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Swimming, flying, and diving 
behaviors from a unified 2D 
potential model
Sunghwan Jung

Animals swim in water, fly in air, or dive into water to find mates, chase prey, or escape from 
predators. Even though these locomotion modes are phenomenologically distinct, we can rationalize 
the underlying hydrodynamic forces using a unified fluid potential model. First, we review the 
previously known complex potential of a moving thin plate to describe circulation and pressure around 
the body. Then, the impact force in diving or thrust force in swimming and flying are evaluated from 
the potential flow model. For the impact force, we show that the slamming or impact force of various 
ellipsoid-shaped bodies of animals increases with animal weight, however, the impact pressure does 
not vary much. For fliers, birds and bats follow a linear correlation between thrust lift force and animal 
weight. For swimming animals, we present a scaling of swimming speed as a balance of thrust force 
with drag, which is verified with biological data. Under this framework, three distinct animal behaviors 
(i.e., swimming, flying, and diving) are similar in that a thin appendage displaces and pressurizes a 
fluid, but different in regards to the surroundings, being either fully immersed in a fluid or at a fluid 
interface.

In nature, animals move in fluids with different locomotive modes: swimming, flying, jumping out of water, 
or diving into water. The animals typically gain their propulsive force by flapping fins or wings in a cyclic way. 
Animals’ flapping appendages are typically thin and wide, and effectively push and pressurize a fluid. Therefore, 
the motion of such a thin appendage in air or water can be simplified as a rigid thin plate moving in a fluid in 
order to help understand various animal motions (see Fig. 1).

Swimming or flying locomotion has been extensively studied in various aspects1–7. In water, most aquatic ani-
mals swim by flapping their fins or undulating part of the body3,8. The flapping motion displaces the surrounding 
fluid, which creates vortices and generates thrust force. Therefore, the aquatic animal can propel forward against 
drag. For flying animals, the flapping motion of the wings displaces the ambient air and also creates vortices, 
which produces thrust force. Hence, flying animals are able to lift their own weight and also move forward.

James Lighthill pioneered the small- or large-amplitude elongated body theory to understand the swimming 
speed through balancing the power generated by an animal with the rate of kinetic energy in a fluid1,9. This slen-
der body approximation quantifies the efficiency of locomotion for aquatic animals analytically, and has been 
widely used. In another seminal work, Theodore Wu described animal locomotion using an inviscid potential 
flow2,10, which is an extension of the previously known potential flow of a thin plate. This calculation explains 
the pressure difference across a thin object while flapping, which is linked to the vortex generation and thrust 
force. However, these two studies are limited to swimming or flying animals while fully immersed in a fluid.

Animals not only locomote in a fluid, but also cross a air-water interface (e.g., diving). There are two types 
of diving animals. The first type are aquatic animals that jump out of and then re-enter the water11 (e.g., whales, 
dolphins, fishes, etc.). At the re-entering moment, animals experience huge impact force as they hit the water at 
high speeds. The other type are birds plunge-diving into water from air. Several bird species exhibit high-speed 
diving into water as a hunting mechanism12–14. These plunge-diving birds are not very common, but are widely 
spread in the phylogeny; the Sulidae family species (e.g., Northern Gannet, Brown Booby) and other species 
(e.g., Brown Pelican, Terns, and Kingfishers). Such a high-speed plunge-diving behavior allows the bird to gain 
momentum to dive faster and deeper underwater; however, it also induces great compressive force on the bird’s 
body at the moment of impact.

The impact (or slamming) dynamics of an object has been extensively studied by physicists or engineers in 
applications of marine craft hydrodynamics15–19. First, von Kármán15 and Wagner16 showed analytical solutions 
of the water-entry problem using a potential flow. A difference between these two models is whether the local 
uprise of the water on the impacting body is considered or not. Since then, there have been some advancements 
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in modeling impact dynamics further17–19. The central idea of widely used theories for a water-entring body is to 
calculate the pressure and impact force from the velocity potential associated with a moving plate, which could 
be also useful to understand the impact force of diving animals.

In this study, we describe three different animal behaviors (i.e., swimming, flying, and diving) using one 
central mathematical framework based on a potential theory. From the mathematical point-of-view, the differ-
ence between swimming, flying, and diving is whether a body is moving while fully immersed in a fluid or at the 
interface. We are able to predict and quantify the thrust or impact force of animals from potential flow theory 
in order to understand the various locomotion modes. First, we review the previously known complex potential 
of a thin plate. Then, the impact force in diving and the thrust force in swimming or flying are estimated from 
the potential theory. These results are further verified with biological data. Finally, we conclude how this unified 
theory can explain diverse animal locomotion.

Results
Complex potential of a thin plate.  We consider a system that a thin plate vertically moves at a speed of 
V as illustrated in Fig. 2. This canonical example has been already described  in many books (e.g., pp. 336–372 
in ref.20, pp. 136–139 in ref.21, pp. 304–309 in ref.18) and published articles22–26). However, we recap this classical 
potential model of the moving plate here, which will facilitate the move to the impact and thrust force calcula-
tions in the next section.

The complex potential, � , for a moving plate is given as

Figure 1.   (a) Various locomoting animals: A bird flies with flapping wings, an animal dives into water, and an 
aquatic animal swims with flapping fins or fluke. (b) Simplified and analogous motions of the thin appendages 
of animals.

Figure 2.   Schematic of the motion of a thin plate. A thin plate with a width of 2c moves in a fluid at a speed 
of V: V < 0 for this drawing. The complex domain is defined as z = x + iy . The resulting velocity potential, φ , 
and velocities, u & v, are given on the right. The subscript ( + or −) represents the top or bottom side of the plate, 
respectively.
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where φ is the velocity potential, i is the imaginary unit, ψ is the streamfunction, z = x + iy is the complex 
domain, and c is the half width of the plate. The complex velocity can be obtained by taking a derivative on � 
with respect to z. Here, the complex velocity is defined as u− iv where u is the x-component velocity and v is 
the y-component velocity. The complex velocity from the above complex potential becomes

To further calculate other quantities in this canonical problem, we employ elliptical coordinates as

The first (or second) expression is based on the coordinate from the right end (or left end) of the plate. Then, 
the denominator in the second term of the complex velocity, Eq. (2), becomes

This Cartesian-to-polar transformation as also illustrated in Fig. 2 is useful to check the boundary conditions 
in the following section.

Boundary conditions.  Using the above complex potential and velocity, we can check whether this model satis-
fies the boundary conditions, i.e., v = V  on the plate and u = 0 along the horizontal line outside the plate. First, 
we will evaluate the velocities at four different regions: the top and bottom sides of the plate, and the right and 
left horizon lines of the plate. 

	 (i)	 To evaluate quantities on the top of the plate, we choose the polar-coordinate parameters as ( θ1 = π , 
θ2 = 0+ ; y = 0+ & |x| < c ). Then, part of the second term in Eqs. (1) or (2) becomes 

 Then, the velocity potential turns into 

	 (ii)	 On the bottom side of the plate ( θ1 = −π , θ2 = 0− ; y = 0−& |x| < c ), the same term is 

 Then, the velocity potential becomes 

 This velocity potential is quite similar to the one on the top, Eq. (6), except for the sign of the second 
term.

		    In a similar way, we can calculate the complex velocity for both sides of the plate as 

 Here, the subscript sign ( + or −) represents the top or bottom of the plate, respectively. The first term 
on the right hand side is a pure imaginary number, whereas the second term is a pure real number on 
the plate.

		    Equation (9) shows the vertical velocity of the plate as 

 which satisfies the kinematic boundary condition. The x component of velocity does not vanish as 

 Like other potential flows, we do not expect no slip condition at a solid boundary (i.e., the plate), but 
allow a tangential slip. Equation (11) shows a diverging flow above and a converging flow beneath the 
plate when V > 0 , which indicates the fluid flowing around the plate.

	 (iii)	 On the right horizon line of the plate ( θ1 = 0 , θ2 = 0 ; y = 0 & x > c ), 

	 (iv)	 On the left horizon line of the plate ( θ1 = −π , θ2 = −π ; y = 0 & x < −c ), 
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Here, in both (iii) and (iv) regions, the complex velocity becomes

Now, let us check whether it satisfies boundary conditions outside the plate. The boundary conditions outside 
are only non-zero vertical velocity and an equipotential horizon, which means that both x-component velocity 
and velocity potential are zero.

This condition of a constant velocity potential ( φ = 0 ) along y = 0 allows us to consider the horizontal surface 
as the free surface. Similarly, the free surface is modeled as an equipotential line of a velocity potential in many 
cases (e.g., p. 363 in27–31). This fact is useful to describe the case of “(I) Impacting plate” as in Fig. 1.

Circulation and vortex from a thin plate.  Flow visualizations around locomoting animals have revealed that 
vortices are shed from the undulating body, especially near the tip of the fins or wings7,32–36. Moreover, the shed 
vortices in a fluid are connected with each other like a series of chains37. Hence, quantifying the vortices from 
the body might be useful to characterize fluid flows around the animals. In fluid mechanics analysis, circulation 
instead of vortices is widely used as a measure of rotation. The circulation is defined as an integral of the vorticity 
over an area:

where ω is the vorticity vector and b̂ is the unit vector (≡ x̂ × ŷ) . Using Eqs. (10) and (11), the circulation around 
the plate can be further simplified as

If it is integrated over the entire plate, the total circulation becomes zero (i.e., Kelvin’s theorem). However, it 
does not mean no vortex shed from the body. There would be equal and opposite signs of vortices shed from the 
edges. If we consider only the right edge of the plate, the circulation becomes

Similarly, the circulation on the left side will be 2Vc. Hence, locomoting animals in a fluid (air or water) shed 
vortices with a circulation of 2Vc on each end-side of the appendage (i.e., wings for birds, and fins or flukes for 
aquatic animals).

Pressure difference across a thin plate.  To calculate the force, we need to know the pressure on the plate first. The 
pressure from the unsteady Bernoulli equation is given as

where p± is the pressure above ( + ) and below (−) the plate and p0 is the reference pressure (i.e., the atmospheric 
pressure for aerial fliers and hydrostatic pressure for aquatic swimmers).

(I) Using the velocity potential given in Eqs. (6) and (8), the pressure difference for a submerged plate mov-
ing in a fluid is given as

This pressure difference will be used to estimate the force generated by the undulating wings or fins in “Thrust 
force in swimming and flying”. It is worth noting that the last term in Eq. (19) does not contribute to the pressure 
on the plate at all due to the square of the velocity, which is the same on both the top and bottom sides of the plate.

(II) For the thin plate impacting a free surface ( y = 0 ), the pressure on the upper side of the plate stays close 
to the atmopheric pressure (i.e., p+ ≃ p0 ) since the air density is so small compared to the water density. Hence, 
most pressure is built up on the water side not on the air side. Then, the pressure difference becomes

(13)(z2 − c2)1/2 = (x2 − c2)1/2.

(14)
d�

dz

∣

∣

∣

∣

y=0,|x|>c

= u− iv = −iV + iV
x

(x2 − c2)1/2
.

(15)
u|y=0,|x|>c =− Re

[

d�

dz

]

= 0

φ|y=0,|x|>c =Re[�] = Re

[

i

(

−1±
x

(x2 − c2)1/2

)]

= 0.

(16)Ŵ =

∫∫

ω · b̂ dS =

∫∫

∇ × vdydx,

(17)
Ŵ =

∫∫

(∂xv − ∂yu)dydx = −

∫ c

−c
(u+ − u−)dx

=− 2V

∫ c

−c

x

(c2 − x2)1/2
dx.

(18)Ŵ(right)
= −2V

∫ c

0

x

(c2 − x2)1/2
dx = −2Vc.

(19)p± = p0 − ρ
∂φ±

∂t
−

ρ

2
|∇φ±|

2,

(20)
p− − p+

ρ
= −

∂

∂t
(φ− − φ+) = −2

∂

∂t

[

V(c2 − x2)1/2
]

.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15984  | https://doi.org/10.1038/s41598-021-94829-7

www.nature.com/scientificreports/

This second term is from the steady inertia term (i.e., the square of the velocity), which becomes singular at 
the ends of the plate. To avoid this singularity, there have been discussions in the previous literature29,38,39. In this 
present study, we will omit the last term for convenience.

Impact force in diving.  Some animals plunge-dive into water at high speeds: aquatic animals11 and aerial 
birds14,41–43. Most animals have a stream-lined body like a spheroidal head front for aquatic animals or a conical 
beak for birds, which might help reducing the likelihood of injury under high dynamic loadings while diving. 
To understand and quantify the impact force (i.e., dynamic loading) on the body, we will approximate the diving 
motion as a plate with its width increasing as the body penetrates the free surface and solve the potential flow as 
illustrated in Fig. 3. A similar trick has been used in the case of hull slamming problems15–17.

By integrating Eq. (21) over the plate, the impact force is obtained as

where p0 is the atmospheric pressure above the plate. Two integral identities ( 
∫ c
−c c/

√
c2 − x2 dx = πc and 

∫ c
−c

√
c2 − x2dx = πc2/2 ) are used to simplify the expression. The first term refers to the slamming force, which 

is positive for a downward plate ( V < 0 ). The second term represents the added-mass effect due to the body’s 
acceleration or deceleration.

By denoting the added mass of the 2D plate as Madded = ρπc2 , we can rewrite the above equation into a 
simple and generalized form as
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Figure 3.   Schematic of a diving animal and a corresponding plate model with increasing its width. The 
resulting impact force depends on a time derivative of the added mass and velocity.
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This equation expressed in terms of the added mass is not limited to a flat plate anymore. Once an added 
mass value is known, we can calculate the impact force for any body shape. To briefly explain a formal way to 
evaluate the added mass, the velocity potential should be solved first and then integrated over the surface as 
Madded = ρ U−2

∫

φ(∂φ/∂n)dS where n is the coordinate normal to the surface and S is the body surface (see 
p. 123 in27). Figure 4 summarizes the added mass of both 2D and 3D objects from previous literature.

Next, for simplicity, we approximate all aquatic animals as prolate spheroids; however the other shapes in 
Fig. 4 may be useful for future references. The added mass of a prolate spheroid is given as

where the coefficient Ki , has different values depending on the direction of the motion. We consider two moving 
directions: the axial direction along the major axis and the lateral direction along the minor axis. In terms of 
animal diving, the axial directional dive corresponds to a head-first dive, whereas the lateral dive corresponds to 
a belly-first dive. Coefficients, KAxial and KLateral , are functions of the eccentricity, e ≡

√

1− b2/a2 : the formulas 
are given in the caption of Fig. 4.

Equation (23) with Eq. (24) allows us to calculate the maximum impact force during diving. As the body 
penetrates the free surface, the water-contact depth along the diving direction increases over time. For simplicity, 
we can consider only “a” as a time-dependent variable for the axial dive or only “b” as a time-dependent variable 
for the lateral dive. Then, the diving speed, V, is approximated as da/dt for the axial dive and db/dt for the lateral 
dive. The maximum impact force occurs when the cross-sectional area on the free surface reaches its maximum. 
Therefore, the maximum impact force is estimated as

Next, we calculate the impact pressure acting on the body, which is defined as the maximum force divided 
by its wetted  surface area. At the moment that an animal reaches its maximum impact force, only half 
of the body is in contact with water. So, the wetted surface area is approximated as half of the total surface 
area: πb2(1+ a/(be) · arcsin e) where the eccentricity is e ≡

√

1− b2/a2 . The impact pressure at the moment 
of reaching the maximum force is estimated as

(23)
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Figure 4.   Added masses of various 2D or 3D objects from previous reports23–26,40. Unknown coefficients, Ki and K, 
can be determined from the body shape. For prolate spheroids, the coefficient, Ki , has two different values depending 
on the moving direction. The coefficients are given as KAxial = α0/(2− α0), KLateral = β0/(2− β0), where 
α0 = [(1− e

2)/e3][ln (1+ e)/(1− e)− 2e] , β0 = [(1− e
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Figure 5 shows the maximum impact force and impact pressure versus animal mass. Green symbols represent 
the lateral impact (i.e., belly-first dive), whereas blue symbols represent the axial impact (i.e., head-first dive). 
In most cases, we do not have quantitative measurements of diving speed or postures. Thus, we estimate the 
diving speed from the jumping height as V2 = 2gH as in11. In Fig. 5a, the belly-first dive produces more impact 
force than the head-first dive, which is quite intuitive due to the difference in the cross-sectional area depend-
ing on the diving direction. However, the impact pressure does not increase much with the animal mass as in 
Fig. 5b. This constant pressure would indicate that all animals feel a similar level of pressure and safely dive into 
water regardless of their body weight or length.

Furthermore, we develop a scaling argument for animal diving. From the previous study11, the jumping height 
is predicted as H ∝ L2/3 . If the body area is assumed to be the square of the characteristic length L2 , the maximum 
impact force becomes proportional to FImpact ∝ HL2 = L8/3 . Using an allometric relation of the animal mass 
to the characteristic length as M ∝ L3 , we get the impact force as FImpact ∝ M8/9 . In terms of the scaling law of 
the impact pressure, the impact force ( M8/9 ) should be divided by its surface area ( M2/3 ). Hence, we anticipate 
that the impact pressure does not show any strong dependence on mass ( M2/9 ≃ M0.22 ). However, we observe 
a slightly decreasing trend in the impact pressure for large animals (see Fig. 5b). It might be due to two reasons. 
First, large diving animals have typically a more streamlined body shape than small aquatic animals as shown 
in the inset of Fig. 5a. If an animal has a streamlined body rather than a spherical shape, then the total surface 
area gets larger than that of a spherical body at a given volume or mass. In other word, the surface area does not 
follow M2/3 strictly. Second, large jumping animals use a different jumping strategy called momentum jumping, 
whereas small animals use an impulsive jumping strategy11. Hence, our simple allometric scaling law disregard-
ing the details of animal behavior or shape does not match with the data very well, especially for large animals.

Thrust force in swimming and flying.  Flying and swimming locomotions are induced by flapping 
motions, whose underlying mechanism is based on a similar fluid-mechanics principle with the diving motion. 
The pressure gradient developed across the thin appendage generates the thrust force as illustrated in Fig. 6, 
which is a key element to understand flying and swimming motions. There have been extensive studies44–46 to 
find a unifying scaling for swimming and flying motions. In contrast to the previous studies of scaling laws, our 
model roots in the potential theory to describe the animal’s diving and locomotion.

First, we assume that a plate is moving in a sinusoidal fashion as V = A(2π f )ei2π ft where A and f are the 
amplitude and frequency of flapping. From Eq. (20), the thrust force per unit length can be calculated as

Strictly speaking, the time-averaged thrust force over a period will be zero if the pressure is purely periodic. 
However, real flying animals perform upstroke and downstroke in an asymmetric way by decreasing the angle 
of attack of the wing (or fin) and/or folding the wing (or fin) during the upstroke6,47,48. To take into account 
this effect, there should be an unknown non-zero prefactor less than one for the thrust force. Instead of finding 
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∝ρ c2Af 2, for flapping appendage per unit length.

Figure 5.   (a) Maximum impact force vs animal mass. Green symbols are belly-first dives and blue symbols 
are head-first dives. The maximum impact force is estimated from Eq. (25) as a function of the body shape and 
impact speed. The impact speed is evaluated from the jumping height of various aquatic animals ranging from 
goldfish to whale11. The inset shows the body aspect ratio of animals. (b) Impact pressure vs animal mass. The 
impact pressure does not show a clear trend with mass.
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or modeling details of the unknown prefactor, we approximate the total thrust force over the wing as ρc2Af 2L 
where c is the cord half-length and L is the length of the wing span (or fin length). This thrust force becomes the 
lift force for fliers and the forward propulsive force for swimmers.

Flier: lift force balancing with weight.  For fliers, the force generated by the wings is used to lift their own body 
as well as propel forward. However, most force is allocated to lifting the body since the animal weight is typically 
higher than the aerodynamic drag of the forward motion, especially for large animals. Hence, we assume that the 
force generated by the flapping wings balances with its own weight.

Figure 7a shows that the generated lift force based on our potential flow model is proportional to the ani-
mal weight quite well. Blue symbols are from bat species49 and green symbols are from birds50. Two solid lines 

(28)Fweight(= Mass · g) ∝ ρ c2Af 2L.

Figure 6.   Schematic of motion sequences of a swimming animal and a corresponding thin plate model. For 
fliers, we predict that the weight balances with thrust force. For swimmers, the swimming speed is predicted.

Figure 7.   (a) Lift force vs animal weight. Circular blue symbols are from bats49 and square green symbols are 
from birds50. Solid lines are from the potential model as in Eq. (28). (b) Swimming speed vs flapping speed from 
tadpoles to whales52–71. The solid line is from the potential model for swimmers as in Eq. (29).
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represent our theoretical prediction of Eq. (28) with two different prefactors: one for bats and the other for birds. 
One possible reason of having the two prefactors is that bats and birds evolved flight independently51, which 
indicates that we do not expect one single curve to collapse all the data of bats and birds. We also observe that 
small fliers significantly deviate from our predicted linear lines, which indicates that small animals use more or 
less flapping-induced force to support their weight. This deviation is presumably due to some of the aerodynamic 
force spent for forward flight or the additional force gained from surrounding flows to compensate for its own 
weight.

Swimmer: forward‑flying force balancing with drag.  Aquatic animals do not need to support their body in water 
since their body density is close to water density. Instead, the thrust force generated from the fin is used to swim 
forward. There are two swimming regimes depending on the Reynolds number (i.e., a ratio of inertia to viscous 
force); defined as Re = UswimL/ν where the characteristic velocity ( Uswim ) is the swimming velocity, the charac-
teristic length (L) is the body length, and ν is the kinematic viscosity of the fluid. The kinematic viscosity is about 
1.00× 10−6 m2 /s for freshwater and 1.05× 10−6 m2 /s for seawater at the temperature of 20 ◦C.

Most aquatic animals are bigger than a few centimeters and swim at about a few times its body length per 
second. So, their corresponding Reynolds number is more than a few thousands. At such high Reynolds num-
bers, the thrust force ( ρ c2Af 2L ) balances with the form drag ( Fform drag ∼

1
2ρU

2
swimLc ). Then, the swimming 

speed for animals is given as

This indicates that the swimming speed is proportional to the flapping frequency, f, and the geomet-
ric-mean stroke length, (Ac)1/2 . Gazoola et al.46 suggested a slightly different scaling as Uswim ∝ fA based 
on scaling arguments. However, our prediction from the potential flow  model results in the depend-
ence on its cord length (c), which does not show up in the other model46. For small swimming animals 
(typically larvae smaller than a few centimeters), the skin drag might be dominant over the form drag 
as Fskin drag ∼ ρU2

swim cL
√
ν/UswimL = ρ(νL)1/2U

3/2
swimc . Then, balancing it with the thrust force, we get 

Uswim ∝ (Ac)2/3f 4/3L1/3ν−1/3 . However, there are not many aquatic animals belonging to this regime to con-
firm this prediction.

Our prediction shows that the swimming speed depends on the animal’s stroke amplitude (A), cord half-
length (c), and frequency (f) as in Eq. (29). Figure 7b shows the relation between the swimming speed and the 
predicted speed of fishes ranging from tadpoles to whales (52–71; Many of the references were adapted from72). 
This linear relation can be associated with the Strouhal number, i.e., a ratio of unsteady to steady inertia. Then, 
we define the Strouhal number as

Taylor et al.45 also showed the constant Strouhal number of locomoting animals using a slight different Strou-
hal number definition ( fA/Uswim ). However, in terms of the order of magnitude, the Strouhal number in the 
previous studies45,72 is between 0.2 and 0.5, which is very close to what we observed in our study ( 0.31± 0.19).

Conclusions
In this paper, we reviewed the previously known potential model of a plate moving in a fluid using a complex 
potential and provided analogies to swimming, flying, and diving of animals. Additionally, using the unsteady 
Bernoulli equation, we calculated the circulation, pressure, and force on a locomotion body. The calculated force 
was decoded into the impact force for diving animals at the free surface or the thrust force for swimming or fly-
ing animals immersed in a fluid. Our prediction explained almost constant pressure on diving animals, the lift 
force balancing with weight for fliers, and the swimming speed as a result of thrust force balancing with drag for 
swimmers. Furthermore, measured kinematic data from various locomotion modes of both aquatic and flying 
animals support our theoretical predictions.

It is worth noting that there are three seminal works in analytical models for swimming animals; Wu’s model2 
is based on a 2D potential (the same as presented in this paper) focusing on an undulating surface, whose results 
can be applied for animals swimming in a unbounded fluid. Lighthill’s model1 is based on a power balance of an 
elongated body; the total power is composed of the thrust-related work, the rate of the kinetic energy of wake 
at the trailing edge, and the rate of the kinetic energy ahead of the trailing edge. A more comparable model to 
our predicted swimming speed would be the work done by Gazzola et al.46. They developed a scaling model 
to describe both swimmers and fliers. Their scaling argument expression is quite similar to ours, but the main 
difference is that our model is based on the 2D potential flow and shows the importance of the width of flappers 
or the cord length of wings. Moreover, our study is unique as the first attempt to mathematically unify three 
distinct animal behaviors: swimming, flying, and diving. This calculation can be also useful in many examples 
of fluid-organism interactions in nature like a fluttering leaf73–75, spore/particle dispersal by a leaf ’s motion76, a 
falling seed77,78, an animal lapping as a plate-like tongue moving out of the water79–81, and others.

Material and methods
Animal data are obtained from previous publications49,50,52–71 . For flying data, 23 bats in49 and 16 birds in50 are 
used. Other required data for Fig. 7a are the animal weight, wing span, cord length, and flapping amplitude. 
For bats, the flapping amplitude is not directly given in the paper with kinematic data, so we estimate it from 
the stroke angle and wing span. For the cord length, we approximately evaluate it as the wing area divided by 

(29)Uswim ∝ f (Ac)1/2.

(30)Strouhal number =
f (Ac)1/2

Uswim
= const.
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the wing span. For fishes, we use the frequency, amplitude, cord length, and swimming speed of 32 fish species. 
Some data points are not explicitly given in text. In that case, we extract the value from the graph or best fitted 
lines. Cord lengths (i.e., fish or fluke width) of several species  were not given in the same paper that described 
the kinematics. Then, we find the cord length from other papers of the same fish species. All these details are 
marked in Excel files uploaded in DOI:10.17605/OSF.IO/46SFV .

Data availability
All matlab codes and data are freely available in https://​doi.​org/​10.​17605/​OSF.​IO/​46SFV.
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