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Abstract: Coagulation disorders, endotheliopathy and inflammation are the most common hallmarks
in SARS-CoV-2 infection, largely determining COVID-19’s outcome and severity. Dysfunctions
of endothelial cells and platelets are tightly linked in contributing to the systemic inflammatory
response that appears to be both a cause and a consequence of COVID-19-associated coagulation
disorders and thrombotic events. Indeed, elevated levels of circulating inflammatory cytokines are
often associated with abnormal coagulation parameters in COVID-19 patients. Although treatments
with low molecular weight heparin (LMWH) have shown beneficial effects in decreasing patient
mortality with severe COVID-19, additional therapeutic strategies are urgently needed. Utilizing the
anti-inflammatory and anti-thrombotic properties of natural compounds may provide alternative
therapeutic approaches to prevent or reduce the risk factors associated with pre-existing conditions
and comorbidities that can worsen COVID-19 patients’ outcomes. In this regard, resveratrol, a
natural compound found in several plants and fruits such as grapes, blueberries and cranberries,
may represent a promising coadjuvant for the prevention and treatment of COVID-19. By virtue
of its anti-thrombotic and anti-inflammatory properties, resveratrol would be expected to lower
COVID-19-associated mortality, which is well known to be increased by thrombosis and inflammation.
This review analyzes and discusses resveratrol’s ability to modulate vascular hemostasis at different
levels targeting both primary hemostasis (interfering with platelet activation and aggregation) and
secondary hemostasis (modulating factors involved in coagulation cascade).
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1. Introduction

On 11 March 2020, the Corona Virus Disease 2019 (COVID-19) was declared a global
pandemic by the World Health Organization (WHO) (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019 (accessed on 06 February 2021)). The causative agent
was determined to be the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
This virus, which belongs to the Coronaviridae family, subfamily Orthocoronavirinae, has
a positive single-stranded RNA genome and a characteristic crown-like spikes proteins on
the outer surface [1]. Symptoms of COVID-19 are variable but the most common are fever,
cough, breathing difficulties, as well as loss of smell and taste. Overall, most people affected
by COVID-19 have mild to moderate symptoms and recover without special treatments,
but older people and those with comorbidities, such as cardiovascular disease, diabetes,
and chronic respiratory disease, are more likely to develop adverse outcomes [2].

The lungs are the most affected organs, probably because SARS-CoV-2 preferentially
uses the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in
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lung type II alveolar cells [3]. Indeed, a common condition of COVID-19 patients, often
associated with high mortality rate, is the acute respiratory distress syndrome (ARDS),
an acute and diffuse inflammatory lung injury marked by increased pulmonary vascular
permeability and loss of aerated lung tissue [4]. In addition, the excessive intra-alveolar
fibrin deposition, driven by an imbalance between activation of coagulation and inhibi-
tion of fibrinolysis, is a condition linked to ARDS pathophysiology [5]. Therefore, as a
consequence of SARS-CoV-2 attack of cells in the pulmonary and vascular systems, COVID-
19-patients with poor prognosis show the concurrence of ARDS with pulmonary vascular
thrombosis and increased concentration of D-dimer, a small protein fragment resulting
from clot degradation [6,7].

Overall, COVID-19 is a systemic and complex disease with a wide spectrum of clinical
manifestations. Many COVID-19 patients show a severe proinflammatory state associated
with both distinctive coagulopathy and procoagulant endothelial phenotype. Indeed,
several lines of evidence suggest that the interconnection between coagulopathy and en-
dotheliopathy can explain the microvascular and macrovascular thrombotic events that
participate in the multiorgan dysfunctions in severe COVID-19 cases. [8,9]. Indeed, endothe-
liopathy, responsible for both the microvascular thrombotic events and the microcirculatory
impairment observed in many COVID-19 patients, is a direct consequence of the virus en-
dothelial infection and an indirect damage caused by the disease-associated inflammatory
status [8,9]. Increased levels of Von Willebrand factor (vWF) and factor VIII (FVIII) as well
as platelet hyperactivation characterize the endothelial status during COVID-19 [9].

COVID-19 is also a systemic inflammatory vascular disease, evident by the increased
concentrations of proinflammatory cytokines in severe cases. These cytokines include
tumor necrosis factor-α (TNF-α), interleukin 1 (IL1) and interleukin 6 (IL6), all of which are
important regulators of coagulation [10]. In this context, treatment of COVID-19 patients
with low molecular weight heparin (LMWH) has proven beneficial in reducing the risk
of mortality resulting from thrombotic events [11,12]. However, since the use of these
therapeutic anticoagulants is associated with increased bleeding, specific doses should be
tuned to the patient’s overall condition [11–14]. Therefore, it remains crucial to develop
additional anti-inflammatory, anticoagulant, or antithrombotic strategies to prevent and
treat COVID-19.

There is an increasing need for alternative therapeutic approaches that can prevent or
reduce the risk factors associated with both pre-existing conditions and comorbidities re-
sponsible for worsening COVID-19 patients’ outcomes [15]. Employing natural compounds
characterized by anti-inflammatory and antithrombotic properties may provide an attrac-
tive avenue towards this goal. Among the several phytonutrients of interest, resveratrol
(3,5,4′-trihydroxy-trans-stilbene), a polyphenol found in various plants, especially grapes,
berries, peanuts, cacao and soybeans, may represent a good candidate [16]. This phytochem-
ical possesses a wide range of biological activities, including anti-inflammatory, anticancer,
antiviral, antioxidant, cardioprotective and neuroprotective [17]. Despite skepticism con-
cerning its bioavailability and potential adverse effects, a crescent number of in vivo models
showed the beneficial effects of resveratrol in several disease conditions [18,19]. Specifically,
accumulating evidence supports the anti-inflammatory, anticoagulant and antithrombotic
role of resveratrol [20–22]. Because of its polyvalent action in preventing or attenuating
coagulation disorder, inflammation and vascular damage, major hallmarks of COVID-19,
we believe resveratrol may be a good addition in the management of this disease. In this
paper, we collect, review and critically discuss the evidence supporting the protective role
that resveratrol might exert in ameliorating COVID-19-associated inflammatory conditions
with particular emphasis on its antithrombotic actions.

2. Hemostatic Modulatory Properties of Resveratrol

When a blood vessel is injured, three mechanisms occur in a rapid sequence to control
bleeding at the injury site: (1) a brief and intense vessel wall contraction, (2) formation of the
platelet plug by platelet adhesion and aggregation, and (3) coagulation, which reinforces
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the platelet plug with fibrin. Platelet activation and aggregation in the initial plug is also
called primary hemostasis. In contrast, secondary hemostasis refers to the coagulation
cascade of enzymatic reactions that ultimately lead to the conversion of fibrinogen in fibrin
monomers by the action of the clotting enzyme thrombin [23]. Furthermore, secondary
hemostasis is traditionally divided into two pathways: the contact activation pathway (or
intrinsic pathway) and the tissue factor pathway (or extrinsic pathway). In this regard,
resveratrol has been shown to exert a protective role in vascular hemostasis by acting in
both primary and secondary hemostasis. Indeed, besides having anti-platelet aggregation
properties, resveratrol has also been shown to modulate factors involved in the coagulation
cascade [20–22,24] (Figure 1).
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Figure 1. Figure summarizes the antiplatelet aggregation properties of resveratrol. Resveratrol
inhibits cyclooxygenase-1 (COX-1), lowers nitric oxide (NO) concentration, decreases cytoplasmatic
Ca2+ and blocks Ca2+ entry into platelets, which turn results in the suppression of platelet aggregation.
Further antiplatelet aggregation properties of resveratrol are due to the activation of platelet apoptosis
and the inhibition of Tissue factor (TF):FactorVIIa (FVIIa) complex (TF:FVIIa) formation.

2.1. Antiplatelet Aggregation Properties of Resveratrol

Platelet hyperactivity and aggregation contribute to thrombus formation and conse-
quent blood vessels occlusion. In this regard, coagulopathy is observed in severe COVID-19
as a result of thrombus formation and consequent blood vessels occlusion [25,26]. Con-
textually, resveratrol showed anti-platelet aggregation properties that are exerted through
different mechanisms. Like aspirin, resveratrol significantly inhibits cyclooxygenase-1
(COX-1), a key enzyme in the catalytic production of prostaglandins, which are key in-
flammatory mediators [27]. In platelets, the major product of COX-1 is thromboxane A2
(TXA2), a potent vasoconstrictor with prothrombotic properties capable of inducing platelet
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activation and aggregation [28]. Hence, inhibiting TXA2 production would promote blood
flow and decrease clot formation. Similar to low doses of aspirin, resveratrol prevents
thrombotic events via suppressing COX-1-derived TXA2 production in platelets [27,29].

Resveratrol can also suppress platelet aggregation by virtue of its ability to inhibit
Ca2+ flux, which is known to largely determine the growth rate and extension of a throm-
bus [30,31]. In this context, resveratrol plays a dual-action by decreasing the release of Ca2+

from its stores as well as inhibiting Ca2+ entry into platelets and therefore their subsequent
aggregation [32,33]. Another anti-platelet aggregation mechanism of resveratrol involves
the nitric oxide (NO), a key gasotransmitter in physiological and pathological processes [34].
Indeed, NO is a potent vasodilator and an efficient thrombosis modulator that prevents
platelet activation and aggregation [35]. Interestingly, it was recently proposed that modu-
lating NO levels may be important in preventing, limiting or treating the severe pulmonary
consequences of COVID-19 [36]. This is in accordance with reports showing that, besides
its vasodilatorory and anti-inflammatory capacities, NO also has antiviral properties [37],
and can indeed inhibit SARS-CoV-2 replication [38]. NO synthesis results from the action
of three different nitric oxide synthase (NOS) isoforms, and the endothelial nitric oxide syn-
thase (eNOS) is the isoform responsible for NO generation in the vascular endothelium [34].
In this regard, resveratrol appears to promote NO production via increasing eNOS expres-
sion and activity [39]. Specifically, some data show that resveratrol-elicited NO production
result by its interacting with membrane-bound structures like the estrogen receptors [40,41].
Other works indicated that the resveratrol effect upon NO production is mediated by its
direct interaction with intracellular pathways components including sirtuin-1 (SIRT1),
adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor erythroid
2-related factor 2 (Nrf2) [39]. NO bioavailability depends on the balance between ROS
production and eNOS activity, since an increase in oxidative stress can alter eNOS function,
whereby preferential shift towards production of superoxide rather than NO ensues [42].
The resulting imbalance between ROS and antioxidant defence mechanisms is the primary
cause of endothelial dysfunction, a pathological endothelial condition characterized by a
proinflammatory and procoagulant state [43]. This dysfunction, besides to emerging as
a major player in SARS-CoV-2 infection [44,45], is the hallmark of comorbidities, such as
hypertension, atherosclerosis, diabetes and obesity, which are often correlated with severe
COVID-19 outcomes of [46,47]. In this context, since it upregulates NO synthesis while also
decreasing ROS, resveratrol presents an attractive opportunity to be utilized. However,
resveratrol can also reduce ROS levels through further mechanisms [48,49].

The functionality of endothelium is essential for maintaining hemostasis and pre-
venting thrombosis. Indeed, an intact endothelium releases prostacyclin and nitric oxide,
two vital vasoactive molecules that prevent platelet aggregation. On the other hand,
insult-activated endothelial cells express a variety of molecules and receptors that increase
platelet adhesion to the site of injury [50]. One of these molecules whose expression is
turned on is tissue factor (TF), a protein known to be the primary cellular activator of blood
coagulation. Indeed, after vessel injury or in response to inflammatory cytokines, TF forms
the complex TF:FactorVIIa which in turn activates the extrinsic pathway of coagulation [51].
This may explain how TF might contribute or even drive COVID-19-associated coagu-
lopathy. The vascular damage and cytokine storm that follow SARS-COV-2 infection of
endothelial cells or monocytes might increase the expression of TF, which in turn aberrantly
activates the coagulation cascade [52]. In endothelial and mononuclear cells, resveratrol
strongly down-regulates TF expression by inhibition the c-Rel/p65/NF-κB pathway, a phe-
nomenon which might partially explain the anticoagulant and antithrombotic properties of
resveratrol [53].

Recently, it was shown that resveratrol can simultaneously inhibit platelet aggregation
and stimulate platelet apoptosis [54]. Indeed, it can induce platelet apoptosis through
both the extrinsic (cytoplasmic) and the intrinsic (mitochondrial) apoptotic pathways [54].
Due to this pro-apoptotic action in platelets, it would be only tempting to speculate that
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resveratrol may potentially work as an antithrombotic agent [54]. However, that remains
to be investigated. (Figure 1).

2.2. Resveratrol Modulates Thrombotic Markers

Being heavily reported in histopathological analysis of large and small pulmonary
vessels of COVID-19 patients, thrombosis is now widely recognized as a salient feature
of the disease [55–57]. Venous thromboembolism (VTE) is another condition frequently
observed in COVID-19 patients. Indeed, a recent systematic review from eighty-six studies
reported that VTE occurs in both intensive care unit (ICU) and non-ICU hospitalized
COVID-19 patients and it is often associated with increased d-dimer levels [58]. Sev-
eral in vivo and in vitro studies highlighted resveratrol’s positive effect in reducing the
incidence of venous thrombosis. In particular, resveratrol appears to modulate the ex-
pression of thrombosis-associated markers such as vWF, procoagulant factor VIII, and
P-selectin [59–61]. Interestingly, levels of vWF and Factor VIII are directly linked to the
severity of thrombosis and the ensuing stroke [62,63]. In addition, these appear to be com-
mon in COVID-19 patients, where they contribute to VTE [64,65]. Alarmingly, a young and
asymptomatic SARS-CoV-2-infected patient who showed increased FVIII and vWF levels
without any sign of hyperinflammatory state or blood coagulation activation suffered a
stroke [66]. This provides additional evidence of the direct damage induced by SARS-CoV-2
to endothelial cells. Because of the COVID-19-induced damage, endothelium releases sev-
eral molecules into the blood, including vWF, FVIII, tissue plasminogen activator-1 (t-PA-1)
and P-selectin, which are usually stored within secretory organelles called Weibel–Palade
bodies (WPB) that participate in platelet adhesion, secondary hemostasis and fibrinoly-
sis [67]. P-selectin is required for the initial recruitment of leukocytes to the site of injury
during inflammation and allows leukocytes interaction with activated endothelial cells
and platelets [68]. On the other hand, t-PA-1 catalyzes the conversion of plasminogen to
plasmin, the protein responsible for fibrin degradation in the process known as fibrinolysis,
thus allowing the clot breakdown [69]. Since vWF, FVIII, t-PA-1 and P-selectin are directly
linked to coagulopathy and endotheliopathy, two main features of COVID-19, one may
consider them as biomarkers for the disease [8,65,70,71]. Importantly, resveratrol appears
to decrease vWF, FVIII, t-PA-1 and P-selectin in HUVECs, suggesting a potential role in
suppressing thrombus formation [59–61].

Resveratrol’s ability to mitigate inflammation has also been suggested, owing to its
suppressive action on interleukin 8 (IL-8), a circulating inflammatory cytokine. The rela-
tionship between increased proinflammatory cytokines and coagulopathy is intricate and
has emerged as key player in the pathogenesis of COVID-19 [72]. Moreover, not only host
factors have an impact on COVID-19-associated hemostatic disorders, but also specific
viral proteins can significantly trigger the increase in pro-inflammatory cytokines, and
consequently activation of the coagulation system [73]. For instance, the viral nucleocapsid
protein (N) can activate cyclooxygenase-2 (COX-2) [74], whereas the envelope protein
(E) affects the production of pro-inflammatory cytokines such as TNF, IL-1 and IL-6 [75].
IL-6, along with IL-1β and IL-8, precipitates a systemic inflammatory milieu that then
evokes both hypercoagulation and platelet hyper-activation [76,77]. Resveratrol appears to
sufficiently suppress expression of these interleukins [78–80] as well as that of NF-κB [81].
Taken together, these findings further support the potentiality of resveratrol as a coadjutant
in the treatment of inflammatory conditions such as the COVID-19-associate cytokine
storm [82]. Indeed, in vascular inflammation, the activation of NF-κB signaling leads to the
production of IL-6 [83]. Interestingly, it was recently shown that SARS-CoV-2-potentiated
NF-κB activation in the lung alveoli elicits a state of uncontrolled inflammation leading
to downstream organ failure [84]. Finally, as mentioned above, resveratrol decreases the
secretion of t-PA-1 that, besides acting in fibrinolysis, is also an activator of NF-κB [61].
Resveratrol therefore, acting on t-PA-1, exerts an indirect anti-inflammatory action toward
NF-kB. The protective effects of resveratrol have been confirmed by in vivo studies show-



Molecules 2021, 26, 856 6 of 10

ing a reduction in PVT in rats, probably due to the resveratrol’s anti-platelet aggregation
properties [85,86] (Figure 2).

Molecules 2021, 26, x FOR PEER REVIEW 6 of 10 
 

 

2-potentiated NF-κB activation in the lung alveoli elicits a state of uncontrolled inflamma-
tion leading to downstream organ failure [84]. Finally, as mentioned above, resveratrol 
decreases the secretion of t-PA-1 that, besides acting in fibrinolysis, is also an activator of 
NF-κB [61]. Resveratrol therefore, acting on t-PA-1, exerts an indirect anti-inflammatory 
action toward NF-kB. The protective effects of resveratrol have been confirmed by in vivo 
studies showing a reduction in PVT in rats, probably due to the resveratrol’s anti-platelet 
aggregation properties [85,86] (Figure 2). 

 
Figure 2. Figure summarizes the antithrombotic properties of resveratrol. Resveratrol counteracts the expression of throm-
bosis-associated markers such as Von Willebrand factor (vWF), factor VIII (FVIII), plasminogen activator-1 (t-PA-1), and 
P-selectin, which results in the inhibition of leucocytes recruitment, platelet aggregation and thrombus formation. 

3. Conclusions 
By virtue of its ability to modulate platelet activation and aggregation as well as fac-

tors involved in the coagulation cascade, resveratrol appears to be an attractive pharma-
cotherapeutic agent in the fight against COVID-19. We speculate that it could serve as an 
adjunct treatment for slowing and ameliorating phenomena associated with the severe 
COVID-19 outcomes, such as vascular thrombosis and systemic inflammation. A limita-
tion in the use of resveratrol is its poor bioavailability and rapid metabolism that might 
require an increased oral dose administration [19]. In this regard, human clinical trials 
have found resveratrol generally well-tolerated at doses up to 5 g/day although the occur-
rence of mild to moderate side effects suggests the use of a significantly lower dose 
[19,87,88]. Resveratrol doses between 100 and 200 mg/day showed beneficial effects on 
stroke major risk factors such as blood pressure, weight status, glucose, and lipid profile 
[89]. Taken at weekly intervals by overweight/obese individuals with mildly elevated 
blood pressure, resveratrol at doses of 30, 90, and 270 mg/day, elicited an improvement of 
the flow-mediated dilatation of the brachial artery (FMD), a widely recognized biomarker 
of endothelial function and cardiovascular health [90]. Although a dosage ranging be-
tween 30 and 300 mg would appear to maximize resveratrol benefits while minimizing 

Figure 2. Figure summarizes the antithrombotic properties of resveratrol. Resveratrol counteracts the expression of
thrombosis-associated markers such as Von Willebrand factor (vWF), factor VIII (FVIII), plasminogen activator-1 (t-PA-1),
and P-selectin, which results in the inhibition of leucocytes recruitment, platelet aggregation and thrombus formation.

3. Conclusions

By virtue of its ability to modulate platelet activation and aggregation as well as
factors involved in the coagulation cascade, resveratrol appears to be an attractive phar-
macotherapeutic agent in the fight against COVID-19. We speculate that it could serve as
an adjunct treatment for slowing and ameliorating phenomena associated with the severe
COVID-19 outcomes, such as vascular thrombosis and systemic inflammation. A limitation
in the use of resveratrol is its poor bioavailability and rapid metabolism that might require
an increased oral dose administration [19]. In this regard, human clinical trials have found
resveratrol generally well-tolerated at doses up to 5 g/day although the occurrence of mild
to moderate side effects suggests the use of a significantly lower dose [19,87,88]. Resveratrol
doses between 100 and 200 mg/day showed beneficial effects on stroke major risk factors
such as blood pressure, weight status, glucose, and lipid profile [89]. Taken at weekly
intervals by overweight/obese individuals with mildly elevated blood pressure, resveratrol
at doses of 30, 90, and 270 mg/day, elicited an improvement of the flow-mediated dilatation
of the brachial artery (FMD), a widely recognized biomarker of endothelial function and
cardiovascular health [90]. Although a dosage ranging between 30 and 300 mg would
appear to maximize resveratrol benefits while minimizing potential side effects, further
clinical trials are needed to provide definitive answers in this context.
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