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Copper-Catalyzed Enantio- and Diastereoselective Addition of
Silicon Nucleophiles to 3,3-Disubstituted Cyclopropenes
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Abstract: A highly stereocontrolled syn-addition of silicon

nucleophiles across cyclopropenes with two different
geminal substituents at C3 is reported. Diastereomeric

ratios are excellent throughout (d.r.+98:2) and enantio-
meric excesses usually higher than 90 %, even reaching

99 %. This copper-catalyzed C@Si bond formation closes

the gap of the direct synthesis of a-chiral cyclopropylsi-
lanes.

Silylboronic acid esters are highly useful silicon pronucleo-
philes which have had significant impact on synthetic silicon
chemistry.[1] A broad variety of enantioselective C@Si bond for-

mations can be achieved by using these Si–B reagents,[2] and
their copper-catalyzed addition across a,b-unsaturated accept-

ors is a prominent example (Scheme 1, top).[3] CuI-NHC[4]

(NHC = N-heterocyclic carbene) as well as CuII-bipyridine[5] com-
plexes do promote these reactions with high fidelity. A related

enantioselective addition to strained alkenes, such as cyclopro-
penes, is not known to date (Scheme 1, bottom).[6, 7] The result-

ing silylated cyclopropanes are versatile building blocks in or-

ganic synthesis,[8] yet is their direct preparation by C@Si bond
formation at an existing cyclopropane skeleton rare.[9–12] Ge-

vorgyan and co-workers developed palladium- and platinum-
catalyzed diastereoselective insertion reactions of cyclopro-

penes into Si@Sn and Si@H bonds, respectively.[9] Established
methods therefore start with silicon-containing substrates,[13]

and a common method is the cyclopropanation of vinylsi-

lanes.[14] A fascinating approach by Ito, Sawamura, and co-
workers involving a regioselective copper-catalyzed borylation

of vinylsilanes containing an allylic leaving group by a 3-exo-tet
ring closure stands out.[15] The idea to access silylated cyclopro-

panes from cyclopropenes was inspired by Marek’s[16] and, in
particular, Tortosa’s[17] work. Tortosa and co-workers have ac-
complished a copper-catalyzed desymmetrization of cyclopro-

penes by borylation.[17] We report here a highly stereoselective
silylation of cyclopropenes without the aid of a directing

group (Scheme 1, bottom).[18]

We started our investigation by reacting 3-phenyl-3-methyl-
cyclopropene (1 a) with Me2PhSiBpin (2 a)[19a] (1.5 equiv) in the
presence of Cu(CH3CN)4PF6 as the copper precatalyst in THF at

0 8C (Table 1). NaOtBu (0.5 equiv) was used as an alkoxide base
and MeOH (3.0 equiv) as a proton source (see the Supporting
Information for the complete set of optimization data). With
no ancillary ligand, almost no conversion of the cyclopropene
was seen (<5 %, entry 1). This situation changed completely in

the presence of bidentate phosphine ligands. Excellent diaste-
reoselectivity was obtained with binap ligands L1–L3, and the

enantioinduction increased with the steric demand of the PAr2

groups (entries 2–4). This high level of stereocontrol could not
be further improved by changing the solvent to toluene or by

lowering the reaction temperature to @20 8C (entries 5 and 6).
A similar outcome was found with segphos ligands L4 and L5
(entries 7 and 8), and we eventually continued with L5, which
led to the formation of the silylated cyclopropane 3 aa in good
yield with a diastereomeric ratio (d.r.) +98:2 and an enantio-

meric excess (ee) of 97 %.
We then examined the substitution pattern of the cyclopro-

pene (1 a–s, Scheme 2). Yields were generally good, and the
level of enantioselection was consistently high. 3-Arylated cy-
clopropenes bearing a substituent in the para or/and meta po-
sition(s) were tested, and it was found that the X group did

Scheme 1. Copper-catalyzed enantioselective addition of Si@B reagents
across activated alkenes. EWG = electron-withdrawing group.
R3Si = triorganosilyl.
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not exert any electronic effect on either yield or stereoselectiv-

ity (1 a–j!3 aa–ja) ; the silylated cyclopropanes were all isolat-
ed as single diastereomers (d.r.+98:2). Likewise, a thien-2-yl as
well as naphthyl groups were tolerated (1 k–m!3 ka–ma).

Bulkier alkyl groups instead of the methyl group at C3 of the
cyclopropene had no influence on the enantiofacial selectivity,
but a little on diastereoselectivity; yields were lower with in-
creasing steric demand (1 n–p!3 na–pa). These results imply

that the diastereoselectivity is affected by the steric discrimina-
tion of geminal substituents (Aryl/Me vs. Ph/Alkyl). This obser-

vation was also made when replacing the phenyl by a benzyl

group (Ph/Me versus Bn/Me); the diastereomeric ratio dropped
from +98:2 to 85:15 (1 q!3 qa). In turn, a spiro derivative re-

acted with high diastereoselectivity but in low yield (1 r!3 ra).
For completion, the 3,3-diphenyl-substituted cyclopropene af-

forded the silylated cyclopropane in good yield and with high
ee (1 s!3 sa).

We next probed the transfer of different silyl groups from si-

lylboronic acid esters R3SiBpin 2 b–g[19] to model compound 1 a
(Scheme 3). It became quickly clear at the size of the silyl

group substantially influences the yield. MePh2SiBpin (2 b) fur-
nished acceptable 65 % yield (1 a!3 ab). The enantiomeric

excess was 97 % ee and was even higher with another substitu-
ent in the para position (not shown; additional substrates in

the Supporting Information). tBu(Me)PhSiBpin (2 c) did yield
trace amounts of 3 ac, and the diastereomeric ratio of 62:38 is

due to the stereogenicity at the silicon atom; no formation of
3 ad was seen with Ph3SiBpin (2 d). Trialkylsubstituted Si@B re-
agents 2 e–g,[19b] even with a tBu group attached to the silicon

atom, reacted in mediocre yields. Enantio- and diastereocontrol
were excellent though.

Running the reaction 1 g!3 ga on a tenfold scale was nei-
ther detrimental to yield nor stereoselectivity (Scheme 4, top).

From this sample, single crystals suitable for X-ray diffraction

were obtained.[20] The absolute and relative configuration of
3 ga was found to be R,S. The stereochemistry of the other

silylated cyclopropanes was assigned accordingly. Also, oxida-
tive degradation of the C@Si bond in (R,S)-3 ga employing the

Tamao–Fleming protocol was attempted.[21] This transformation
is usually low yielding due to competing ring opening.[22] The

Table 1. Selected examples of the optimization reactions.[a]

Entry Copper/Ligand Yield [%] d.r.[b] ee [%][c]

1 Cu(CH3CN)4PF6 n.d. – –
2 Cu(CH3CN)4PF6/L1 71 +98:2 80
3 Cu(CH3CN)4PF6/L2 73 +98:2 90
4 Cu(CH3CN)4PF6/L3 73 +98:2 96
5[d] Cu(CH3CN)4PF6/L3 81 96:4 84
6[e] Cu(CH3CN)4PF6/L3 74 +98:2 92
7 Cu(CH3CN)4PF6/L4 73 97:3 92
8 Cu(CH3CN)4PF6/L5 74 +98:2 97

[a] All reactions were performed on a 0.20 mmol scale with the isolated
yield determined after flash chromatography on silica gel. [b] Determined
by 1H NMR analysis. [c] Determined by HPLC analysis on a chiral station-
ary phase. [d] Toluene instead of THF. [e] Run at @20 8C. n.d. = not deter-
mined. binap = 2,2’-bis(diphenylphosphanyl)-1,1’-binaphthyl. sephos =

5,5’-bis(diphenylphosphanyl)-4,4’-bi-1,3-benzodioxol.

Scheme 2. Scope I: Variation of the cyclopropene.[a–c] [a] All reactions were
performed on a 0.20 mmol scale with the isolated yield determined after
flash chromatography on silica gel. [b] Diastereomeric ratios determined by
1H NMR analysis. [c] Enantiomeric excesses determined by HPLC analysis on
chiral stationary phases.
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corresponding alcohol was obtained in 6 % yield with d.r.+
98:2 and 92 % ee under retention of the configuration (see the

Supporting Information for details).
To learn about the stereochemical course of the copper-cata-

lyzed addition of the silicon nucleophile across the C@C
double bond, we subjected dideuterated cyclopropene 1 a-

d2
[23] (>99 % 2H) to the standard setup (Scheme 4, bottom). Cy-

clopropane 3 aa-d2 did form in 72 % yield with excellent dia-

stereo- (d.r.+98:2) and enantioselectivity (96 % ee). The syn-ad-
dition of the silylcopper intermediate to the cyclopropene was
confirmed by 2D NOE measurements between the ring proton
in 3 aa-d2 and the methyl groups on the ring and the silicon

atom (see the Supporting Information for details). To gain fur-
ther mechanistic insight, an additional deuterium-labeling ex-

periment was performed (1 a!3 aa-d1, Scheme 4, bottom).
MeOH was replaced by CD3OD as an exogenous proton

source, and 3 aa-d1 was isolated in 71 % yield and 82 % deuteri-
um incorporation. This corroborates that the proton originates
from the alcohol additives.

Based on these observations and literature precedence,[1, 2]

we propose the catalytic cycle shown in Scheme 5. The silicon

nucleophile (= silylcopper complex) is generated by transmeta-
lation of the Si@B linkage at the Cu@O bond of the in situ

formed copper alkoxide. Cyclopropene 1 then coordinates to
copper to form a p-complex followed by syn-addition of the
Cu@Si bond across the strained alkene.[24] Diastereofacial selec-
tivity is likely controlled by sterics with the bond formation oc-
curring on the side of smaller R2 (usually methyl) and opposite

to larger R1 (usually aryl). Protonation of the Cu@C bond with
MeOH releases the cyclopropane 3 and closes the catalytic

cycle.
In summary, we described here the first example of a highly

enantio- and diastereoselective addition of silylboronic acid

esters across a broad range of prochiral 3,3-disubstituted cyclo-
propenes. It is a syn-addition that does not rely on a coordinat-

ing/directing group. The silyl-substituted cyclopropanes were
obtained in good yields and with superb stereoselectivity. Ex-

pansion of this methodology is currently underway in our lab-
oratory.

Scheme 3. Scope II : Variation of silylboronic acid ester.[a–c] [a] All reactions
were performed on a 0.20 mmol scale with the isolated yield determined
after flash chromatography on silica gel. [b] Diastereomeric ratios deter-
mined by 1H NMR analysis. [c] Enantiomeric excesses determined by HPLC
analysis on chiral stationary phases. [d] Diastereomeric ratio determined by
GLC and GC-MS analysis. n.r. = no reaction.

Scheme 4. Determination of the absolute configuration (top) and deuteri-
um-labeling experiments (bottom). [a] Deuteration grade estimated by NMR
analysis.

Scheme 5. Proposed mechanism.
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