity: 0.98

Absolute volume error:

26.5ml (IQR 9.9–31.7)

(Continued)
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TABLE 1 | Continued

Model methodology Predictive performance

First author and

year

Summary of the model Input parameters Ground Truth Primary metric

(DSC score)

Secondary metrics

Lin et al. (52) R2U-RNet with residual

refinement unit (RRU)

activation and multiscale focal

loss functions

CT-NCCT with intensity

normalization and histogram

equalization

Infarct lesion manually

segmented on follow-up

DWI within 7 days by a

radiologist

0.54 ± 0.29 -

Shi et al. (53) C2MA-Net: a cross-modal

cross-attention network

CT-CBF, CBV, MTT, Tmax Infarct core manually

segmented by a single

investigator and then

subjected to group review

until acceptance

0.48 Precision: 0.48

Recall: 0.59

Zhu et al. (54) ISP-Net: a multi-scale atrous

convolution with weighted

cross entropy loss functions

CT-CTP source data, CBF,

CBV, MTT, Tmax

Infarct lesions segmented

on follow-up CT or DWI at

1-7 days

0.801 ± 0.078 AUC: 0.721 ± 0.108

Specificity:0.995 ± 0.002

Precision: 0.813 ± 0.066

Recall: 0.795 ± 0.115

Y, Yes; N, No; NR, not reported; PReLU, parametric rectified linear unit; NReLU, noisy rectified linear unit; LReLU, leaky rectified linear unit; CTA, CT angiography; CTP, CT perfusion;

DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; CBF, cerebral blood flow; CBV, cerebral blood volume; MTT, mean transit time; TTP, time to peak; Tmax, time to

maximum of the residue function; NIHSS, National Institute of Health stroke scale; mTICI, modified thrombolysis in cerebral infarction; mRS, modified Rankin scale; DSC, dice similarity

coefficient; AUC, area under the receiving operator characteristic curve.

Studies included in the meta-analysis were presented in bold font.

DISCUSSION

In this study, we reviewed the performance of ML-based
approaches for final infarct lesion prediction from acute
stroke imaging. The overall predictive performance of ML
algorithms was moderate with a pooled DSC score of 0.50
(95% CI 0.39–0.61, Higgins I2 = 96.5%, p < 0.001). Subgroup
analyses indicated that the DL-based models outperformed
the conventional ML classifiers with the best performance
observed in DL algorithms combined with pre-processing
CT data. Although high heterogeneity was present across
studies, current ML algorithms still showed promising
performance for ischemic tissue outcome prediction from
baseline imaging.

Estimating the final infarct lesion from baseline imaging is
complex due to the heterogeneity of lesion shape, location, and
progression. The aim ofML applications is to exact themaximum
amount of predictive power from the available multi-modality
imaging information, where conventional thresholding methods
seem inadequate (10). A few studies validated their proposedML-
based approaches compared to conventional thresholds for core
infarcted tissue delineation and showed significant improvement
in measurement results using ML-based methods (11, 13–15,
17). For instance, when training an attention-gated U-Net with
baseline MR diffusion and perfusion parameters, the prediction
model outperformed the ADC <620 × 10−6 mm2/s threshold,
with more precise segmentation (DSC score 0.53 vs. 0.45), higher
discriminating power (AUC 0.92 vs. 0.71) and smaller volume
error (median 9 vs. 12ml) (14). Such strategies take advantage
of the data-processing ability of ML algorithms to provide
rapid and reliable assessment, which is promising to support
clinical management.

Conventional ML classifiers included linear regression and
decision trees. Grosser et al. compared the performance of 3
classical ML algorithms for infarct core estimate and revealed
that decision trees (random forest and gradient boosting)
performed better than linear regression model (36), indicating
the necessity of using non-linear algorithms for stroke prediction
segmentation. In the 2017 ISLES challenge, where uniform
pre-processing data for model training and test were provided,
almost all top-ranking teams employed DL algorithms instead
of ML classifiers (28). Our finding was consistent with the
results of ISLES challenge 2017, which indicated the advantages
of using DL algorithms for final infarct prediction. However,
a recent study held contradictory results that a U-net model
performed less well than two decision tree classifiers (DSC
score 0.48 vs. 0.53 and 0.51) (11). A possible reason was the
relatively small sample size for fully training a DL algorithm. The
inherent data-dependent characteristic of DL algorithms meant
that once trained on sufficient data, the model performance
would continue to improve, while classical ML approaches
tend toward stability. Moreover, most well-performed
DL models were customized on the baseline architectures.
Innovative modifications of algorithm architectures and training
strategies would further improve the predictive performance of
DL models.

Most of the previous works have chosenMR images for model
training, given the high tissue contrast and the sensitivity of
MR diffusion for infarct core detection. Our study revealed that
the DSC score of MR-input models stabilized at around 0.45,
either using ML classifiers or DL models. In clinical practice, CT
is more widely available for acute stroke triage, detecting large
vessel occlusion, and selecting candidates for revascularization
(8, 55). Studies developing models training on CT perfusion data
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TABLE 2 | Methodological quality assessment of the included studies.

Quality assessment items McKinley

(25)

Kasasbeh

(31)

Kim

(38)

Pinto

(40)

Benzakoun

(11)

Debs

(43)

Kuang

(13)

Soltannpour

(50)

Yu (16) Lin

(52)

Zhu (54)

Are all three image sets (training,

validation, and test sets) defined?

N Y N N Y N N N Y N N

Is an external test set used for

final statistical reporting?

N N N N N N Y N N N N

Have multivendor images been

used to evaluate the AI

algorithm?

N U N N N U U Y U U N

Are the sizes of the training,

validation and test sets justified?

U U U U U U U U U U U

Was the AI algorithm trained

using a standard of reference

that is widely accepted in our

field?

Y Y Y Y Y Y Y Y Y Y Y

Was preparation of images for

the AI algorithm adequately

described?

Y Y Y Y Y Y Y Y Y Y Y

Were the results of the AI

algorithm compared with

radiology experts and/or

pathology?

Y Y Y Y Y Y Y Y Y Y Y

Was the manner in which the AI

algorithms makes decisions

demonstrated?

Y Y Y Y Y Y Y Y Y Y Y

Is the AI algorithm publicly

available?

N N N Y Y N N N N N N

Y, yes; N, no; U, unknown.
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FIGURE 2 | Forest plot of the included studies that assessed the performance of infarct tissue outcome prediction. Forest plot shows that the dice similarity

coefficient (DSC) representing the performance of the machine learning-based approaches for final infarct prediction centers around 0.50 with a 95% confidence

interval (CI) ranging from 0.39 to 0.61.

FIGURE 3 | Sensitivity analysis for the overall predictive performance using one-study-removed method.
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FIGURE 4 | Funnel plot of the included studies. The effect size of mean dice

similarity coefficient (DSC) score was displayed on the horizontal axis.

Standard error was plotted on the vertical axis.

appeared late yet achieved comparable or better performance
than MR-input models (12, 29, 31, 33, 42, 44, 47, 50, 52,
53). One study employing a random forest classifier using
features extracted from multi-phase CT angiography presented
less satisfactory performance with a DSC score of 0.22 (15).
However, a more recent study based on the R2U-RNet algorithm
using non-contrast CT data with intensity normalization and
histogram equalization showed promising performance with
a DSC score of 0.54 (52). Theoretically, different imaging
modalities and parameters provide complementary information,
and thus the combination of multimodal imaging data with
reasonable pre-processing would enhance the overall predictive
performance. In addition, several approaches incorporated
clinical data such as stroke severity, reperfusion status, and time
variants (13, 28, 33, 34, 48). Multi-dimensional input information
consisting of imaging and non-imaging data is expected to
establish better prediction models, which is a direction of
future research.

In our study, we have chosen the DSC score as the primary
performance metric, a commonly used volume-based metric
containing lesion size and location information for target
segmentation. Other segmentation metrics, such as Jaccard
index was less reported in this research field, and Hausdorff
distance and surface distance were distance-based metrics that
were less optimal for final infarct lesion prediction (56).
Although ROC is more familiar in diagnostic accuracy studies,
its efficacy has been challenged for class imbalance tissue,
such as infarct core prediction. Large numbers of “healthy”
voxels would lead the AUC values to a high level and
reduce its discriminating power. From a clinical standpoint,
we included the volume error as a secondary performance
metric, which enabled intuitive assessment of the size differences
between prediction results and reference standards, as the
estimate of core infarct volume was critical to identify

eligible patients who would benefit from treatment in the late
time window.

Although ML-based approaches provided promising results
for final infarct lesion prediction, there is still no wide acceptance
and implementation in clinical practice. Most of the proposed
models were trained on datasets with small sample size, which
was deemed insufficient to train an ML algorithm (especially
a DL algorithm), leading to an overall moderate predictive
performance. Many studies validated using the k-fold cross-
validation method to provide an unbiased evaluation with small
sample size. However, the real predictive performance would be
overestimated without an independent external validation (57).
Another limitation was data heterogeneity, as models trained
on single-center cohort using single-vendor data would reduce
the model generalizability. One study validating their approach
on an external cohort indicated less satisfactory performance
with a median DSC score of 0.39 (13). There is an emerging
trend to build up large multi-vendor, multi-institution diagnostic
datasets with initial implementation on chest X-ray data (56). A
similar dataset for stroke lesion segmentation would be helpful.
In addition, a standardized methodologic procedure is also
warranted including the definition of the clinical cohort, imaging
protocols, reference standard, model training and validation
process, and clinical evaluation of model performance.

Our study has several limitations. First, the heterogeneity was
high across studies due to the differences in the study cohorts,
algorithm types, and input parameters. We made sensitivity
analyses and found no obvious deviation of the adjusted effect
size from the main effect size. We also conducted subgroup
analyses to explain the heterogeneity and found a downward
trend of heterogeneity in the subgroup analyses. However, re-
evaluation of the overall model performance is needed as more
relevant, intensive studies accumulate. Second, as an emerging
field of artificial intelligence in imaging, there was no consensus
on the reporting standards. Therefore, 13 studies were excluded
before the meta-analysis because of lacking definition of image
sets or results of DSC scores, which might result in an incomplete
assessment of available studies. Third, although the publication
bias examined by Egger’s test was not significant, the funnel
plot showed an asymmetrical shape. We excluded 14 studies
due to dataset duplicates or overlapping to avoid affecting the
overall pooled effect size. It might contribute to the risk of
publication bias.

CONCLUSION

In this study, we conducted a systematic review and meta-
analysis of current studies using ML algorithms for infarct
core prediction. Despite the heterogeneity across studies, the
overall performance ofML-based predictivemethods is moderate
but promising, with better predictive performance presented in
the DL-based approaches. However, before well integrated into
clinical stroke workflow, future studies are suggested to trainML-
based approaches on large-scale, multi-vendor data, validate on
external cohorts and adopt formalized reporting standards for
improving model accuracy and robustness.
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FIGURE 5 | Forest plot of subgroup analyses in conventional machine learning (ML) classifiers using MR data (A) and CT data (B) as model input, and deep learning

models using MR data (C) and CT data (D) as model input, respectively.
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