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Objective: This study comparatively analyzed the hemodynamic changes resulting from

various simulated stent-assisted embolization treatments to explore an optimal treatment

strategy for intracranial vertebral artery fusiform aneurysms. An actual vertebral fusiform

aneurysm case treated by large coil post-stenting (PLCS) was used as a control.

Materials and Methods: A single case of an intracranial vertebral artery fusiform

aneurysm underwent a preoperative and eight postoperative finite element treatment

simulations: PLCS [single and dual Low-profile Visualized Intraluminal Support (LVIS)],

Jailing technique (single and dual LVIS both simulated twice, Pipeline Embolization Device

(PED) with or without large coils (LCs). Qualitative and quantitative assessments were

performed to analyze the most common hemodynamic risk factors for recurrence.

Results: Jailing technique and PED-only had a high residual flow volume (RFV) and

wall shear stress (WSS) on the large curvature of the blood flow impingement region.

Quantitative analysis determined that PLSC and PED had a lower RFV compared to

preoperative than did the jailing technique [PED+LC 2.46% < PLCS 1.2 (dual LVIS)

4.75% < PLCS 1.1 (single LVIS) 6.34% < PED 6.58% < Jailing 2.2 12.45% < Jailing

1.2 12.71% < Jailing 1.1 14.28% < Jailing 2.1 16.44%]. The sac-averaged flow velocity

treated by PLCS, PED and PED+LC compared to preoperatively was significantly lower

than the jailing technique [PED+LC = PLCS 1.2 (dual LVIS) 17.5% < PLCS 1.1 (single

LVIS) = PED 27.5% < Jailing 1.2 = Jailing 2.2 32.5% < Jailing 1.1 37.5% < Jailing 2.1

40%]. The sac-averaged WSS for the PLCS 1.2 (dual LVIS) model was lower than the

PED+LC, while the high WSS area of the Jailing 1 model was larger than for Jailing 2

[PLCS 1.2 38.94% (dual LVIS) < PED+LC 41% < PLCS 1.1 43.36% (single LVIS) <

PED 45.23% < Jailing 2.1 47.49% < Jailing 2.2 47.79% < Jailing 1.1 48.97% < Jailing

1.2 49.85%].

Conclusions: For fusiform aneurysms, post large coil stenting can provide a uniform

coil configuration potentially reducing the hemodynamic risk factors of recurrence.

Flow diverters also may reduce the recurrence risk, with long-term follow-up required,

especially to monitor branch blood flow to prevent postoperative ischemia.
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INTRODUCTION

Fusiform aneurysms are more prone to occur in the posterior
circulation (1). Intracranial aneurysm recurrence is related to the

degree of the parent artery involved (2). Fusiform aneurysms

have more extensive wall enhancement than the saccular
variety indicating wall inflammation and vulnerability (3, 4).

Vulnerable vessel walls exposed to abnormal hemodynamics are
susceptible to aneurysm growth, rupture, and recurrence (5–
7). For highly involved parent artery aneurysms, coils cannot
be safely and effectively used for vascular reconstruction (8).
Revascularization therapy mainly relies on various stent-assisted
embolization techniques presenting different procedures and
recurrence risks (9, 10). Currently, our center’s most commonly
used stent-assisted embolization techniques include Jailing, post-
large-coil stenting (PLCS), and Pipeline Embolization Device
(PED) combined with or without large-coil techniques. Jailing
techniques with conventional stents present a relatively low
procedure-related risk with a high recurrence exposure (11).
PLCS proposed in our center can be used to embolize fusiform
aneurysms and lower their recurrence rate. Increased off-label
use of flow diverters presents some extent ischemic risk for
intracranial vertebral artery fusiform aneurysms (12). Unclear
hemodynamic effects among the various reconstructive strategies
for intracranial vertebral fusiform aneurysms make it difficult to
nominate an optimal approach.

Hemodynamically, wall shear stress (WSS) is an important
risk factor for aneurysm rupture. Low WSS induces destructive
remodeling caused by inflammatory cells, resulting in aneurysm
instability. Higher than normal WSS also can result in
the enlargement and rupture of aneurysms based on other
mechanisms (6). This study focused on the recanalization
risk induced by blood inflow for the unruptured aneurysm.
To elucidate the issue of postoperative recurrence, high WSS
and velocity, larger residual flow volume (RFV), and other
hemodynamic characteristics from large blood inflow were
correlated with recanalization and recurrence (13–18). Luo
et al. (16) reported high WSS and flow velocity in partially
occluded saccular aneurysms prone to recanalization. Umeda
et al. (18) found that RFV predicts the recurrence of coiled
paraclinoid aneurysms. For large narrow-necked aneurysms,
PED with coils treatment can accelerate thrombotic efficiency,
favoring aneurysm occlusion in the competition with delayed
rupture (19).

However, no CFD mechanism-related studies exist on
the potential recurrence risk among different reconstruction
techniques for intracranial vertebral artery fusiform aneurysms.
This present study modeled an actual case of vertebral artery
fusiform aneurysm treated with PLCS without considering
thrombosis, simulating and comparing the preoperative
hemodynamic effects and eight post-operative finite element
treatment simulations– PLCS x 2 (single and dual Low-profile
Visualized Intraluminal Support (LVIS)), Jailing technique x 4
(single and double LVIS both simulated twice with different coil
configurations), and 2x Pipeline Embolization Device (PED)
with or without large coils (LCs) – to analyze the most common
hemodynamic risk factors for recurrence.

MATERIALS AND METHODS

Population
A man in his 40 s with an intracranial fusiform aneurysm in
the dominant vertebral artery experienced a sudden headache
once 2 months ago. The left vertebral artery fusiform aneurysm
diagnosed on MRI in a local hospital was treated with PLCS
techniques (schematic Figure 1 for details). Three large coils
compared to aneurysmal width (twoMicroplex-10 8mm x 30 cm
and one 7mm x 30 cm) plus two LVIS stents (4.5 x 20mm and
4.5 x 15mm) were implanted with a modified Raymond IIIa
outcome (Figure 2). The 12-month DSA follow-up showed no
recurrence or remnant (Raymond I).

Model Reconstruction
Raw data was generated from DSA rotational angiography
(high-pressure injector rate 3 ml/s, time 5 s, total volume
15ml) using Siemens equipment Axiom Artis Zeego, Siemens
Medical Solutions, Erlangen, Germany). The acquired raw data
were reconstructed in Mimics 17 software (Materialise, Leuven,
Vlaams-Brabant, Belgium) to generate STL files subsequently
imported into Geomagic 12 software for model repair, trimming,
and smoothing (Figure 3A).

Finite Element Simulation
A two-step finite element simulation of stent deployment
was devised (20). Firstly, LVIS and Pipeline models were
generated in SolidWorks (Dassault Systems, SolidWorks Corp.,
MA) according to geometric information (21). Secondly, stent
deployment was simulated in ABAQUS v6.14 (SIMULIA,
Providence, RI) using the Dynamic Explicit Method and B31
element type, which was also done for the coils. Stent-specific
parameters obtained from a previous study (22) were divided
into three steps: compression, delivery, and release of the stent.
Initially, the stent in its fully released state was inserted into a
round tube and compressed to a state where it can be inserted
into the micro-catheter model by allocating the displacement
load of the outer wall. Then, the stent followed the delivery
path of the micro-catheter by providing the displacement load
to be delivered to the target area. Finally, the micro-catheter was
withdrawn, and the stent was released using a predefined stress-
strain field allowing the stent to expand in the designated area to
fit the inner wall of the artery. The delivery path was generated
by connecting the center points of the blood vessel cross-section,
while the stent release point was determined by the surgical
image. The “general contact” algorithm was used in ABAQUS to
deal with the complex interactions during stent release, with the
friction coefficient assigned to 0.15 (23).

The simulation of the coil insertion process was carried out
in ABAQUS (20). The process involved both pulling in and
pushing out the coil. The coils were generated in MATLAB
(MathWorks, Natwick, MA) using centerlines to simplify the coil
shape (22). First, a coil-microcatheter-aneurysm model was built
using NX12.0, and then the model was imported into ABAQUS.
The coil is pulled into the microcatheter by distributing a
displacement load at one end of the coil, while the coil inside
the microcatheter is pushed out into the aneurysm using a
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FIGURE 1 | Post-large coil stenting technique schematic diagram. (A) The stenting microcatheter (blue) and unshaped coiling microcatheter (yellow) are positioned.

(B) Coil diameter is selected with reference to the value ≥A. The aneurysm sac is evenly filled. (C) Continued embolization using 2–4 coils, then deploying the stent

and placing the stenting microcatheter at the distal segment as a backup. (D) If the sac is not densely embolized or coil protrusion into the stent occurs, a second

stent can be released to provide flow diversion, allowing further embolization to proceed. ①–③ For those with branches or an irregular sac, the stent can be

semi-released to assist in forming a basket while protecting the branches.
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FIGURE 2 | A 49-year-old male patient presented with a sudden severe headache once 2 months prior. ① Preoperative high-resolution MRI showed significant

enhancement of the vessel wall with the intraluminal slow flow (blue arrow). ② Right vertebral artery dysplasia. ③ Preoperative measurement of aneurysm and parent

artery, aneurysm size: 7.31 x 8.39mm. ④ Echelon-10 microcatheter (red arrow) was used to protect the posterior inferior cerebellar artery during operation. ⑤,⑥

Stents were post-deployed, Immediate postoperative angiography and non-subtraction images showed slight stagnation in the aneurysm sac (Raymond IIIa;

Microplex-10 coils: two 8 x 30 cm and one 7 x 30 cm; LVIS stents: 4.5 x 20mm, 4.5 x 15mm). ⑦ The distribution of the coils along the wall was not well-uniform. ⑧,⑨

12-month follow-up showed that there was no recurrence of the aneurysm (Raymond I) and the parent artery was patent. ⑩ 12-month follow-up with HR-MRI, the

vortex in the sac disappeared, while the aneurysm wall was still partially enhanced.

pre-defined stress-strain field via creating a displacement load
on the other end of the coil. Finally, the coil was placed in the
aneurysm sac and then scanned in three dimensions according to
the centerlines after placement (24, 25). The coil exhibited the
following physical properties: a density of 2.13 × 10−8kg/m3,
Young’s modulus of 10,000 Pa, and Poisson’s ratio of 0.39 (26).
The three-dimensional stent and coil models obtained by finite
element simulation were output as STL format files, maintaining
the same spatial coordinate system as the blood vessel model in
the next step of the hemodynamic simulation.

The simulated hemodynamics of the preoperative untreated
model was adopted as baseline parameters. The jailing technique
with coiling was conducted twice, to simulate both separated
and connected coils. A total of eight postoperative treatment
options were simulated (Figure 3): 1. PED implantation; 2.
PED + large coils; 3–6. Jailing technique with two coiling
simulations (1.1 single/1.2 dual LVIS with separated coils and 2.1
single/2.2 dual LVIS with connected coils); 7–8. For post-large-
coil stenting (PLCS1.1 single/1.2 dual LVIS). Three large-coils
(two Microplex-10 8mm x 30 cm and one 7mm x30 cm) and
two stents (LVIS 4.5mm x 20mm and 4.5mm x 15mm) were
selected. The PED size (3.75∗20mm) was determined by two
neuro-interventionists with over 10-year experience.

Hemodynamic Simulation
The virtual treatment model is subjected to CFD simulation
analysis. To generate mesh files, the preoperative and eight
postoperative models were imported into ANSYS ICEM CFD
version 16.2 (ANSYS Inc, Canonsburg, PA, USA). A grid

independence test was performed to determine the appropriate
grid size for the stability of the calculation outcomes and the
efficiency calculation. Due to the different geometric dimensions
of vessels, stents, and coils, the mesh sizes of different object
surfaces are determined to various values. The grid size for the
stent wire surface was finally set to 1/6 of the circumference
of the wire. The artery and coil surface were 0.16mm along
with the 0.03mm LVIS surface and the 0.015mm PED surface
grid. A three-layer boundary mesh was added to improve the
accuracy of the simulation results in the near-surface region of
the model. Final mesh calculations were generated as follows:
3 million for the preoperative model; 96 million for PED and
PED with large coil; 45 million for Jailing1.1, 1.2, and PLCS1.1;
65 million for Jailing 2.1, 2.2, and PLCS1.2. The hemodynamic
simulations were fitted with the Navier-Stokes equations for
steady-state simulations using ANSYS CFX version 2019 (ANSYS
Inc, Canonsburg, PA, USA). The blood was designed as an
incompressible, laminar flow, Newtonian fluid with a density
of 1,056 kg/m3 and a viscosity of.0035 kg/m·s (27). The vessel
wall was designed to be rigid with no slip. The flow rate for the
vertebral artery inlet was set at 1.3 ml/s (28). Outlet conditions
were calculated according to Murray’s law of flow distribution
(29). A steady coupled solver was used for laminar simulation.
The residual target of the convergence criterion was 0.00001.

Statistical Analysis of the Various
Approaches
Qualitative and quantitative methods were used to analyze and
compare the flow velocity, WSS, and RFV (v >0.03 m/s) (19)
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FIGURE 3 | Simulation reconstruction model of aneurysm preoperatively and for eight different treatment approaches. (A) Preoperative aneurysm model. (B) Pipeline

device (PED) 3.75*20mm implantation model. (C) Large coil; Microplex-10 8 x 30 cm x 2 + 7 x 30 cm and PED-3.75 x 20mm. (D–F) Single LVIS stent 4.5 x 20mm

(Jailing 1.1, Jailing 2.1, and PLCS 1.1). (G–I) Dual LVIS stent 4.5 x 20mm, 4.5 x 15mm (Jailing 1.2, Jailing 2.2, and PLCS 1.2).

in the aneurysm sac among nine simulations (preoperative and
eight postoperative simulations). The vascular segment covered
by the stents was intercepted and the aneurysm sac volume was
defined as the space between the vascular wall and the stent
surface. Defining the preoperative hemodynamic parameters as
100%, the hemodynamic changes for each of the treatment
strategies were analyzed and compared.

RESULTS

Residual Blood Flow Volume (RFV)
Qualitative Analysis
RFV was discerned in the sac after PED implantation alone.
According to the simulated projection and down-the-barrel view,

the Jailing technique had a higher RFV on the large curved side
due to the non-uniformity of the coil embolization, more similar
to PED-only implantation than the RFV values of the PED+LC
and PLCS techniques (Figures 4, 5).

Quantitative Analysis
Both PLCS and PED with or without large-coils had lower
residual percentages of RFV than the Jailing technique compared
with pre-operation. The residual percentage of RFV of for dual
stents in PLCS and Jailing are smaller than for the single stent
[PED + LC 2.46% < PLCS 1.2 (dual LVIS) 4.75% < PLCS 1.1
(single LVIS) 6.34% < PED 6.58% < Jailing 2.2 12.45% < Jailing
1.2 12.71% < Jailing 1.1 14.28 % < Jailing 2.1 16.44%; Table 1,
Figure 6].
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FIGURE 4 | (A) Preoperative high-velocity region (v > 0.03 m/s). (B–I) RFV maps for different stent-assisted techniques.

The Average Flow Velocity of the Aneurysm
Sac
The streamline diagram and quantitative analysis showed that the
averaged flow velocity in the aneurysm sac after PLCS for PED
with and without large-coils decreased significantly more than
for the Jailing technique. The sac-averaged flow velocity for dual
stents in PLCS and Jailing technique are smaller than single stent
[PED+LC = PLCS1.2 (double LVIS) 17.5% < PLCS1.1 (single
LVIS) = PED 27.5% < Jailing1.2 = Jailing2.2 32.5% < Jailing1.1
37.5% < Jailing2.1 40%; Table 1, Figures 6, 7].

Average WSS of the Aneurysm Wall
Qualitative Analysis
WSS values of all postoperative models decreased significantly
compared with pre-operation. Jailing 1 experienced a larger high
WSS region than Jailing 2 (Figure 8).

Quantitative Analysis
WSS from the PLCS 1.2 (double LVIS) had the largest decline
[PLCS1.2 (Dual LVIS) 38.94% < PED+LC 41% < PLCS1.1
(Single LVIS) 43.36% < PED 45.23% < Jailing2.1 47.49% <

Jailing 2.2 47.79% < Jailing 1.1 48.97% < Jailing1.2 49.85 %;
Table 1, Figures 6, 8].

DISCUSSION

The main conclusion of this study is that PLCS and PED with or
without large-coils can significantly decrease the hemodynamic
risk factors of recurrence in the treatment of fusiform vertebral
aneurysm compared with the jailing technique. Hemodynamic
studies have shown that high WSS, large RFV, and high-
velocity areas after interventional treatment are risk factors for
aneurysmal recurrence (17, 19, 30). Chatziprodromou et al. and
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FIGURE 5 | The down-the-barrel view of preoperative and different stent-assisted technique simulation treatment.

TABLE 1 | Hemodynamic parameters pre-and post-operative stimulation treatment for various stent-assisted techniques.

Parameters Pre PED PED+LC Jailing1.1 Jailing1.2 Jailing2.1 Jailing2.2 PLCS1.1 PLCS1.2

Sac-averaged WSS (Pa) 0.339 0.154 0.139 0.166 0.169 0.161 0.162 0.147 0.132

Sac-averaged velocity (m/s) 0.040 0.011 0.007 0.015 0.013 0.016 0.013 0.011 0.007

RFV (mm3; v > 0.03m/s) 121.12 7.964 2.975 17.300 15.397 19.907 15.074 7.678 5.753

FIGURE 6 | Quantitative assessment of the sac-averaged WSS, sac-averaged velocity, and RFV of the simulated preoperative and various stent-assisted models.

Rayz et al. (31, 32) reported that high blood flow velocity and
high WSS are often accompanied, which is not conducive to
thrombosis in the aneurysm sac and has an adverse impact on

the long-term stability after embolization. Hemodynamic risk
parameters – WSS, RFV, and high-velocity regions – were lower
for PLCS than those for jailing, thus reducing the recurrence
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FIGURE 7 | (A) Preoperative velocity streamlines. (B–I) Post-operative velocity streamlines for PED, PED+LC, Jailing, and PLCS models.

risk. In both jailing and PLCS technique, the hemodynamic
risk factors of the single LVIS stent were larger than those for
dual LVIS stents. Therefore, the overlapping stent technique is
a beneficial option to reduce the potential risk of recurrence
compared with a single stent. At present, few studies analyze
the recurrence of vertebral artery aneurysms based on CFD
(33, 34). These studies indicated that hemodynamics played a role
in vertebral fusiform aneurysms similar to saccular aneurysms.
Although the data, in this case, are based on the vertebral artery,
the results should be generalizable to other aneurysms with
similar morphological characteristics.

Quantitative analysis showed hemodynamic risk factors
for recurrence after jailing was also confirmed higher than
PLCS and PED techniques due to incomplete embolization
from the micro-catheter fixed by the stent (35). Hong et al.

(36) proposed that the semi-Jailing technique could help
improve the maneuverability of the micro-catheter during the
treatment of wide-necked complex aneurysms. Chen et al.
(10) advocated a modified balloon-in-stent technique for the
treatment of fusiform aneurysms. Prolonged balloon inflation
and stent malposition potentially lead to thromboembolic
events. The wide extent of inflammation on the fusiform
aneurysm wall indicated vulnerability to recurrence (3, 37).
The uniform distribution of coils helps create a local flow
diversion effect which can reduce recurrence. The inflow tract
WSS for Jailing 1 is larger than Jailing 2 mainly due to a
failure to fully pack the impingement area, consistent with the
recurrence of saccular aneurysms after embolization (38, 39).
This suggests that more emphasis should be placed on the
inflow tract.

Frontiers in Neurology | www.frontiersin.org 8 July 2022 | Volume 13 | Article 927135

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Jiang et al. Hemodynamic Comparison of IAVF Treaments

FIGURE 8 | (A) Preoperative WSS. (B–I) WSS of PED, PED+LC, Jailing, and PLCS post-operative models.

Procedure critical points of the PLCS technique on coil, stent,
and embolizing microcatheter selection should be emphasized
for fusiform aneurysms. Coil packing has some inherent
randomness in clinical practice. Coil configuration for PLCS
should achieve a more even distribution than the jailing
technique. The framing coils (diameter ≥ aneurysm width)
often require repeated adjustment contributing to uniform coil
distribution. While protecting the patency of the involved
branches, semi-deployment of the stent can assist in framing
the large coils. Soft coils with a smaller primary helix diameter
were preferred to result in stent well-apposition. The proper
amount of large-coils (2–4) is normally used to prevent stent
opening failure. Small coils with a rivet technique may result
in stenosis or delayed occlusion of the parent artery. LVIS

stents were more usually selected for the PLCS technique due
to a number of advantages. LVIS stents can be re-sheathed
and pushed during the deployment process (9) allowing for the
uniform distribution of large coils. Further, LVIS stent is tied to
lower thrombogenicity than Pipeline stents. Finally, LVIS stents
are more cost-effective than Pipelines (10). However, due to
the local dense coverage rate, antiplatelets should be rigorously
confirmed to avoid any delayed vessel occlusion. Previous studies
have reported a wide range of LVIS in-stent stenosis rates between
17.5 and 86.7% (40, 41). According to previous studies, multiple
flow diverters without coils were not recommended for ruptured
lesions due to the necessity of strict antiplatelet therapy (42). On
the other hand, treatment with overlapping PEDs also presents
a high ischemic risk (12), such that non-overlapping stents
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might be preferable. Multiple flow diverters were not simulated
in this present study. Using a Pipeline device with large coils
is a promising technique for fusiform aneurysms, especially
for aneurysms without evident perforators or branches. An
unshaped or 45-degree tip can provide sway to themicro-catheter
permitting greater maneuverability and thus the creation of
more uniform baskets. For such patients, antiplatelet medication
should be administered cautiously in the peri- and postoperative
phase, with timely adjustment according to TEG and CYC2P19
gene results.

Limitations
This study has the following limitations. This proof-of-concept
study was a single case. However, it effectively demonstrates
hemodynamic effects after treatment for different stent-assisted
techniques. Comprehensive intracranial stents such as Solitaire
and Neuroform were not tested. In addition, not all treatment
strategy combinations were simulated such as Jailing + Pipeline.
Since a Murray flow outlet was employed in this study, the flow
rate change of the PICA branch was inapplicable. The pressure
outlet should be a feasible way to evaluate the influence on the
flow rate of PICA. Flow change may be affected by thrombus
and stent endothelialization. This study did not address the
degree of vascular curvature which can affect the different stent-
assisted strategies. The coil distribution from the PLCS technique
is somewhat random and the simulation cannot be completely
consistent with actual placement. This CFD study used common
assumptions such as rigid walls and a lack of specific inflow and
outflow tract flow conditions.

CONCLUSIONS

For fusiform aneurysms of the intracranial vertebral artery, the
PLCS technique can more uniformly pack aneurysm sacs and

may reduce the hemodynamic risk factors of recurrence similar
to flow diverters, though long-term follow-up is still required.
Attention should be paid to the impact on any perforators or
branches to lessen the ischemic risk.
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