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ABSTRACT
Background: Controlled glycemic concentrations are associated
with a lower risk of conditions such as cardiovascular disease and
diabetes. Models commonly used to guide interventions to control
the glycemic response to food have low efficacy, with recent clinical
guidelines arguing for the use of personalized approaches.
Objective: We tested the efficacy of a predictive model of
personalized postprandial glycemic response to foods that was
developed with an Israeli cohort and that takes into consideration
food components and specific features, including the microbiome,
when applied to individuals from the Midwestern US.
Design: We recruited 327 individuals for this study. Participants
provided information regarding lifestyle, dietary habits, and health,
as well as a stool sample for characterization of their gut microbiome.
Participants were connected to continuous glucose monitors for 6
d, and the glycemic response to meals logged during this time was
computed. The ability of a model trained using meals logged by
the Israeli cohort to correctly predict glycemic responses in the
Midwestern cohort was assessed and compared with that of a model
trained using meals logged by both cohorts.
Results: When trained on the Israeli cohort meals only, model per-
formance for predicting responses of individuals in the Midwestern
cohort was better (R = 0.596) than that observed for models taking
into consideration the carbohydrate (R = 0.395) or calorie content of
the meals alone (R = 0.336). Performance increased (R = 0.618)
when the model was trained on meals from both cohorts, likely
because of the observed differences in age distribution, diet, and
microbiome.
Conclusions: We show that the modeling framework described in
Zeevi et al. for an Israeli cohort is applicable to a Midwestern
population, and outperforms commonly used approaches for the
control of blood glucose responses. The adaptation of the model
to the Midwestern cohort further enhances performance and is a
promising means for designing effective nutritional interventions to
control glycemic responses to foods. This trial was registered at clini-
caltrials.gov as NCT02945514. Am J Clin Nutr 2019;110:63–75.
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Introduction
Glycemic concentrations are associated with the risk of

diseases such as obesity, cardiovascular disease, metabolic
syndrome, and type II diabetes mellitus (1–4). Diet directly
affects glycemic concentrations, and dietary interventions aimed
at controlling these concentrations are commonly prescribed
(5).

Common dietary approaches for preventing frequent high
blood glucose include calorie or carbohydrate counting, and
approaches based on the glycemic index (6–8); however, their
efficacy varies across individuals (5). Besides characteristics
of the food consumed (9), such variability may stem from,
among other things, lifestyle, genetics, degree of insulin sensi-
tivity, and exocrine pancreatic and glucose transporter activity
concentrations (10), as well as intestinal transit time (11).
There is no evidence supporting the view that one nutritional
strategy is consistently superior to others, with researchers
suggesting that the most successful strategy for controlling blood
glucose concentrations is dependent on the characteristics of each
particular individual (12).
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A previous study (13) showed that the microbiome of an
individual was also one of the parameters associated with
postprandial glucose responses (PPGRs) to food, in addition
to other physiological and clinical parameters. Using a wide
set of features, the team were able to construct a predictive
model of greater accuracy than state-of-the-art models for
PPGRs, and show that this model could be used to construct
personalized diets that induce a low glycemic response in tested
participants.

One caveat of the study by Zeevi et al. (13) was the fact that it
focused on a specific population, raising questions regarding the
generality of the model used to predict PPGR. The microbiome,
for example, has been shown to vary across populations as
a consequence of economic and geographic factors (14), and
diet composition (15). Dietary habits, clinical features, and
other personal characteristics may also be significantly different
between populations. So, it is possible that observations, or
results of a study involving one population, may not translate to
other populations (16).

Here, we tested the ability of a model trained on the Israeli
population to predict the PPGRs of a cohort of participants
mostly based in the Midwestern region of the US. We replicated
the approach in the original study as closely as possible to
reduce the number of potential confounding variables affect-
ing the results, and used the data collected to improve the
predictive model.

Methods
The central objective of this study was to measure the accuracy

of a personalized model for predicting PPGRs in individuals
without diabetes in a Midwestern US cohort.

Study participants

A total of 327 participants were recruited from October
2016 to December 2017, in Olmsted and Hennepin counties in
Minnesota, and Duval County in Florida, US, under the Mayo
Clinic Institutional Review Board protocol number 16–0,05208.
It is also registered at clinicaltrials.gov as NCT02945514.
Inclusion criteria included men and women > 18 y, with access
to a mobile device and web browser. Individuals were excluded
if they were < 18 y, were prediagnosed with type I or type
II diabetes mellitus, used antibiotics in the 3 mo prior to
study participation, were pregnant, were substance abusers, had
a chronic medical condition, treatment, or medication known
to affect glucose metabolism, such as fertility treatment (e.g.,
clomiphene, gonadotropins) or metformin-based medications,
had undergone bariatric weight loss surgery, had undergone
further fertility treatments in the 3 mo prior to study participation,
had undergone chemotherapy or radiation treatment of cancer
within the last 2 y or had active cancer, had a chronic
gastrointestinal disorder, had chronic anemia, or were unable to
safely perform finger pricking.

Study design

This study follows, as closely as possible, the methodology
described in Zeevi et al. (13).

The study subjects were recruited in Olmsted and Hennepin
counties, Minnesota (n = 318), and Duval County, Florida
(n = 9), US. The subjects are henceforth designated the
Midwestern cohort. After screening regarding eligibility, study
subjects were asked to provide written consent to participate in
the study. Participants were asked to answer a series of questions
regarding their health, lifestyle, activities, and diet preferences.
In the 2 d prior to the beginning of the study week, participants
were asked to provide a stool sample using an OMNIgene-
Gut stool collection kit (DNA Genotek). Samples were shipped
at room temperature to the DayTwo processing facility in
Israel.

Participants were also asked to attend a connection meeting
at the beginning of the study week. During this meeting, study
staff provided a review of the study purpose and requirements
and offered an opportunity to answer questions. Study staff also
measured height, weight, waist, and hip circumference. They
took blood pressure and pulse, drew blood for estimation of
HbA1c% concentrations (for which fasting was not required),
attached the continuous glucose monitor (CGM) and provided
standardized meals. Study participants were also instructed on
the use of the food and activity logging mobile application to be
used throughout the week and the manual blood monitor (Bayer
Contour Next Link Glucometer). During the study week, study
subjects were asked to wear the CGM, complete manual glucose
monitoring ≥ 4 times a day for added accuracy, log food intake
(including meal content, duration, and time), activity (including
intensity, duration, and time), anthropometric characteristics,
medications, and sleep. They were asked to maintain their normal
eating habits for the week, except for four breakfasts, which
were composed of defined food items and provided by the
study team.

Just like the study by Zeevi et al. (13), measures of
anthropometric and physiological parameters were conducted
by trained technicians. The participants also wore a CGM for
the study week and logged their meal information exclusively
in a mobile device application similar to the one used for the
Israeli cohort, bypassing the risk of introducing methodological
variability observed when different food logging methods are
used.

During the week, study personnel, including a registered
dietician, were available to assist study subjects with the logging
of food and activity items.

Focused set of the Zeevi et al. cohort

To eliminate potential biases, when comparing the Midwestern
cohort to the Israeli cohort, we subset the cohort described
in Zeevi et al. (13). First, only the 413 subjects from the
original cohort whose stool samples were collected using the
same collection method were used in all comparative analyses
(Genotek kits; see Stool Sample Processing). To account for
different sequencing depths and for paired compared with single
end sequencing differences, we used only the forward reads from
the Israeli cohort samples and downsampled all samples to an
equal sequencing depth of 5 Million reads (the same depth used
for the Midwestern cohort). Second, since diabetic subjects were
excluded from the Midwestern cohort, we further excluded 16
diabetic subjects from the Israeli cohort (Figure 1). The resulting
subset consisted of 397 participants from the original study,
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Original Israeli cohort (Zeevi et al. (13))
n = 1189

Midwestern cohort
n = 327 (MN = 318; FL = 9)

Stool collec�on 
method - Swab

n = 776

Stool collec�on 
method - Swab + Kit

n = 413

HbA1c < 6.5%
n = 397

Microbiome sequencing 
runs > 5 M reads

n = 297

Israeli trained 
personalized PPGR model

Israeli and Midwestern trained 
personalized PPGR model

Valid CGM
n = 321

Valid dataset
n = 293

Midwestern trained 
personalized PPGR model

FIGURE 1 Flow diagram of the subjects included in the study. Israeli cohort used in this study represents a subset of the full cohort in Zeevi et al. (13).
CGM, continuous glucose monitor; MN, Minnesota; FL, Florida.

representing the Israeli cohort used in all further analyses. Both
the Midwestern and Israeli cohorts were subjected to the same
bioinformatics analysis pipeline.

Stool sample processing

Participants sampled their stool following detailed printed
and online video clip instructions. Sampling was done using
the OMNIgeneGUT (OMR-200; DNA Genotek) stool collection
kit. Samples were stored at room temperature, as per the
manufacturer’s instructions, until delivered to the processing
facilities.

Genomic DNA extraction and filtering

Genomic DNA was purified using the PowerMag Soil DNA
isolation kit (MoBio) optimized for the Tecan automated plat-
form. Illumina compatible libraries were prepared as described
(17), and sequenced on an Illumina Nextera 500 (75 base pair,
single end).

Microbial and metagenomic analysis

Reads were processed with Trimmomatic (18) (version 0.32,
parameters used: -phred33 ILLUMINACLIP: < adapter file >

:2:30:10 LEADING:25 TRAILING:25 MINLEN:50) to remove
reads containing Illumina adapters, filter low-quality reads, and
trim low-quality read edges. Reads mapping to host DNA
were detected by mapping with GEM (19; parameters used:
-q offset-33 –gem-quality-threshold 26 -e 0.1 –min-matched-
bases 0.8 –max-big-indel-length 15 -s 3 -d 200 -D 1 -v -m
0.05) and removed from downstream analysis. All samples were
subsequently downsampled to a depth of 5 M reads. Samples
with fewer reads were removed from further analysis, leaving us

with samples from 297 Midwestern cohort participants that were
used for downstream analyses. Relative abundance for members
of the microbial community were obtained with MetaPhlAn2 (20;
default parameters).

CGM

Glucose was measured using the iPro2 CGM (Medtronic),
which measures interstitial glucose concentrations every 5
min using the subcutaneous Enlite sensors. CareLink online
software (Medtronic) was used to perform calibration for CGM
measurements, as directed by the iPro2 manual. Subjects were
connected to the CGM for 6 d [compared with 7 d for the Israeli
cohort (13)].

Real-time meal logging and meal data preprocessing

Meals were logged in real time by the participants us-
ing a mobile device application available for both iOS and
Android devices (“DayTwo Food & Activity Logger”). Par-
ticipants were asked to choose the food items consumed
from the MyNetDiary database with over 400,000 items for
which curated nutrient content information is available and
to log the amount consumed, and the time and duration
of the meal. Reported meal times were rounded to the
closest 5-min interval. Meals logged < 30 min apart were
merged. We also removed meals with very large (>1 kg
and >20 kcal) components, meals with incomplete logging, and
meals with unreasonable nutritional values (defined as meeting
one or more of these conditions: >5000 kcal, >500 g sugar,
>1000 g carbohydrate, >1000 g protein, >500 g fat, >5000
mg sodium, >600 mg caffeine, >300 g dietary fibers), as they
were likely to be the result of logging errors. Meals logged
within 90 min of other meals and meals consumed at the
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first and last 12 h of the connection week were not used for
algorithm training, to avoid inaccuracies in PPGR measurements.
Lastly, meals with >40 g carbohydrate and PPGR values
<5 mg/dl·h were excluded from the analysis as manual inspection
confirmed that in many cases, such meals showed faulty CGM
measurements or misreporting of meal times.

Standardized meals

The four standardized meals used with the Israeli cohort
(bread, bread + butter, glucose, fructose) were described in
Zeevi et al. (13). For the American cohort, participants were
supplied with four standardized meals representing typical
Midwestern breakfast foods that were to be eaten alone, as the
first meal of the day; two of them consisted of one plain bagel
with or without cream cheese; the other two consisted of cereals
(participants chose one of three brands) with or without a cup
of milk (milk was not supplied and participants were instructed
to use either soy milk or 2% milk). Each meal was provided in
duplicate to allow estimation of the degree of replicability of the
glycemic measures by analyzing the intra-individual variability in
PPGRs for the standardized meals. In practice, many participants
reported varying amounts and numerous types of milk, and
some participants reported eating standardized foods along with
other items and/or at different times of day. As a result of this
misreporting, combined with a relatively small cohort, only the
bagel with cream cheese meals had sufficient replicates from a
large enough group of participants to allow calculation of overall
intra-individual variability in our cohort (n = 111). Since the
standardized meals were not chosen by, and may not represent
the eating habits of, particular participants, they were not used
when analyzing macronutrient consumption differences between
cohorts.

Computing PPGRs

Five subjects from the Midwestern cohort had corrupted CGM
files that could not be processed. These were thus excluded from
the PPGR predictor construction and analyses. A total of 293
participants that had both valid CGM measurements and over 5
M reads depth in the microbiome samples were used for training
the model (see below).

PPGRs were computed as described in Zeevi et al. (13):
logged meal times and CGM measurements were used to
calculate the incremental area under the curve (iAUC) in the
2 h following a meal as previously described (21). To reduce
noise, the median of all glucose values from the 30-min period
prior to the meal was taken as the initial glucose concentration,
above which the incremental area was calculated. Missing
values in ≤ 25 consecutive minutes were interpolated. Following
this interpolation, any meals that still had incomplete glucose
measurements in the time window of 30 min before and 2 h after
the logged meal time were filtered out. The resulting quantity is
referred to as the “measured PPGR” throughout the manuscript.

PPGR predictor

As in Zeevi et al. (13), we predicted PPGRs based on stochastic
gradient boosting regression. Using this type of model, PPGRs

are predicted as the sum of predictions from thousands of
decision trees. The trees were learned iteratively, where each
tree tried to minimize the residuals in predictions of all previous
trees. Here, the model was implemented using the XGBoost
package (version 0.6, https://xgboost.readthedocs.io/en/latest/,
22), XGBRegressor class. The model used 2,000 tree estimators
with a maximal depth of 9 and with a learning rate of 0.002, with
the objective of minimizing squared errors in prediction. At each
iteration half of the samples were used to prevent overfitting.

Features used in each tree estimator were chosen using an
inference process from a pool of 72 features highly similar
to the ones used in the Zeevi et al. (13) original study, with
the exception of some blood test results, bacterial growth
dynamics, and KEGG-based (Kyoto Encyclopedia of Genes
and Genomes) bacterial functional features, that were excluded
from our analysis (see Online Supporting Information (OSM),
Supplemental Table 1, for a full list of the features used). The
features included: 1) meal features, 2) meal context features, 3)
blood tests, 4) personal features, 5) features derived from CGM
measurements, and 6) microbiome features. For microbiome
features we used the relative abundances for taxa used by Zeevi
et al. (13) with the addition of the abundances of Prevotella and
Bacteroides genera. Prevotella and Bacteroides features were
added to the model based on results below, showing that the
abundances of these genera varied significantly between cohorts.
Microbiome features whose median abundance was <10−4 in the
focused Israeli cohort and the Midwestern cohort combined were
excluded.

Model performance was evaluated using 10-fold cross valida-
tion, where the data is split into 10 groups (making sure that all
meals reported by a single client are grouped in the same fold).
The model is trained on 9 of the 10 folds and its performance is
assessed by its ability to accurately predict the PPGR for the held
out fold (1/10 of the data) that was not used for training, which is
repeated for all folds.

Statistical tests for significance

The chi-square statistic was used for testing the significance
of gender distribution differences between cohorts. Welch’s
t-test was used for all other tests of significance (personal
features, macronutrient consumption, phyla/genera abundance
distributions, etc.). When multiple hypotheses were tested, P
values were corrected using the Bonferonni correction (23).

Partial dependence plots

Although the significance of each feature of the model is hard
to assess in models created through the use of gradient boosting,
their individual effects can be analyzed using partial dependent
plots. For each feature f (e.g., carbohydrate grams in meal), the
average predicted PPGR is computed at each feature value (e.g.,
at x = 1…80 g of carbohydrate per meal) by setting the feature
value to x (e.g., carbohydrates = 20 g) across the entire set of
reported meals, and keeping all other feature values as originally
reported. The vector of average predicted PPGR is then centered
to yield the partial dependence values observed in the partial
dependence plots.

https://xgboost.readthedocs.io/en/latest/
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Principal coordinate analysis

To determine whether cohorts were different in terms of their
gut microbial profile, we performed an unsupervised analysis
using principal coordinate analysis on dissimilarities between
all species. Analysis was performed using the PC-ord tool v7
(https://www.pcord.com) using Bray–Curtis distances.

Results
We focused our work on testing and improving the perfor-

mance of a model for the personalized prediction of the glycemic
response to foods created for an Israeli cohort on a population
of the Midwest of the US. For this, we recruited individuals
and collected personal information, a variety of anthropometric
and physiologic parameters, stool samples, and continuously
monitored their blood glucose concentrations and dietary habits
in real time for 6 consecutive days, using a food logging mobile
application and following a previously described methodology
(13). A companion report with a more focused clinical analysis
of the Midwestern cohort is currently in press (Mendes-Soares
et al., 24)

Midwestern and Israeli cohorts differ in physiological
parameters

General attributes of the cohorts are shown in Table 1, and
provide a basic overview of the differences between the study
populations. The Midwestern cohort that was part of the analysis
was composed of 297 nondiabetic individuals (77% females,
23% males), aged 45.1 ± 12.3 y, with a BMI of 27.9 ± 6.0
kg/m2 and HbA1c of 5.2% ± 0.3%. Although both cohorts are
skewed in favor of females, there is an even stronger gender
bias in the Midwestern cohort relative to the Israeli cohort (Table
1). The total percentage of overweight or obese individuals was
significantly higher in the Midwestern cohort compared with the
Israeli cohort (64% and 55%, respectively), but these values are in
accordance with national and regional statistics [63% overweight
reported in the state of Minnesota in 2015 (25), 49.8% overweight
reported in Israel in 2011 (26)]. The percentage of prediabetics
(defined as 5.7% < = HbA1c% <6.5%) in the Midwestern cohort
was lower than expected based on national values [8.4% in our
cohort compared with 38% in the US (27)].

Carbohydrate response sensitivity to diverse foods varies
across individuals

Participants were asked to wear a CGM for the duration of
the study, allowing a complete description of their daily glucose
concentrations. Of the participants from the Midwestern cohort,
93.5% exhibited a positive correlation between the amount of
carbohydrates consumed in a meal and the PPGR to that meal
compared with 98% of the participants in the Israeli cohort
(Figure 2A). However, the extent of the correlation varied
significantly, with some people showing high sensitivity (Figure
2B) to the amount of carbohydrates consumed, and others
showing limited sensitivity (Figure 2C). This supports the view
that the glycemic response is not easily predicted from simple
meal features and varies across individuals.

PPGRs to identical meals show reproducibility in
individuals and high variability across the study population

During the study, participants were asked to maintain their di-
etary habits, except for the consumption of identical standardized
meals provided in duplicate by the study team that would allow
the comparison of PPGRs within and across individuals. Two
types of meals were provided to participants, but only one was
reported by enough participants to allow analysis.

To understand the reproducibility of the glycemic response to
foods for each individual, we calculated the correlation between
the PPGRs to the same meal for each individual participant. Each
participant was asked to consume two identical meals of bagel
and cream cheese provided by the study team. The PPGRs to the
two meals were highly correlated (n = 111, Pearson’s correlation
R = 0.66, Figure 3), although these replicates show a somewhat
lower reproducibility than that of the four standardized meals
(bread, bread and butter, glucose, fructose) described in Zeevi et
al. (13; R = 0.71–0.77).

Similarly to what has been observed in previous studies
(13, 28), there was a significant spread of PPGR values across
individuals. However, interpersonal differences were much
larger than intrapersonal differences, with glycemic responses
to the same bagel and cream cheese meal across individuals
spanning almost the entire range of measured responses (the
lowest 10% of responses to this meal had PPGR values <14
mg/dl·h, the highest 10% spanned PPGR values between 59 and
124 mg/dl·h).

Glycemic response in the Midwestern cohort can be
predicted by a model trained with the Israeli cohort

Next, we tested whether a model trained on information from
a subset of the Israeli cohort from Zeevi et al. (13) that used
the same stool collection methods as our cohort could be used
to predict glycemic responses for individuals in the Midwestern
cohort. The model predicted glycemic responses based on a
pool of 72 features from the data collected (OSM, Supplemental
Table 1), including meal nutrients, personal questionnaires, daily
activities, CGM measurement-derived features, blood tests, and
microbiome composition. Just as described in Zeevi et al. (13),
to account for nonlinear interactions between the features, the
model was based on gradient boosting regression (29) in which
PPGRs are predicted as the sum of predictions from thousands of
decision trees. Each decision tree is a weak predictor that uses a
subset of features. The trees are built iteratively, with each new
tree trained on the residuals of all previous trees, so that prediction
errors decrease with each iteration.

When trained on data from 397 Israeli participants alone,
performance on held out data from the Israeli cohort (using 10-
fold cross validation) was similar but slightly inferior to that
described previously [R = 0.671 compared with R = 0.68 in
Zeevi et al. (13)], likely stemming from a reduced data set and
some discrepancies in feature sets used.

The performance of this model on the Midwestern cohort
was R = 0.596 (Figure 4). This level of performance was
better than that achieved by linear models that rely on meal
carbohydrate or caloric content alone (R = 0.395, R = 0.336,
respectively). Given the importance of clinical and physiological

https://www.pcord.com
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TABLE 1 Demographic and physiologic comparison of the Midwestern and Israeli cohorts

Midwestern cohort Israeli cohort t-test P value

# Participants 297 397
Gender, % females 77% 60% 3e-61

Age, y mean ± SD 45.1 ± 12.3 42.0 ± 12.4 0.0012

BMI, kg/m2 mean ± SD 27.9 ± 6.0 26.6 ± 5.0 0.0022

BMI ≥ 25 64% (189) 55% (217)
BMI ≥ 30 27% (81) 21% (84)
HbA1c% mean ± SD 5.2 ± 0.3 5.4 ± 0.4 8.5e-102

HbA1c% ≥ 5.7% 8.4% (25) 21% (85)

1Chi-square test of independence in a contingency table.
2Two-sided t-test for samples with unequal variances (Welch’s t-test).

parameters of the individuals, diet, and microbiome in the
performance of the predictive model, this result may be indicative
of differences between the two cohorts in regards to these
features.

Macronutrient and fiber intake differ between cohorts

Participants were asked to log their eating patterns with a
mobile application available for the most common operating
systems. In total, 2094 d with meals defined as being valid for

FIGURE 2 Carbohydrate sensitivity in individuals of the cohorts of the study. (A) Histogram of per person Pearson correlation R values between
carbohydrates and postprandial glycemic response (PPGR) for individuals in the Israeli (IL, green; mean 0.53, std 0.22) and Midwestern (MW, blue; mean
0.46, std 0.26) cohorts. Note the high variability across individuals in sensitivity to carbohydrates. (B) An example for an individual with a high carbohydrate
to PPGR correlation (left) and an individual with a low carbohydrate to PPGR correlation (right). For each reported meal, the carbohydrate values (x-axis) and
the PPGR values (y-axis) are shown.
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FIGURE 3 Reproducibility of postprandial glycemic responses to a
standardized meal, as given by the correlation between the glycemic
responses to replicate bagel and cream cheese meals consumed by individuals
in the Midwestern cohort (n = 111; R = 0.66; see Methods).

our analysis and a total of ∼3.2 M kcal were logged for the
Midwestern cohort, and 3006 d and a total of 4.6 M kcal for
the Israeli cohort. The observed differences result from a slightly
shorter connection week for the Midwestern cohort.

Comparison of macronutrient intake between cohorts revealed
several significant differences, mostly in the female population,
which is likely due to the relatively small number of male
participants. The total reported caloric intake was somewhat

IL cohort

IL cohort

Test dataset R

0.671

MW US cohort
0.596

IL cohort 0.643

MW US cohort

0.605
MW US 
cohort

IL cohort

MW US 
cohort

IL cohort

MW US cohort

0. 677

0.618

FIGURE 4 Schematic of the performance of the models trained with
data exclusively from the Israeli (IL) cohort, exclusively from the Midwestern
(MW) cohort, or both.

higher in the Midwestern cohort compared with that in the
Israeli cohort, but differences were significant only for females
(1467 ± 755 compared with 1368 ± 712 mean daily kcal of
reported consumption, P value = 9x10-5). Daily reported fiber
consumption was lower in the Midwestern cohort compared with
the Israeli one, but only significantly lower in females (11.1
compared with 14.2 dietary fiber g per 1000 kcal reported, P
value = 8e-24; Figure 5A). In females, the percentage of calories
from fat was slightly but significantly lower in the Midwestern
cohort (34.3% compared with 35.8%, P value = 0.0005; Figure
5B). The percentage of calories from carbohydrates was slightly
lower for the Midwestern cohort than for the Israeli cohort for
males (39.5% compared with 41.7%, P value = 0.008) and
females (43.1% compared with 44.7%, P value = 0.0007; Figure
5C). In contrast, the percentage of calories from protein was
slightly larger in both males and females from the Midwestern
relative to the Israeli cohort (males: 16.7% compared with 18.0%,
P value = 0.004; females: 15.7% compared with 17.1%, P
value = 8x10-10; Figure 5D). Sodium consumption was lower
in Midwestern compared with Israeli males (2550 ± 1635
compared with 2850 ± 1612 mg sodium on average per day,
P value = 0.001). Overall, these findings align well with the
different diets adopted preferentially by these populations, with a
lower prevalence of a Mediterranean diet, rich in raw vegetables
and lower in animal products, in the Midwestern compared with
the Israeli study subjects.

Microbiome analysis reveals lower diversity, increased
Firmicutes/Bacteroidetes and decreased Prevotella/
Bacteroides ratios in the Midwestern cohort

The microbiome of the participants was studied through
analysis of stool samples collected by the participants themselves.
Whole genome shotgun sequencing of fecal DNA was performed.
As described in the Methods section, to eliminate biases in
the comparison of microbial community analyses between the
Midwestern and Israeli cohort, in this study we analyzed only a
subset of 397 nondiabetic participants from the Zeevi et al. study
(13) whose samples were collected with the method used by the
Midwestern cohort.

Due to the slight differences between the two cohorts, in terms
of population characteristics and dietary habits, particularly fiber
consumption, we expected their microbiomes to show differences
in terms of diversity and microbial composition.

α diversity in the Midwestern cohort is lower than in the
Israeli cohort.

We compared average Species Richness (57 ± 10 Midwestern
compared with 64 ± 9 Israeli, Figure 6A) and Shannon diversity
index (2.65 ± 0.5 Midwestern compared with 2.75 ± 0.6 Israeli,
Figure 6B) between cohorts. In both measures, the average
diversity of the Midwestern cohort was significantly lower than
the Israeli cohort (P value < 0.05). This is in accordance with
observations in populations with a lower consumption of dietary
fiber as is the case for the Midwestern cohort (Figure 5A, 30).

To test whether differences in diversity seen between co-
horts can be explained by differences in gender, HbA1c%
concentrations, or BMI in the different cohorts, we computed
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FIGURE 5 The Israeli and Midwestern cohorts showed substantial differences in terms of their nutritional behavior. (A), (B), (C), and (D) show the
amounts of each nutrient consumed by the female and male participants of the Midwestern (MW) and Israeli (IL) cohorts [(A) fiber, (B) fat, (C) carbohydrates,
(D) protein]. Note significant differences in dietary fiber and fat consumption in females (P values = 8e-24 and 0.0005, respectively), as well as significant
differences in carbohydrate and protein consumption for both genders (males – P values = 0.008 and 0.004, respectively; females – P values = 0.0007 and
8e-10, respectively). All P values were computed using Welch’s t-test. Boxes extend from the lower to upper quartile of the data, with a line at the median.
Whiskers show the range of the data and flier points [>Q3 + 1.5(Q3–Q1) or <Q1 – 1.5(Q3–Q1)] are considered outliers. Pct stands for percentage.

diversity values also based on these parameters, regardless of the
participant’s cohort. Although gender and HbA1c concentrations
could not account for observed differences (data not shown),
comparisons between overweight and obese (BMI > 25) and
healthy individuals (BMI < 25) showed significant differences.
Lower diversity in overweight and obese subjects was observed
using both diversity measures (Richness 59.95 ± 10.4 in
overweight, 61.64 ± 9.56 in healthy; Shannon index 2.66 ± 0.57
in overweight, 2.77 ± 0.53 in healthy; P value < 0.05). This is
consistent with previous observations (31). When restricted only
to overweight individuals (189 subjects in the Midwestern cohort,
217 in the Israeli cohort), comparison of diversity indices for the
Midwestern cohort were still lower, but the differences were no
longer statistically significant. Thus, it seems like higher BMI is
likely partly accountable for the lower diversity observed in the
Midwestern cohort.

Microbial composition comparison.

Figure 6C, D shows the average distribution of phyla and
genera in the two cohorts, respectively. At the phylum level, the
decreased abundance of Actinobacteria (Figure 6E; P value = 1e-
17) and an increased Firmicutes/Bacteroidetes ratio (Figure 6F;
P value = 7e-6) in the Midwestern cohort stand out as the major
differences between the Midwestern and Israeli cohorts. The
finding of decreased Actinobacteria is intriguing, as high levels

of Actinobacteria have been previously associated with low-fiber
diets (32). High Firmicutes/Bacteroidetes ratios have previously
been positively associated with higher BMI and reduced glycemic
control (33), though these associations are controversial (34, 35).

At the genus level, a significantly decreased
Prevotella/Bacteroides ratio (Figure 6G; P value = 1e-18), was
observed in the Midwestern cohort, in line with decreased fiber
consumption (36). In addition, decreased numbers of Alistipes
(Figure 6H; P value = 0.002), as well as decreased numbers
of the genera Bifidobacterium (mean relative abundance:
0.51 ± 0.97% in the Midwestern cohort, 2.48 ± 4.35% in
the Israeli cohort, P value = 6e-17) and Lactobacillus (mean
relative abundance: 0.02 ± 0.19% in the Midwestern cohort,
0.21 ± 0.84% in the Israeli cohort, P value = 1e-5), were
observed in the Midwestern cohort. The observed differences
in the ratio of Prevotella/Bacteroides were further supported by
unsupervised methods of data analysis (Supplemental Figure
1A–C). For differences at the species level, see Supplemental
Figure 1D.

Inclusion of data from the Midwestern cohort improves
accuracy of model predictions

Given the observed differences between the cohorts, we
decided to examine the effect of incorporating data from the
Midwestern cohort on prediction accuracy. A model trained
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FIGURE 6 Box plots showing Species Richness (A) and Shannon’s species diversity index (B) for the Midwestern (MW) and Israeli (IL) cohorts. Note the
significantly lower diversity and richness of the Midwestern cohort (P value <0.05 for both measures). (C) Average phyla abundances in the different cohorts.
Abundances for phyla with abundance <1% were aggregated and labeled as “other” for visualization purposes. (D) same as (C) but for genera. (E) Box plots
showing the relative abundance (RA) of Actinobacteria in the different cohorts (P value = 1e-17). (F) Box plots showing the Firmicutes to Bacteroidetes log-
abundance in the different cohorts (P value = 7e-6). Abundances were capped from below by 10−6% and log abundances were clipped to the range of [-5, 5].
(G) Same as (F) but for the Prevotella to Bacteroides genera ratio (P value = 1e-18). In this case, due to the different distribution of abundances, log-abundance
values were clipped to the range of [-10, 6]. (H) Same as (E) but for Alistipes genus abundance (P value = 0.002). Boxes extend from the lower to upper quartile
of the data, with a line at the median. Whiskers show the range of the data and flier points [>Q3 + 1.5(Q3–Q1) or <Q1–.5(Q3–Q1)] are considered outliers.
All P values were computed using Welch’s t-test.
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solely with data from the Midwestern cohort reduced prediction
accuracy on the Israeli cohort, but improved accuracy for
prediction for the Midwestern cohort (Figure 4). However,
a model re-trained using data from both cohorts, and again
validated using a 10-fold cross validation, showed improved
accuracy in both cohorts. As expected, introduction of the data
from the Midwestern cohort allowed the model to better predict
the glycemic response to meals for individuals in the Midwestern
cohort, and also allowed for a minor improvement of prediction
accuracy on Israeli participants (Midwestern: R = 0.618,
Israeli: R = 0.677, Figure 4). Treating the reproducibility of
glucose responses to standardized foods as an upper bound for
explainable variance (R2 = 0.662 = 0.44 for the Midwestern
cohort, R2 = 0.712 = 0.50 to R2 = 0.772 = 0.59 for the Israeli
cohort, depending on food), performance in the two cohorts was
rather similar, with 88% of explainable variance explained for
the Midwestern American cohort, and 78–91% of explainable
variance explained for the Israeli cohort.

Features contributing to model predictions are in high
agreement with those reported by Zeevi et al.

To understand how the different features of the model may
affect the predictions, we constructed partial dependence plots
(PDPs). These show the marginal effects of each feature on
predictions after averaging the contributions from all other
features. By and large, the effects of the features of our
model agree with the ones presented previously (13) (Figure 7
and OSM Supplemental Figure 2). As expected, on aver-
age, increased carbohydrate intake leads to high predicted
PPGR values.

Furthermore, in agreement with previous work, the inverse
relations observed between fat content and total dietary fiber
consumed in the 24 h prior to each meal with the predicted
PPGR values and the direct relation between dietary fiber in
each meal and predicted PPGR values. In addition, we observed
that lower BMIs show a direct relation with the predicted
PPGR values, which although surprising, has been previously
reported (37–40).

As for microbiome-related features, here too we report
high agreement with the findings in Zeevi et al. (13). For
example, similar to their report, the relative abundances of
Actinobacteria, Eubacterium eligens, Alistipes putredinis, and
Subdoligranulum showed mostly a direct relation, however, those
of Eubacterium rectale showed mostly an inverse relation with
predicted PPGR values (Figure 7). In addition to the findings
of Zeevi et al., we observed a direct relation for the abundance
of organisms from the Prevotella genus. Literature describing
the effects of Prevotella on glycemic control are conflicting
and may be strain specific (41, 42). Stratifying participants
based on the occurrence of Prevotella (>0 relative abundance)
or a high Prevotella/Bacteroides log ratio (>−4 log ratio of
relative abundance) revealed slightly lower average PPGR for
high Prevotella (18.06 ± 8.53 compared with 18.9 ± 7.99)
or high Prevotella/Bacteroides ratio (17.56 ± 8.84 compared
with 19.22 ± 8.27) participants, but these differences were
not significant (Welch’s t-test P value >0.1). Together with
the observed PDP plots, these results may indicate a complex
relation between these species and glycemic control that may

be reflective of contrasting effects caused by different Prevotella
strains.

Finally, in contrast to the report of Zeevi et al. (13), the
relative abundance of Bacteroides dorei shows a direct relation
with predicted PPGR values but Alistipes finegoldii shows mixed
effects, depending on relative abundance. For both of these
species, the average relative abundance in the Midwestern and
Israeli cohorts were significantly different (P value <0.0005),
potentially explaining the differences seen in PDPs.

Discussion
Balanced glycemic concentrations are associated with an

improvement in a variety of health markers (6, 7), and although
a variety of nutrition interventions exist which aim to reduce
the glycemic response to food, all have shown limited efficacy
and/or compliance. In this study, we successfully applied the
methodologies of the work performed by Zeevi at al. (13) to show
that the model trained with an Israeli cohort predicts PPGRs for
a cohort of Midwestern individuals despite differences between
the two populations, and outperforms common approaches used
to inform dietary interventions to regulate glycemic control.
Re-training the model on data collected for the Midwestern
population further improved its performance, though the extent
of improvement was mild. This may be due to the integration
of some cohort-specific characteristics, such as different average
age, nutrient consumption, and composition of the microbiome.

Diverse nutritional strategies aimed at reducing PPGRs to
food exist, but they tend to ignore the characteristics of
the individuals (8), and their variability. The interindividual
variability commonly observed for the glycemic response to the
consumption of foods used as standards for glycemic response
(43) was also seen in the Midwestern cohort studied here, as was
the variable degrees of correlation between carbohydrate content
and PPGR (Figure 2).

In contrast, the model presented in this study considers, in
addition to meal features, a variety of personal characteristics,
such as age, BMI, and the microbiome. Through the integration of
individual traits in addition to food characteristics, it performed
significantly better than models based on the calorie or carbo-
hydrate content of meals. Although the latter may prove useful
for guiding food intake in some individuals, current guidelines
suggest the use of personalized dietary interventions that take into
consideration characteristics of individuals (5). The results by
Zeevi et al. (13) and this study, strongly support this suggestion,
by showing the utility of integrating information about the
microbiome, as well as physiological factors and meal features,
for the construction of accurate individualized predictions of
PPGRs.

Food consumption varies significantly across countries, and
besides varying depending on age and socio-economic status
(44), the way populations eat foods may also be a consequence
of cultural and ethnic heritage, food availability, and the ability to
purchase and prepare them, etc. (45). It was therefore important
that the methods for collection of data regarding the nutritional
behavior of our participants was consistent across the two
populations. In general, we have tried to replicate, as much
as possible, the framework described by Zeevi et al. (13).
The logging app used closely matched the one described by
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FIGURE 7 Partial dependence plots showing the marginal contribution of various features (x-axis) to the predicted postprandial glycemic response (y-
axis). Red and green indicate above and below zero contributions, respectively. Boxplots (bottom) indicate the feature distribution across the cohort. Boxes
extend from the lower to upper quartile of the data, with a line at the median. Whiskers show the range of the data and flier points [>Q3 + 1.5(Q3–Q1) or
< Q1–1.5(Q3–Q1)] are considered outliers. Partial dependence plots for all features can be seen in Online Supporting Material, Supplemental Figure 2. r.a.,
relative abundance.

Zeevi et al. (13); however, some modifications were nevertheless
inevitable. Standardized meals were chosen as ones more
appropriate for a Midwestern cohort (e.g., bagel and cream
cheese), and an appropriate food database containing relevant
food items was used for each population (see Methods). To
reduce noise in microbiome data, only participants whose stools
were collected using the same collection methods and subjected
to the same downstream analyses were used to construct the
model. Some features used in the original study that were
not available in the current study (including some blood tests,
inferred replication rates, and functions of bacterial species) were
removed in all models considered (Supplemental Table 1), to
facilitate comparison of the models across different populations.

The correlation between the predicted and observed values of
glycemic response to meals in the Midwestern cohort, although

still shy of the value of 0.7 observed for the Israeli population,
is close to the degree of reproducibility observed in this cohort
using standardized meals. This means that the predicted glycemic
responses for each individual may in fact be close to the
best possible predictive performance in this study setting. The
glycemic responses to specific foods have been shown to vary
significantly even in the same individual both in this study and
in published literature (44). Given that the experimental setting
was highly similar between the two studies, these differences
may stem from issues of compliance and inaccurate reporting (for
example, of portions actually eaten or additional items consumed
with standardized meals) that are more pronounced in smaller
cohorts, like the Midwestern cohort, but may also partly stem
from the difference in the composition of the standardized meal.
This is supported by the varying reproducibility of different
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standardized meals described in Zeevi et al. (R = 0.77 for
glucose, whereas R = 0.71 for bread).

Our work demonstrates the potential of the use of per-
sonalized predictive models to guide interventions to improve
health. However, this type of model could further benefit from
adaptation for specific populations. For instance, still in the
sphere of glycemic control, further work integrating physical
activity information at finer resolution could allow better control
of glycemic concentrations through exercise, in addition to
dietary interventions. Knowing how exercise affects the rate of
glucose decrease in the blood would help individuals regulate
the lower range of their glycemic responses and potentially
avoid hypoglycemia. In addition, models targeted for specific
populations of interest, such as patients of diabetes or other
metabolic diseases, can be developed by collecting data in these
populations, and can potentially help to provide more accurate
nutritional guides in these cases.

Diabetes and cardiovascular disease are two conditions that
have increased dramatically in the last 30 y, and are projected to
continue to rise unless better control of glycemic concentrations
is achieved (10). We believe that the type of modeling framework
developed by Zeevi et al. (13). and its adaptations to target
populations of interest, as was done here, will significantly help
nutrition experts delineate personalized nutrition plans to guide
nutritional behaviors of individuals that aim to control their
glycemic response to foods, and thus significantly reduce the risk
of developing these conditions.
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