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Copper-Catalyzed Enantio- and Diastereoselective Addition of
Silicon Nucleophiles to 3,3-Disubstituted Cyclopropenes

Liangliang Zhang and Martin Oestreich*"

Abstract: A highly stereocontrolled syn-addition of silicon
nucleophiles across cyclopropenes with two different
geminal substituents at C3 is reported. Diastereomeric
ratios are excellent throughout (d.r.>98:2) and enantio-
meric excesses usually higher than 90%, even reaching
99%. This copper-catalyzed C—Si bond formation closes
the gap of the direct synthesis of a-chiral cyclopropylsi-
lanes.

- /

Silylboronic acid esters are highly useful silicon pronucleo-
philes which have had significant impact on synthetic silicon
chemistry." A broad variety of enantioselective C—Si bond for-
mations can be achieved by using these Si-B reagents,” and
their copper-catalyzed addition across o,3-unsaturated accept-

Previous work:
Enantioselective conjugate addition of Si—-B reagents
to a,f-unsaturated acceptors

Cu(l)/NHC or

Cu(ll)/bipyridine H
R3SiBpin 1
R\~ & R«
~FSEwe proton source EWG
R,Si
This work:

Enantio- and diastereoselective addition of Si-B reagents
to strained alkenes

Cu(l)/diphosphine R2 R3

R3SiBpin *.g

proton source
R3Si7* H

R R®

Scheme 1. Copper-catalyzed enantioselective addition of Si—B reagents
across activated alkenes. EWG = electron-withdrawing group.
R;Si=triorganosilyl.
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ors is a prominent example (Scheme 1, top).®! Cu-NHC®
(NHC = N-heterocyclic carbene) as well as Cu"-bipyridine™ com-
plexes do promote these reactions with high fidelity. A related
enantioselective addition to strained alkenes, such as cyclopro-
penes, is not known to date (Scheme 1, bottom).*” The result-
ing silylated cyclopropanes are versatile building blocks in or-
ganic synthesis,” yet is their direct preparation by C—Si bond
formation at an existing cyclopropane skeleton rare.®'? Ge-
vorgyan and co-workers developed palladium- and platinum-
catalyzed diastereoselective insertion reactions of cyclopro-
penes into Si—Sn and Si—H bonds, respectively.”’ Established
methods therefore start with silicon-containing substrates,™
and a common method is the cyclopropanation of vinylsi-
lanes." A fascinating approach by Ito, Sawamura, and co-
workers involving a regioselective copper-catalyzed borylation
of vinylsilanes containing an allylic leaving group by a 3-exo-tet
ring closure stands out."” The idea to access silylated cyclopro-
panes from cyclopropenes was inspired by Marek's"® and, in
particular, Tortosa’s"”! work. Tortosa and co-workers have ac-
complished a copper-catalyzed desymmetrization of cyclopro-
penes by borylation."”! We report here a highly stereoselective
silylation of cyclopropenes without the aid of a directing
group (Scheme 1, bottom)."

We started our investigation by reacting 3-phenyl-3-methyl-
cyclopropene (1a) with Me,PhSiBpin (2a)"* (1.5 equiv) in the
presence of Cu(CH,;CN),PF, as the copper precatalyst in THF at
0°C (Table 1). NaOtBu (0.5 equiv) was used as an alkoxide base
and MeOH (3.0 equiv) as a proton source (see the Supporting
Information for the complete set of optimization data). With
no ancillary ligand, almost no conversion of the cyclopropene
was seen (< 5%, entry 1). This situation changed completely in
the presence of bidentate phosphine ligands. Excellent diaste-
reoselectivity was obtained with binap ligands L1-L3, and the
enantioinduction increased with the steric demand of the PAr,
groups (entries 2-4). This high level of stereocontrol could not
be further improved by changing the solvent to toluene or by
lowering the reaction temperature to —20°C (entries 5 and 6).
A similar outcome was found with segphos ligands L4 and L5
(entries 7 and 8), and we eventually continued with L5, which
led to the formation of the silylated cyclopropane 3aa in good
yield with a diastereomeric ratio (d.r) >98:2 and an enantio-
meric excess (ee) of 97 %.

We then examined the substitution pattern of the cyclopro-
pene (1a-s, Scheme 2). Yields were generally good, and the
level of enantioselection was consistently high. 3-Arylated cy-
clopropenes bearing a substituent in the para or/and meta po-
sition(s) were tested, and it was found that the X group did

14304 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 1. Selected examples of the optimization reactions.”

Cu(CH3CN)4PFg (10 mol%)
L1-L5 (12 mol%)

NaOtBu (50 mol%) Ph Me
Ph Me Me,PhSiBpin (2a, 1.5 equiv) -
MeOH (3.0 equiv) .
THE Me,PhSi
1a 0°C for 10 h 3aa
I 1)
PAr, 0 PAr,

PAF2 0
99 o

L1 (Ar = Ph): (R)-binap L4 (Ar = Ph): (R)-segphos
L2 (Ar = 4-Tol): (R)-Tol-binap L5 (Ar = 3,5-Xylyl): (R)-DM-segphos
L3 (Ar = 3,5-Xylyl): (R)-Xyl-binap

Entry Copper/Ligand Yield [%] d.r® ee [%]"
1 Cu(CH,CN),PF4 n.d. - -

2 Cu(CH;CN),PF/L1 71 >98:2 80
3 Cu(CH,CN),PF/L2 73 >98:2 90
4 Cu(CH,CN),PF¢/L3 73 >98:2 9
54 Cu(CH;CN),PF¢/L3 81 96:4 84
6" Cu(CH;CN),PF¢/L3 74 >98:2 92
7 Cu(CH,CN),PF4/L4 73 97:3 92
8 Cu(CH;CN),PF¢/L5 74 >98:2 97

[a] All reactions were performed on a 0.20 mmol scale with the isolated
yield determined after flash chromatography on silica gel. [b] Determined
by 'H NMR analysis. [c] Determined by HPLC analysis on a chiral station-
ary phase. [d] Toluene instead of THF. [e] Run at —20°C. n.d.=not deter-
mined. binap =2,2"-bis(diphenylphosphanyl)-1,1-binaphthyl. sephos=
5,5'-bis(diphenylphosphanyl)-4,4'-bi-1,3-benzodioxol.

not exert any electronic effect on either yield or stereoselectiv-
ity (1a-j—3aa-ja); the silylated cyclopropanes were all isolat-
ed as single diastereomers (d.r.>98:2). Likewise, a thien-2-yl as
well as naphthyl groups were tolerated (1k-m—3ka-ma).
Bulkier alkyl groups instead of the methyl group at C3 of the
cyclopropene had no influence on the enantiofacial selectivity,
but a little on diastereoselectivity; yields were lower with in-
creasing steric demand (1 n-p—3na-pa). These results imply
that the diastereoselectivity is affected by the steric discrimina-
tion of geminal substituents (Aryl/Me vs. Ph/Alkyl). This obser-
vation was also made when replacing the phenyl by a benzyl
group (Ph/Me versus Bn/Me); the diastereomeric ratio dropped
from >98:2 to 85:15 (1q—3qa). In turn, a spiro derivative re-
acted with high diastereoselectivity but in low yield (1r—3ra).
For completion, the 3,3-diphenyl-substituted cyclopropene af-
forded the silylated cyclopropane in good yield and with high
ee (1s—3sa).

We next probed the transfer of different silyl groups from si-
lylboronic acid esters R,SiBpin 2b-g"® to model compound 1a
(Scheme 3). It became quickly clear at the size of the silyl
group substantially influences the yield. MePh,SiBpin (2b) fur-
nished acceptable 65% yield (1a—3ab). The enantiomeric
excess was 97 % ee and was even higher with another substitu-
ent in the para position (not shown; additional substrates in
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Cu(CH3CN)4PFg (10 mol%)
L5 (12 mol%)
NaOtBu (50 mol%) R! R?

RUR®  Me,PhSiBpin (2a, 1.5 equiv)
MeOH (3.0 equiv) Me-PhSi
THF e;PhSi
1a-s 0°Cfor 10 h 3aa-sa
3aa (X = H): 74%, 97% ee o
X[ 3ba (X = 4-F): 72%, 97% ee r
N 3ca (X = 4-Cl): 73%, 90% ee %
. Me 3da (X =4-Br): 74%, 94% ee 2 Me
L 3ea (X = 4-CFa): 75%, 91% ee ;
' 3fa (X = 4-Me): 82%, 92% ee _
Me,PhSi 3ga (X = 4-Ph): 82%, 95% ee Me,PhSi
dr.>982  3ha (X = 4-OMe): 76%, 94% ee 3ja: 84%
3ia (X = 3-OMe): 85%, 93% ee d.r.>98:2,94% ee
= C
//
S Y, Me ? Me / Me
Me,PhSi” Me,PhSi” Me,PhSi
3ka: 83% 3la: 70% 3ma: 71%

d.r. >98:2, 90% ee

Ph Et

Me,PhSi”

3na: 68%

d.r. >98:2, 94% ee

Ph iPr

Me,PhSi”

3o0a: 48%

d.r.>98:2, 95% ee

Ph

-

Me,PhSi
3pa: 76%

d.r. =97:3, 90% ee d.r. =84:16, 93% ee d.r. =90:10, 93% ee

Ph—_, Me @ Ph Ph
- ‘,, ’.g
Me,PhSi Me,PhSi Me,PhSi
3qa: 57% 3ra: 17% 3sa: 61%
d.r. = 85:15, 94% ee d.r.>98:2,81% ee 94% ee

Scheme 2. Scope I: Variation of the cyclopropene.”™ [a] All reactions were
performed on a 0.20 mmol scale with the isolated yield determined after
flash chromatography on silica gel. [b] Diastereomeric ratios determined by
'H NMR analysis. [c] Enantiomeric excesses determined by HPLC analysis on
chiral stationary phases.

the Supporting Information). tBu(Me)PhSiBpin (2c) did yield
trace amounts of 3ac, and the diastereomeric ratio of 62:38 is
due to the stereogenicity at the silicon atom; no formation of
3ad was seen with Ph;SiBpin (2d). Trialkylsubstituted Si—B re-
agents 2e-g,"® even with a tBu group attached to the silicon
atom, reacted in mediocre yields. Enantio- and diastereocontrol
were excellent though.

Running the reaction 1g—3ga on a tenfold scale was nei-
ther detrimental to yield nor stereoselectivity (Scheme 4, top).
From this sample, single crystals suitable for X-ray diffraction
were obtained.” The absolute and relative configuration of
3ga was found to be RS. The stereochemistry of the other
silylated cyclopropanes was assigned accordingly. Also, oxida-
tive degradation of the C—Si bond in (R,S)-3ga employing the
Tamao-Fleming protocol was attempted.”?” This transformation
is usually low yielding due to competing ring opening.?? The

14305 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Cu(CH3CN)4PFg (10 mol%)
L5 (12 mol%)

NaOtBu (50 mol%) Ph Me
Ph  Me R3SiBpin (2b—-g, 1.5 equiv) -
MeOH (3.0 equiv) R.Si
THF o
1a 0°Cfor 10 h 3ab-ag
Ph Me Ph Me Ph  Me
MePh,Si tBu(Me)PhSi PhsSi
3ab: 65% 3ac: trace 3ad: n.r
d.r.>98:2,97% ee d.r.=62:38
Ph Me Ph Me Ph Me
Et3Si nPr3Si tBuMe,Si
3ae: 30% 3af: 26% 3ag: 23%

d.r. > 98:2, 99% ee d.r.>98:2, 95% ee d.r.>98:2, 93% ee
Scheme 3. Scope I: Variation of silylboronic acid ester."? [a] All reactions
were performed on a 0.20 mmol scale with the isolated yield determined
after flash chromatography on silica gel. [b] Diastereomeric ratios deter-
mined by 'H NMR analysis. [c] Enantiomeric excesses determined by HPLC
analysis on chiral stationary phases. [d] Diastereomeric ratio determined by
GLC and GC-MS analysis. n.r.=no reaction.

Ph
Ph
standard setup @
» / Me
Me E

A Me,PhSi
1g (2.0 mmol) (R,S)-3ga: 85%
d.r. > 98:2, 93% ee
X-ray
M
Ph Me Ph".‘ 2 NOE

standard setup D, D

- Ph\S- WA .

D D \

Me/ \Me w/f‘\lOE

3aa-d,: 72%
d.r. >98:2, 96% ee

P,

1a-d, (>99% 2H)l
standard setup
CD3;0D

PXe
instead of MeOH Me,PhSi D

1a 3aa-ds: 71% (82% 2H)E
d.r. >98:2, 90% ee

Scheme 4. Determination of the absolute configuration (top) and deuteri-
um-labeling experiments (bottom). [a] Deuteration grade estimated by NMR
analysis.

corresponding alcohol was obtained in 6% yield with d.r.>
98:2 and 92 % ee under retention of the configuration (see the
Supporting Information for details).

To learn about the stereochemical course of the copper-cata-
lyzed addition of the silicon nucleophile across the C—C
double bond, we subjected dideuterated cyclopropene 1a-
d,* (>99% ?H) to the standard setup (Scheme 4, bottom). Cy-
clopropane 3aa-d, did form in 72% yield with excellent dia-
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stereo- (d.r.>98:2) and enantioselectivity (96 % ee). The syn-ad-
dition of the silylcopper intermediate to the cyclopropene was
confirmed by 2D NOE measurements between the ring proton
in 3aa-d, and the methyl groups on the ring and the silicon
atom (see the Supporting Information for details). To gain fur-
ther mechanistic insight, an additional deuterium-labeling ex-
periment was performed (1a—3aa-d;, Scheme 4, bottom).
MeOH was replaced by CD;OD as an exogenous proton
source, and 3 aa-d, was isolated in 71 % yield and 82% deuteri-
um incorporation. This corroborates that the proton originates
from the alcohol additives.

Based on these observations and literature precedence,!
we propose the catalytic cycle shown in Scheme 5. The silicon
nucleophile (=silylcopper complex) is generated by transmeta-
lation of the Si—B linkage at the Cu—O bond of the in situ

1,2]

R! R?
R3Si H L
R3SiBpin
3, RrRo-cd ) P!
MeOV L \
R' = {Bu or Me
R! R? ) )
2 p|n$---$|R3 ¥
R'd- -C;u—L
RsSi cu-L L =
\

' oz Tt R'OBpin
R' R
A A
SN R3Si—CU )
R3Si- -Cu-L L
R' R2
Z\g /121 R?

R3Si—C;u—L

A

Scheme 5. Proposed mechanism.

formed copper alkoxide. Cyclopropene 1 then coordinates to
copper to form a m-complex followed by syn-addition of the
Cu-Si bond across the strained alkene.”” Diastereofacial selec-
tivity is likely controlled by sterics with the bond formation oc-
curring on the side of smaller R? (usually methyl) and opposite
to larger R' (usually aryl). Protonation of the Cu—C bond with
MeOH releases the cyclopropane 3 and closes the catalytic
cycle.

In summary, we described here the first example of a highly
enantio- and diastereoselective addition of silylboronic acid
esters across a broad range of prochiral 3,3-disubstituted cyclo-
propenes. It is a syn-addition that does not rely on a coordinat-
ing/directing group. The silyl-substituted cyclopropanes were
obtained in good yields and with superb stereoselectivity. Ex-
pansion of this methodology is currently underway in our lab-
oratory.
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