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Comprehensive meta-analysis reveals distinct gene
expression signatures of MASLD progression
Ignazio S Piras1 , Johanna K DiStefano2

Metabolic dysfunction-associated steatotic liver disease (MASLD)
and its progressive form, metabolic dysfunction-associated
steatohepatitis (MASH), pose significant risks of severe fibrosis,
cirrhosis, and hepatocellular carcinoma. Despite their wide-
spread prevalence, the molecular mechanisms underlying the
development and progression of these common chronic hepatic
conditions are not fully understood. Here, we conducted themost
extensive meta-analysis of hepatic gene expression datasets
from liver biopsy samples to date, integrating 10 RNA-sequencing
and microarray datasets (1,058 samples). Using a random-effects
meta-analysis model, we compared over 12,000 shared genes
across datasets.We identified685 genes differentially expressed in
MASLD versus normal liver, 1,870 in MASH versus normal liver, and
3,284 in MASLD versus MASH. Integrating these results with
genome-wide association studies and coexpression networks,
we identified two functionally relevant, validated coexpression
modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and
TAT, HGD, SLC25A15, respectively, the latter not previously asso-
ciated with MASLD and MASH. Our findings provide a compre-
hensive and robust analysis of hepatic gene expression alterations
associated with MASLD and MASH and identify novel key drivers of
MASLD progression.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD),
formerly known as nonalcoholic fatty liver disease (NAFLD), is a
condition characterized by the accumulation of fat in the liver that
can progress to metabolic dysfunction-associated steatohepatitis
(MASH), a more severe form of the disease (1, 2). In general, hepatic
steatosis attributable to metabolic dysfunction is considered rel-
atively benign, but MASH is linked with greater morbidity and
mortality, diminished quality of life, and substantial healthcare
costs (3). At present, MASLD is estimated to affect ~30% of the global
population (4, 5, 6), and this figure is projected to rise to 56% by the

year 2040 (7). Despite its substantial impact on public health, there
are currently no approved pharmacological treatments for MASLD.

Intensive efforts to develop therapeutic agents for MASLD and
MASH are presently underway. A comprehensive understanding of
the molecular mechanisms driving MASH progression is an im-
portant component of this process; however, our current knowl-
edge in this area remains incomplete. One approach to identify
potential mechanisms driving the development of MASLD and
progression to MASH involves the investigation of hepatic gene
expression patterns, and many groups have conducted tran-
scriptomic profiling experiments using liver biopsies obtained from
patients spanning the MASLD spectrum (8, 9, 10, 11, 12, 13, 14, 15, 16,
17). Differences in gene expression have identified a core set of
genes uniquely associated with advanced fibrosis (8) and dis-
criminated among histological stages on the MASLD spectrum (16,
18, 19, 20). However, findings among these studies have not been
consistent, which may reflect differences in methods used to
measure gene expression, patient population characteristics, and
comparator groups. Furthermore, most reports have been limited
by modest sample sizes.

Meta-analysis of gene expression data can provide a more
comprehensive and robust view of gene expression patterns than
any individual study alone. In addition, this approach can help
identify consistent and reproducible gene expression signatures
across different studies, potentially leading to new insights into the
underlying biology of complex diseases or other biological pro-
cesses. Thus, to identify characteristics of hepatic gene expression
changes associated with MASLD and obtain a deeper under-
standing of progression to MASH, we performed a meta-analysis of
relevant gene expression datasets obtained from the Gene Ex-
pression Omnibus (GEO) data repository (21, 22) and sequencing
reads archives. We included a total of 1,058 samples from 10 RNA-
sequencing (RNA-Seq) and microarray datasets derived from liver
tissue, applying strict quality controls and accounting for con-
founding factors. The integration of the different datasets allowed
comparison of more than 12,000 shared genes that were analyzed
using a random-effects model implemented in the GeneMeta al-
gorithm, a meta-analytical workflow specific for RNA profiling data
(23). Furthermore, we conducted a follow-up analysis integrating
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the meta-analysis results with publicly available datasets from
genome-wide association studies (GWAS) and generating coex-
pression networks from the same datasets included in the meta-
analysis. Finally, we projected the relevant coexpression modules
in a liver-specific Bayesian regulatory causal network to identify key
drivers perturbing the disease-associated networks.

Results

Dataset selection

We performed an extensive search of the Gene Expression Omnibus
database (GEO) using “NAFLD,” “NASH,” “steatosis,” “liver fibrosis,”
“liver inflammation,” or “fatty liver” as key terms. Twelve datasets
were retrieved. We then applied the following inclusion criteria: (1)
expression data derived frommicroarray or RNA-seq; (2) use of RNA
that was sourced from human liver tissue; (3) a case-control study
design in which MASLD, MASH, and/or a control group (CTL: normal
liver) were used; and (4) a total sample size >20. We identified nine
datasets meeting these criteria (GEO IDs: GSE135251, GSE126848,
GSE130970, GSE167523, GSE83452, GSE61260, GSE48452, GSE33814,
and GSE89632), to which we added our previously published RNA-
seq dataset (NCBI Bioproject Accession PRJNA512027) (8). Charac-
teristics of these datasets, including sample sizes and post-quality
control (QC) checks, are shown in Table 1. These datasets formed
the basis for the subsequent meta-analyses and coexpression
network analysis (Fig S1A).

Differentially expressed genes (DEGs) in MASLD

The final dataset for the MASLD analysis comprised 516 total
samples: 317 MASLD and 199 CTL. Through data harmonization
across datasets, we identified 13,376 shared genes. Using a random-
effects meta-analysis model, we observed 685 genes showing
statistically significant differences in hepatic expression between
individuals with MASLD and those with normal liver (Table S1). Of
these DEGs, 360 were down-regulated and 325 were up-regulated in

those with MASLD. The 30 genes showing the strongest evidence for
differential expression are shown in Fig 1A. The five most significant
genes were prolyl 4-hydroxylase subunit alpha 1 (P4HA1), Ras As-
sociation Domain Family Member 4 (RASSF4), acyl-CoA Dehydro-
genase Short/Branched Chain (ACADSB), chromosome 11 open
reading frame 54 (C11orf54), and transmembrane protein 45B
(TMEM45B). To gain insights into the biological processes, molecular
functions, and cellular components associated with this set of
DEGs, we performed pathway analysis using the GO database. Our
analysis identified 77 enriched functional classes (Table S2), and the
top 10 biological processes for all DEGs, including those that were
up- or down-regulated relative to the control group, are shown in
Fig 1B. Genes showing reduced expression in MASLD were pre-
dominantly associated with activin binding, activin receptor
activity, and glycogen biosynthetic processes, whereas those with
up-regulated expression in MASLD were associated with pro-
cesses of exocytosis and ion transmembrane transporter activity.

DEGs in MASH

To determine gene expression patterns that may be specific to
MASH, we compared gene expression between individuals with
MASH (n = 541) and those with normal liver (n = 199). In a comparison
of 13,476 shared genes between these two groups, we identified
1,870 genes exhibiting statistically significant differential expres-
sion. Among these genes, 1,005 were found to be up-regulated in
MASH, whereas 865 were down-regulated (Table S3; Fig 2A). The top
DEGs were P4HA1, PRAME family member 10 (PRAMEF10), protein
kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), den-
ticleless E3 ubiquitin protein ligase homolog (DTL), and exo-
nuclease 1 (EXO1), as well as genes such as methionine
adenosyltransferase 1A (MAT1A) (24), integrin subunit beta like 1
(ITGBL1) (25), and insulin-like growth factor binding protein 2
(IGFBP2) previously linked with MASLD (26). Pathway analysis
revealed 213 significantly enriched GO classes (Table S4). The most
significant classes were associated with sulfur and alpha-amino
metabolic processes for the up-regulated genes in MASH, whereas
the down-regulated genes were primarily associated with extra-
cellular matrix organization (Fig 2B).

Table 1. Final sample sizes of all the datasets used in the meta-analysis.

Dataset
Original After QC

Final sample size Platform Reference
MASH MASLD CTL MASH MASLD CTL

GSE48452 17 9 28 16 8 28 52 Affymetrix microarray (9)

GSE61260 24 23 62 24 23 61 108 Affymetrix microarray (13)

GSE83452 104 44 0 104 43 0 147 Affymetrix microarray (15)

GSE167523 47 51 0 47 50 0 97 Affymetrix microarray (14)

GSE33814 12 19 13 12 19 13 44 Illumina microarray (16)

GSE89632 19 20 24 19 20 24 63 Illumina microarray (10)

GSE135251 155 51 10 155 51 10 216 RNA-Seq (11)

GSE126848 16 15 26 16 15 26 57 RNA-Seq (17)

GSE130970 42 36 0 41 34 0 75 RNA-Seq (12)

PRJNA512027 105 50 36 105 50 36 191 RNA-Seq (8)
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Gene expression patterns associated with MASLD progression

We next sought to identify genes involved in MASLD progression
by comparing hepatic gene expression values between MASLD
and MASH samples. As shown in Table 1, 317 MASLD and 541 MASH
samples comprised the final dataset. We observed 12,817 genes
shared among these datasets, similar to the number of shared
genes identified in the MASLD analysis. However, the random-
effects meta-analysis revealed 3,284 genes that were differen-
tially expressed between MASH and MASLD (1,850 up- and 1,434

down-regulated in MASH) (Table S5), which is substantially
greater than the MASLD analysis. The genes showing the most
significant evidence for differential expression are shown in Fig
3A. Pathway analysis of the 3,284 DEGs revealed 684 significantly
enriched functional classes (Table S6). Genes showing up-
regulation in MASH relative to MASLD were associated with the
extracellular matrix and chemotaxis, whereas those down-
regulated in MASH were mainly linked to the catabolic pro-
cesses of organic compounds, carboxylic acids, and alpha-amino
acids (Fig 3B).

Figure 1. Differentially expressed genes in MASLD.
(A) The most significant differentially expressed genes identified in the MASLD versus CTL meta-analysis. (B) Top GO functional classes (FDR < 0.05) for the differentially
expressed genes from the MASLD versus CTL meta-analysis.

Figure 2. Differentially expressed genes in MASH.
(A) The most significant differentially expressed genes identified in the MASH versus CTL meta-analysis. (B) Top GO functional classes (FDR < 0.05) for the differentially
expressed genes from the MASH versus CTL meta-analysis.
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Overlap and shared genes among meta-analyses

When comparing the results from the three meta-analyses,
we observed an overlap of 173 genes. In pairwise comparisons
of the meta-analysis data, we identified 421 shared genes be-
tween the MASLD versus CTL and MASH versus CTL analyses,
1,049 shared genes between the MASH versus MASLD and the
MASH versus CTL meta-analyses, and 229 shared genes between
MASH versus MASLD and the MASLD versus CTL meta-analyses
(Fig 4). The lists of these overlapping genes are presented in
Table S7.

Enrichment of GWAS and transcriptome-wide association study
(TWAS) genes in the MASLD and MASH meta-analyses

We used four large MASLD GWAS (see the Materials and Methods
section) for the MAGMA analysis and detected 141 significant signals
encompassing a total of 127 unique genes (Table S8). Manhattan
plots are shown in Figs S2, S3, S4, and S5. We used this list of genes
to run hypergeometric enrichment. Although no significant en-
richment was detected (Table S9), we did observe overlap of 47
signals with 36 unique genes identified in the meta-analysis (Table
S10). To identify genetic variants associated with gene expression,
we conducted a TWAS analysis referencing liver tissue based on
four large GWAS studies comprising MASLD patients and unaffected
controls (27, 28, 29, 30). These GWAS had a total of 5,187, 439, 82, and
306 SNPs that were significant at the genome-wide level (P < 5.0 ×
10−08). Significant findings from the TWAS were obtained only from
the study by reference (29), with 83 genes showing significant
associations (Table S11, Fig S6) and one from reference (27) (Table
S12, Fig S7). To further investigate the relevance of these 84 sig-
nificant TWAS genes (adj-p < 0.05), we conducted a hypergeometric
enrichment analysis across the meta-analysis. We observed an
enrichment of TWAS genes in the comparison between NASH and
CTL samples, approaching significance (P = 0.034; P-adj = 0.103)
(Table S13). Overall, five genes overlapped with the MASLD versus
CTL meta-analysis, 15 genes with the MASH versus CTL meta-
analysis, and 18 genes with the MASLD versus MASH meta-
analysis. All the genes were from the TWAS conducted on the
reference (29) GWAS data. The Venn diagram in Fig S8 depicts this
overlap, and the complete list of overlapping genes can be found in
Table S14. Finally, eight of the TWAS genes overlapping with the

Figure 3. Gene expression patterns associated with MASLD progression.
(A) The most significant differentially expressed genes identified in the MASH versus MASLD meta-analysis. (B) Top GO functional classes (FDR < 0.05) for the
differentially expressed genes from the MASH versus MASLD meta-analysis.

Figure 4. Overlap of differentially expressed genes detected across the three
meta-analyses.
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Figure 5. Coexpression, module preservation, and key driver analyses.
(A) Comprehensive coexpression network color-coded by top-level modules M2, M3, M4, andM5. (B) Average preservation statistics across six validation datasets for the
seven functionally relevant modules associated with MASH and MASLD. The blue and red lines indicate the preservation statistics cutoffs for moderate (2 ≤ Z < 10) and
strong (Z ≥ 10) module preservation, respectively. (C) Bayesian causal subnetwork showcasing the top five key drivers along with their neighbors in module M5: MASH
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meta-analysis were also significant in the MAGMA analysis
(L3MBTL3, GGT1, GSTT2B, SLC25A19, EPHA2, DLG5,MRPS7, and KLHL18)
(Table S14).

Coexpression analysis reveals differentially expressed network
modules in MASLD and MASH

We first analyzed PRJNA512027 as a discovery dataset and included
8,262 variable genes, which led to the detection of 103 significantly
coexpressed modules (P < 0.01 and comprising 50 or more genes).
The entire coexpression network with the four top-level modules
(M2, M3, M4, and M5) highlighted is depicted in Fig 5A. We extracted
the eigengenes and conducted a differential expression analysis
comparing MASLD versus CTL, MASH versus CTL, and MASH versus
MASLD. In the comparison of MASH versus CTL, we identified 49
significant differentially expressed modules, and in MASH versus
MASLD, we found 69 significant differentially expressed modules
(Table S15). A total of 49 modules were differentially expressed in
both MASH versus CTL and MASH versus MASLD comparisons.
However, no differentially expressed modules were detected in the
MASLD versus CTL comparison.

M2 and M5 were among the top-level modules with the highest
significance (down-regulated and up-regulated, respectively, in
MASH versus CTL). In addition, M2 was significantly down-regulated
in MASH versus MASLD, whereas M4 and M5 were significantly up-
regulated in MASH versus MASLD. In the analysis of modules other
than the top-level ones (i.e., M2-M5), we detected M52, M53, M37, and
M62 in MASH versus CTL, and M52, M53, M37, M62, and M30 in MASH
versus MASLD. The GO analysis of the significantly expressed top
modules revealed significant GO enrichment in 55 modules, ac-
counting for a total of 3,859 GO functional classes (Table S16).
Among the top-level modules, M2 was enriched for ribosomal,
oxidative phosphorylation, and ATPmetabolic processes (hub gene:
HPN); M4 for ion and gate channel activity (hub gene: KRT77) and M5
for extracellular matrix (hub gene: SDC4).

All functionally relevant modules were preserved across datasets

We assessed the preservation of the seven functionally relevant
modules M2, M4, M5, M30, M37, M52, and M62 across datasets
GSE48452, GSE61260, GSE126848, GSE89632, GSE135251, and
GSE33814. After averaging the preservation statistics across these
datasets, we observed that all modules exhibited moderate to
strong preservation in all datasets, with standard errors also falling
in this range (Fig 5B). Specifically, modules M2, M5, and M37 showed
strong average preservation, whereas all the other modules
exhibited moderate preservation. Modules M2 and M4 showed no
preservation in GSE33814, whereas module M62 showed no pres-
ervation in datasets GSE33814 and GSE126848 (Fig S9).

For validating module differential expression, we conducted a
meta-analysis across the replication datasets. We designated
modules as “fully validated” if they were statistically significant and

exhibited concordant log2FC direction, and as “partially validated” if
they were not statistically significant but showed concordant log2FC
direction. We fully validated the differential expression of M52 and
M5 in MASH versus CTL and partially validated module M62 (Table
S17 (A) and Fig S10A). In addition, we fully validated the differential
expression of modules M52, M5, M62, and M2 in MASH versus MASLD
and partially validated module M30 in MASH versus MASLD (Table
S17 (B) and Fig S10B). These results indicate that modules M2, M5,
M52, and M62 are coexpression networks that are consistently and
significantly associated with MASH and MASLD progression.

Identification of key drivers in the coexpression modules

We conducted a key driver analysis on the five fully and partially
validatedmodules (M52, M5, M62, M2, and M30), identifying a total of
181 significant key drivers located within the coexpression modules
(false discovery rate [FDR] < 0.05) (Table S18). The most significant
key drivers (FDR < 2.2 × 10−26) were all located in module M5 and
included SPARC-related modular calcium binding 2 (SMOC2),
ITGBL1, lysyl oxidase like 1 (LOXL1), matrix Gla protein (MGP), and
superoxide dismutase 3 (SOD3) (Fig 5C). Notably, ITGBL1 and LOXL1
were significantly overexpressed in the MASH versus CTL meta-
analysis, whereas SMOC2, ITGBL1, LOXL1, and SOD3 were signifi-
cantly overexpressed in the MASH versus MASLD meta-analysis (Fig
5C). Module M52, which was fully validated in both comparisons,
yielded three significant key drivers: tyrosine aminotransferase
(TAT), homogentisate 1,2-dioxygenase (HGD), and solute carrier
family 25 member 15 (SLC25A15) (Fig 5D). TATwas significantly down-
regulated in MASH versus CTL and significantly down-regulated in
MASH versus MASLD, whereas HGD was significantly down-
regulated in MASH versus MASLD. In contrast, the other fully val-
idated module, M62, did not exhibit any significant key drivers. The
causal networks for the partially validated modules M2 (top key
driver: ISG15 ubiquitin like modifier [ISG15]) and M30 (top key driver:
CCAAT enhancer binding protein delta [CEBPD]) are depicted in Figs
S11A and B and S12A and B, respectively. ISG15was overexpressed in
MASH versus CTL and in MASH versus MASLD, albeit not significantly
(Fig S11A and B). Lastly, CEBPD was significantly down-regulated in
MASH versus CTL and MASH versus MASLD (Fig S12A and B).

Discussion

In this study, we present the outcomes of an extensive meta-
analysis of hepatic gene expression data for MASLD and MASH,
representing the most comprehensive analysis conducted to date.
Our key discoveries include the identification of distinct gene
expression patterns that distinguish MASLD, MASH, and healthy
liver tissue. In addition, we validated two differentially expressed
coexpression modules and identified novel key drivers with sig-
nificant regulatory potential within these coexpression networks.
Collectively, these findings provide new insight into potential liver-

versus CTL and MASH versus MASLD. (D) Bayesian causal subnetwork showcasing the significant key drivers along with their neighbors in module M52: MASH versus CTL
and MASH versus MASLD.
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specific molecular mechanisms underlying the development and
progression of MASLD.

To the best of our knowledge, there have only been two pre-
viously published meta-analyses investigating hepatic gene ex-
pression in MASLD. The first study usedmicroarray-based data from
seven GEO datasets, encompassing 137 MASLD samples, and
identified a 218-gene signature associated with MASLD (31). Unlike
the current work, this analysis correlated gene expression with
clinical variables rather than disease status, analyzed data indi-
vidually without merging for statistical analysis, and did not in-
vestigate hub genes or key drivers within coexpression networks.
Consequently, there was minimal methodological overlap between
the two investigations. The results from the current work thus build
upon these findings by incorporating a significantly larger sample
size—nearly 10 times greater—merging all datasets for statistical
analysis and conducting association analyses for both MASLD and
MASH diagnosis.

In the second study (32), a comprehensive analysis of 12 datasets
comprising a total of 812 samples was performed to identify a gene
expression signature specific to MASH. Although there were seven
datasets that overlapped with our study, several notable differ-
ences emerged between the two analyses. First, the primary ob-
jective of the published analysis was to identify biomarkers
associated with MASH, whereas our focus was on unraveling gene
expression networks that could provide insights into key patho-
logical mechanisms. Second, the published meta-analysis included
datasets from pediatric MASLD studies, which may introduce po-
tential confounding factors when combined with adult samples.
Third, the previous analytical design involved segregating the
datasets into Discovery (N = 309) and Validation (N = 503) groups,
whereas we opted to integrate all datasets for our analysis. It is
worth mentioning that most datasets within the Discovery group
comprised fewer than 20 MASLD or MASH samples, which could
impact the statistical power of the analysis.

Interestingly, some notable distinctions emerged in our results
when comparing the DEGs identified in the MASLD and MASH meta-
analyses. First, there was a substantial contrast in the number of
DEGs between the MASH and CTL meta-analysis (N = 1,870) relative
to the MASLD versus CTL analyses (N = 685). Moreover, the MASH
versus MASLDmeta-analysis identified 3,284 DEGs. The difference in
the number of DEGs may reflect underlying biological variability
between MASLD and MASH, suggesting that these two conditions,
while related, have distinct transcriptomic signatures and poten-
tially different underlying mechanisms. Alternatively, the greater
number of DEGs in the MASH analysis might indicate that MASH is a
more complex and heterogenous condition with a wider range of
gene expression changes.

Second, the affected pathways differed depending on the
analysis. In the MASLD analysis, the most significantly altered
pathways included activin binding and receptor activity, glycogen
biosynthesis, exocytosis, and ion transmembrane transporter ac-
tivity. These results corroborate previous studies. For instance,
dysregulated glycogen metabolism is recognized as a potential risk
factor for MASLD (33), as are abnormal serum levels of activin (34).
Exocytosis processes may potentially be linked to extracellular
vesicles, which have been associated with the development of both
whole-body and hepatic insulin resistance, as well as steatosis in

the context of MASLD (35). In contrast, the MASH analysis detected
functional classes associated with sulfur and alpha-amino meta-
bolic processes and extracellular matrix organization. The DEGs
from the MASH versus MASLD comparison were associated with the
extracellular matrix, chemotaxis, catabolic processes of organic
compounds, carboxylic acids, and alpha-amino acids. Interestingly,
the same MASH-associated pathways were also identified in the
coexpression analysis. The dysregulation in affected pathways
again suggests that MASH and MASLD have different underlying
disease mechanisms. For example, the involvement of pathways
related to sulfur and alpha-amino metabolic processes in MASH
might indicate a role for oxidative stress and amino acid meta-
bolism in the pathogenesis of MASH, which is typically charac-
terized by inflammation and fibrosis. In contrast, the pathways
related to activin binding and receptor activity in MASLD may
highlight the importance of certain signaling pathways in the earlier
stages of liver fat accumulation.

We conducted a key driver analysis on the functionally relevant
coexpression modules to identify genes with a disproportionately
significant impact on the regulation of other genes within the fully
validated M5, M52, and M62 modules. Whereas M62 exhibited no
significant key drivers, both the M5 and M52 modules yielded
noteworthy results. The M5 module was found to be significantly
up-regulated in comparisons of MASH versus CTL and MASH versus
MASLD and was enriched for “extracellular matrix” GO functional
classes, consistent with themain genemeta-analysis. This finding is
consistent with the development of hepatic fibrosis, primarily as a
result of abnormal expression and accumulation of extracellular
matrix proteins in the liver (36). In addition, we identified five
significant key drivers with potentially critical regulatory roles. One
of these genes, SMOC2, a member of the SPARC family of matri-
cellular proteins, displayed increased hepatic expression in indi-
viduals with MASLD and mice fed a high-fat diet (HFD) (37). Notably,
SMOC2-knockout mice exhibited protection against liver fibrosis
and reduced hepatic inflammation induced by HFD (37). Larsen et al
(38) recently observed elevated hepatic and plasma levels of
SMOC2 in individuals with MASH compared to those without MASLD
and showed that SMOC2 is primarily expressed by hepatic stellate
cells, which play a pivotal role in fibrogenesis. SMOC2 levels were
also elevated in hepatocellular carcinoma tissue relative to normal
tissue, and SMOC2 overexpression promoted hepatocellular car-
cinoma cell proliferation (39).

In addition to SMOC2, the remaining key drivers identified in the
M5 module have previously been linked with MASLD. In individuals
with chronic hepatitis B, ITGBL1, which promotes cell migration (40),
has been shown to regulate fibrogenesis (25) and is part of a six-
gene signature predictive of cirrhosis (41). In a weighted gene
coexpression network analysis (WGCNA) focused on susceptibility
genemodules related to immune cells in MASLD, ITGBL1was among
the hub genes linked to immune infiltration, fibrosis progression,
and activity score (42). LOXL1, a member of the lysyl oxidase (LOX)
family of enzymes involved in collagen and elastin crosslinking, has
also been linked to liver cirrhosis (43, 44). Studies have demon-
strated that down-regulation of LOXL1 can slow disease progres-
sion (44), and HSC-specific LOXL1 knockout in a mouse model of
non-obese NASH attenuated liver steatosis, inflammation, and fi-
brosis, suggesting that LOXL1 may be involved in HSC activation and
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fibrogenesis (45). SOD3, which encodes an antioxidative enzyme
with various functions (46), was found to promote HSC activation
and fibrogenesis when deficient (47), whereas its overexpression in
HFD-fed mice blocked the obesity, hepatic steatosis, and insulin
resistance typically induced by this diet (48). MGP, an extracellular
matrix protein that inhibits calcification (49), has only recently been
implicated in MASLD. Research by Hui et al (50) showed that hepatic
Mgp expression increased in tandem with MASH progression in a
mouse model and was significantly correlated with fibrosis severity
in humans with MASH (50). Mgp was highly expressed in HSC and
identified as a key driver for liver fibrosis through network mod-
eling, associated with the regulators of fibrosis, Loxl1, Smoc2, and
Itgbl1 (50).

The M52 module was significantly down-regulated in the MASH
versus CTL and MASH versus MASLD comparisons and was enriched
for alpha-amino acid metabolic process, consistent with the main
gene meta-analysis. Altered levels of circulating amino acid levels
have been observed in MASLD and MASH patients, along with
differences in fatty acids and vitamins (51). TAT, HGD, and SLC25A15
were identified as significant key drivers for this module. TAT,
significantly down-regulated in both MASHmeta-analyses, encodes
a hepatic enzyme that catalyzes the conversion of tyrosine to 4-
hydroxyphenylpyruvate. Mutations in HGD and SLCA25A15 lead to
the development of alkaptonuria (52) and hyperornithinaemia-
hyperammonaemia-homocitrullinuria syndrome (53), respec-
tively. Unlike the key drivers identified for the M5 module, there is
currently no evidence connecting these genes to the development
or progression of MASLD. These genes might therefore repre-
sent novel candidates for functional studies investigating the
molecular features of MASH and MASLD associated with amino
acid-related metabolic dysfunction. The relevance of these results
is strengthened by the consistent patterns found across several
datasets.

Our comprehensive study design and bioinformatics workflow
enabled us to identify robust and consistent signals at the network
level across different datasets, pinpointing key genes that might
provide insights into new therapeutic targets and further define the
molecular landscape of MASLD and MASH. Despite the strengths of
our rigorous approach, we acknowledge certain limitations. First,
while RNA-sequencing provides a comprehensive assessment of a
tissue’s transcriptome, integrating microarray studies into the
meta-analysis, with their more limited genome coverage, presents a
risk of missing significant genes. This occurs because the analysis
depends on genes that are common to all datasets. Nevertheless,
we adopted this approach to include a wider range of datasets,
thereby enhancing the robustness of our findings. Second, it’s
important to note that we did not conduct any experimental val-
idation of the detected key drivers and their perturbed networks.
Although consistent signals were observed, further investigation is
necessary to confirm the regulatory role of these key drivers in both
in vitro and in vivo models, as well as determine their potential
effect on MASLD and MASH pathology.

Our study provides a comprehensive and robust view of hepatic
gene expression changes associated with MASLD and MASH. The
variations in the number of DEGs detected in the individual MASH
and MASLD analyses suggest that these two conditions are not
only phenotypically different, but also exhibit distinct molecular

profiles. Further research into these differences can potentially
lead to a deeper understanding of the conditions and improved
clinical management strategies. Our findings underscore the im-
portance of meta-analysis in elucidating complex disease pro-
cesses and highlight the need for additional investigations to
validate and expand upon these results.

Materials and Methods

Data preprocessing

The data selection workflow is illustrated in Fig S1A. Criteria and
results of the search are provided in the results section. We exe-
cuted the preprocessing of raw data using separate pipelines for
RNA-seq and microarray data. The details of the workflow are il-
lustrated in Fig S2B. For RNA-seq data (GSE135251, GSE126848,
GSE130970), we obtained raw data files from sequencing read ar-
chives and performed alignment with the GRCh38 human genome
reference using kallisto 0.46.1 (54). We imported transcript-level
abundance using Entrez Gene annotations (55) and estimated
counts and transcript lengths with the txtimport package (56) to
obtain a matrix of average transcript length, weighted by sample-
specific transcript abundance estimates, to counterbalance dif-
ferent expressions of gene-level counts. We then excluded genes
with fewer than five total counts across all samples and applied a
variance-stabilizing transformation via the vsd function from
DESeq2 (57), which transforms the count data and provides an
approximately homoscedastic matrix of values. Principal Compo-
nent Analysis was used to identify and remove outlier samples,
defined as those exceeding the cutoff of ±4 standard deviations
from themean on at least one of the top two principal components.
Raw counts were normalized with the voom method (58), and
surrogate variable analysis was conducted via the sva function with
the leekmethod from the sva R package (59). The derived surrogate
variables were used to adjust the voom-normalized expression
values using the removeBatchEffect function from limma (60). Gene
annotations were standardized across datasets to HGNC (HUGO
Gene Nomenclature Committee) symbols using the R-BiomaRt
package (61).

For the preprocessing of Affymetrix microarray data (GSE167523,
GSE83452, GSE61260, GSE48452), we obtained raw data (CEL files)
from GEO and normalized the data using the Robust Multi-Array
Average algorithm (62), as implemented in the oligo R package (63).
We used the arrayQualityMetrics R package (64) to evaluate data
quality with respect to reproducibility, outliers, and signal-to-noise
ratio. We generated and analyzed several visualizations, including
heatmaps depicting inter-array expression distances, Principal
Component Analysis plots, and MA-plots (using log-intensity ratios
and log-intensity averages), which enabled us to identify patterns,
trends, and potential outliers within the data. Samples were
classified as outliers in two of the three metrics in the initial round
of QC runs from the dataset and were subsequently removed from
further analysis. After outlier removal, data were once again nor-
malized starting from the raw data, excluding genes in the lower
25th percentile of average expression and adjusting for surrogate
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variables, thus mirroring the workflow applied to the RNA-seq data.
Gene annotations were standardized as described above. For
Illuminamicroarray datasets (GSE33814, GSE89632), we downloaded
the matrix of normalized expression values from GEO and applied
the same workflow as described for Affymetrix data, excluding the
normalization step (Fig S1B).

Gene expression meta-analysis

We used the methodology of Choi et al (23) to generate a com-
prehensive ranked gene list based on the FDR associated with each
gene. The input consisted of the voom-normalized (for RNA-seq)
and RMA-normalized matrices (for microarrays), adjusted for sur-
rogate variables. We executed the analysis using the R package
GeneMeta setting a random-effects meta-analysis model to ac-
count for heterogeneity across studies and standardizing data
using Z-score transformation (function: “Zscore”). The FDR for each
gene was generated using the “ZscoreFDR” function, with 50,000
permutations factored into the calculations. We considered an
FDR < 0.05 to be statistically significant evidence for differential
gene expression. Subsequently, we performed pathway analysis
with the DEGs, with reference to the Gene Ontology (GO) database
using the enrichGO function, as implemented in the clusterProfiler
package. P-values were adjusted using the FDR method, and GO
processes with an FDR < 0.05 were considered statistically
significant.

Enrichment with GWAS and TWAS results

We used four large GWAS to investigate the enrichment of MASLD-
associated genes across our meta-analysis results. In addition,
using the same GWAS, we investigated the relationship between
genetically regulated gene expression and MASLD, conducting a
TWAS imputing expression values from the GTEx v8 liver expression
data. The first GWAS involved the UK Biobank (UKB) cohort, which
comprised 28,396 individuals with MASLD and 108,652 healthy in-
dividuals (29). MASLD status was determined using ICD codes,
whereas a liver fat percent <5% by abdominal MRI defined controls.
The second GWAS (28), also using the UKB cohort, included 4,761
MASLD cases and 373,227 unaffected controls. In this study, the
authors assigned MASLD status using the diagnostic codes rec-
ommended by recent consensus guidelines. The third GWAS (30)
included 1,106 MASLD cases and 8,571 controls and histological data
from liver tissue in 235 available participants from the electronic
medical records and genomics network. The samples were selected
using a natural language processing algorithm billing codes, text
queries, laboratory values, and medication records. Finally, the
fourth GWAS (27) included 1,483 MASLD cases, and 17,781 controls
histologically characterized. We obtained GWAS summary statistics
for all the studies from the GWAS catalogue (Accession numbers:
GCST90094908, GCST90054782, GCST008471, and GCST90011885, re-
spectively). To ensure data quality, we performed data cleaning
using the “munge_sumstat” function from Linkage Disequilibrium
Score Regression (ldsc) software (65). During the data cleaning
process, we conducted quality control checks and applied filters to
include only relevant SNPs. Specifically, we retained SNPs with an
imputation quality (INFO) greater than 0.9, a minimum allele

frequency higher than 1%, and P-association values between 0 and
1. We also removed insertion/deletion variants (INDELs) and SNPs
with duplicated “rs” numbers.

Subsequently, GWAS summary statistics were analyzed using the
Multi-marker Analysis of GenoMic Annotation (MAGMA) method,
which provides gene-level statistics using a multiple regression
approach to incorporate linkage disequilibrium (LD) information
between markers and to detect multi-marker effects (66). P-values
were adjusted for multiple testing using the Bonferroni method,
accounting for the number of genes tested. We then used the
FUSION software to conduct the TWAS (67). We imputed expression
values using liver data models from GTEx v8 (European reference
data), which provide a relationship measure between an individ-
ual’s genotype and gene expression levels, thereby capturing the
cis-acting genetic effects on gene expression. Using FUSION, we
computed gene weights that estimate the effects of individual SNPs
on gene expression. These gene expression models were then used
to evaluate whether the predicted gene expression levels were
associated with the phenotype. To account for multiple testing, we
adjusted TWAS P-values using the FDR method.

We also performed an enrichment analysis to assess the
functional relevance of the genes identified through MAGMA and
TWAS (FDR < 0.05). In this analysis, we used the TWAS and MAGMA
gene lists as the gene sets of interest and the DEGs from our meta-
analysis as the candidate list. The reference set was the com-
prehensive list of genes included in eachmeta-analysis. To perform
the enrichment analysis, we used the “enrichment” function from
the bc3net R package. This function allows for the calculation of
hypergeometric statistics, which assess the enrichment of the
MAGMA and TWAS genes within the candidate list of DEGs.

Coexpression analysis, key driver analysis, and module validation

Coexpression analysis was conducted using the Multiscale Em-
bedded Gene Expression Network Analysis (MEGENA) algorithm,
which offers a robust alternative to existing coexpression network
clustering methods, including WGCNA (68). We selected the dataset
PRJNA512027 as a discovery cohort as it encompasses MASH (n =
104), MASLD (n = 49), and CTL (n = 36) samples, and includes the
largest sample sizes among the datasets available. We used other
datasets that also included MASH, MASLD, and CTL for module
preservation analysis. The matrix of SV-adjusted expression values
was filtered to include only the top 50% of genes with the highest
median absolute deviation. Network generation was executed using
the MEGENA R package (68) based on the following workflow. Ini-
tially, we calculated signed pairwise gene correlations using
Pearson’s method with 1,000 permutations, retaining correlations
that were significant at the 5% FDR level (function: calculate.
correlation). Significantly correlated gene pairs (FDR < 0.05) were
ranked and iteratively tested for planarity, leading to the devel-
opment of a planar filtered network using the planar maximally
filtered graph technique (function: calculate.PFN). Subsequently,
we conducted a multiscale clustering analysis to identify coex-
pression modules at varying network scale topologies and their
respective hub genes (function: do.MEGENA). Coexpression mod-
ules deemed significant (with a permuted P < 0.01 and module of 50
genes or more) were carried forward for further analysis. Next, we
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extracted module eigengenes (the first principal component of the
gene module) using the function moduleEigengenes from the
WGCNA R package (69). Pairwise differential expression between
diagnostic groups was computed using the limma R package (60).
Modules with significant associations were annotated for GO
functional classes, following the same workflow we adopted for
DEGs.

To validate our findings, we conducted a module preservation
analysis on the functionally relevant modules. We used the
“modulePreservation” function from the WGCNA R package to
derive the Z-score preservation statistics. Modules with a Z-score
greater than 10 were deemed to have strong preservation, those
with a Z-score >2 and <10 indicated moderate preservation, and
those with a Z-score <2 showed no preservation. This preservation
analysis was applied across datasets that included MASLD, MASH,
and CTL samples (GSE48452, GSE61260, GSE126848, GSE89632,
GSE135251, and GSE33814). Subsequently, we extracted the ei-
genvalues of the functionally relevant modules from the six
validation datasets and then evaluated their differential ex-
pression, focusing on the comparisons: MASH versus CTL and
MASH versus MASLD. The P-values and the log2 FC obtained from
these validation datasets were combined through a meta-
analytical approach based on the Fisher’s weighted test (70).
The input was the unadjusted P-values derived from the differ-
ential module expression analysis. Given that the Fisher Z
weighted test requires one-tailed P-values, we converted the two-
tailed nominal P-values to one-tailed P-value. If the Log2FC
was greater than zero, the formula used was: p1Tailed = p2Tailed/
2. Otherwise, the formula was: p1Tailed = 1 − (p2Tailed/2).
The uncorrected P-values were then weighted by the sample
sizes of the datasets and combined with the combine.test
function with the “z.transform” option, as part of the survcomp
R package (71). We calculated the average log2 FC by weighting
for sample size for each study using the “weighted.mean” R
functions.

We applied weighted Key Driver Analysis to identify central hub
genes within functionally relevant modules using the mergeomics
R package. Hub genes are characterized by a high number of
strong correlations with other genes in the network; however, this
does not necessarily indicate a causal relationship. For this
analysis, we used a liver-specific Bayesian regulatory network as a
reference (72). The parameters set for the analysis were as follows:
“search depth” was set to 1, “edge type” was specified as undi-
rected, “minhuboverlap” was set at 0.330 and “edge.factor” was 0.
This algorithm prioritizes module genes based on their ability to
regulate other genes in the module. It uses a pre-built causal
regulatory network, identifying genes whose neighbors predom-
inantly belong to the same coexpression module. These “key
driver” genes, predicted as top regulators within a coexpression
module, are targets for potential novel treatment designed to
prevent the progression.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
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