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Abstract
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or

more biochemical functions that are not due to gene fusions, multiple splice variants, pro-

teolytic fragments, or promiscuous enzyme activities. The project described herein focuses

on a sub-set of moonlighting proteins that have a canonical biochemical function inside the

cell and perform a second biochemical function on the cell surface in at least one species.

The goal of this project is to consider the biophysical features of these moonlighting proteins

to determine whether they have shared characteristics or defining features that might sug-

gest why these particular proteins were adopted for a second function on the cell surface, or

if these proteins resemble typical intracellular proteins. The latter might suggest that many

other normally intracellular proteins found on the cell surface might also be moonlighting in

this fashion. We have identified 30 types of proteins that have different functions inside the

cell and on the cell surface. Some of these proteins are found to moonlight on the surface of

multiple species, sometimes with different extracellular functions in different species, so

there are a total of 98 proteins in the study set. Although a variety of intracellular proteins

(enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most

part, these proteins were found to have physical characteristics typical of intracellular pro-

teins. Many other intracellular proteins have also been found on the surface of bacterial

pathogens and other organisms in proteomics experiments. It is quite possible that many of

those proteins also have a moonlighting function on the cell surface. The increasing number

and variety of known moonlighting proteins suggest that there may be more moonlighting

proteins than previously thought, and moonlighting might be a common feature of many

more proteins.

Introduction
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more
biochemical functions that are not due to gene fusions, multiple splice variants, multiple pro-
teolytic fragments with different functions, or promiscuous enzyme activities [1, 2]. Some of
the first examples to be identified were some of the taxon specific crystallins, ubiquitous
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cytosolic enzymes that were adopted by a variety of species to help form the lens of the eye [3,
4]. Today, over 300 moonlighting proteins have been identified [5]. Many of the known moon-
lighting proteins are cytosolic enzymes, chaperones, or other proteins that exhibit a second
function in other cellular locations, in other types of cells, as part of multi-protein complexes,
when binding to DNA or RNA, or when the cellular concentration of a substrate, product, or
other ligand changes. Data suggests, however, that there may be even more moonlighting pro-
teins than previously thought, and increasingly more proteins with moonlighting capabilities
are being uncovered.

The project described herein is focused on a sub-set of moonlighting proteins that are pri-
marily intracellular, but perform a second biochemical function on the cell surface in at least
one species. Intracellular proteins are frequently found on the cell surface during proteomics
experiments. A few dozen of these intracellular/cell surface proteins have been demonstrated
to have a distinct function in that location. In some pathogenic bacteria, protozoans and fungi,
this extracellular function plays a key role in infection or virulence or, in the case of some non-
pathogenic symbionts, in commensual interactions with a host species [6,7]. Colonization of
the host requires adhesion of the bacterium or other cell type to the host, and many of these
proteins have been shown to bind to proteins in the extracellular matrix or directly to host cells
while some play other roles in invasion of host tissues.

The goal of this project is to consider the biophysical features of intracellular/cell surface
moonlighting proteins to determine whether they have shared characteristics or defining fea-
tures that might suggest why these particular proteins were adopted for a second function on
the cell surface, or if these proteins are more likely to simply resemble typical intracellular pro-
teins. The latter might suggest that many other normally intracellular proteins found on the
cell surface during proteomics experiments might also have a moonlighting function in that
location. We have identified 30 types of proteins that have different functions inside the cell
and on the cell surface. Some of these proteins are found to moonlight on the surface of multi-
ple species, sometimes with different extracellular functions in different species, so there are a
total of 98 proteins in the study set.

Methods

Selection of proteins
The proteins in this study were selected with the criterion that the proteins have a biochemical
function inside the cell and a second biochemical function on the cell surface. The proteins
were identified by searching the literature for experimental evidence that each protein is per-
forming a function on the surface, and is not just observed to be present on the surface.

From our analysis of the literature, we identified 30 different types of proteins, some which
are found to moonlight with intracellular and cell surface functions in multiple organisms, for
a total of 98 total proteins in the study. The FASTA sequence (the primary amino acid
sequence) for each protein was obtained through the NCBI database (National Center for Bin-
technology Information, http://www.ncbi.nlm.nih.gov), and the three-dimensional structures
of each protein, when available, were obtained through the Protein Data Bank (www.rcsb.org,
PDB) [8].

Programs used
Protparam (http://web.expasy.org /) [9] was used to calculate isoelectric point (pI), amino acid
composition, aliphatic index, and GRAVY (grand average of hydropathy) score [10].

The CATH Protein Structure Classification Database [11] was used to identify the types of
three-dimensional folds found in the proteins. For each of the 30 types of proteins in our study

Intracellular/Cell Surface Moonlighting Proteins

PLOS ONE | DOI:10.1371/journal.pone.0130575 June 25, 2015 2 / 16

http://www.ncbi.nlm.nih.gov
http://www.rcsb.org
http://web.expasy.org


set, if there is a protein in our set with a X-ray crystal structure in the Protein Data bank, that
protein was selected as the representative of that type of protein. If there was no structure for a
type of protein in our list, the protein that has the highest sequence identity to a protein in the
PDB was chosen as the representative for that type of protein. The CATH database was then
searched using the FASTA sequence for each representative protein.

UIPred [12,13] was used to predict intrinsically disordered regions of each protein. The
UIPred server (iupred.enzim.hu) was used to analyze the amino acid sequence of each protein.
Amino acids that scored above 0.5 were noted as being in potentially disordered regions.

SignalP, (cbs.dtu.dk/services/SignalP/) [14] and Psort, (http://psort.hgc.jp/) [15–17] were
used to identify potential signal sequences.

The UniProt database (http://www.uniprot.org/) [18] was searched using the amino acid
sequence of each protein to identify Gene Ontology (GO) terms in the annotation in the cate-
gories of Process and Function for each protein (www.geneontology.org) [19]. The GO terms
annotated in the UniProt database predominantly describe the intracellular functions of the
proteins and were used to summarize the most common intracellular pathways or roles of the
proteins.

Results

Selection of proteins for study (Table 1)
The proteins in this study [20–99] were selected with the criteria that each protein has a bio-
chemical function inside the cell and at least one different biochemical function on the cell sur-
face. The proteins were identified by searching the literature for experimental evidence that
each protein is performing a biochemical function on the cell surface. Proteins that were only
observed to be present on the cell surface and have not had a function identified in that location
were not included in the study. This latter requirement removes proteins that may have been
observed on the cell surface as potential false-positives in proteomics experiments. In addition,
for this study, proteins that are secreted but not attached to the cell surface were not included.
From our analysis of the literature, we identified 30 different types of proteins, some which are
found to moonlight with intracellular and cell surface functions in multiple organisms, for a
total of 98 total proteins in the study.

Species and types of organisms
Most of the proteins in the study are from bacteria. The bacterial species represented include
typical Gram-positive and Gram-negative species, as well as mycobacteria, spirochetes, and
mycoplasma. Most of the species represented are pathogenic, but some are considered “pro-
biotic”, or members of the normal gut biota. A few of the proteins are found to moonlight in
single-celled eukaryotic organisms, including protozoa and yeast fungi, or in multicellular
eukaryotes, including mammals and worms.

Intracellular Functions
The majority of the proteins in the study are metabolic enzymes. Alll six Enzyme Commission
(EC) groups are represented. Of the 23 types of enzymes, ten are in EC group 1 (oxidoreduc-
tases) and five are in group 2 (transferases). Most of the enzymes are ubiquitous or at least
found in many species and function in central pathways in metabolism, including glycolysis,
the citric acid cycle, the pentose phosphate pathway, or in nucleotide or amino acid metabo-
lism. Other intracellular/cell surface moonlighting proteins include chaperones (heat shock
protein 60 Hsp60/GroEL, heat shock protein 70 Hsp70/DnaK), as well as a protein synthesis
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Table 1. Moonlighting Proteins Used In the Study.

Intracellular Function Surface Function Species UniProt Reference

Alcohol acetaldenyde dehydrogenase fibronectin, laminin, and type II collagen
binding

Enteamoeba histolytica Q24803 [20]

Alcohol acetaldehyde dehydrogenase Listeria adhesion protein (LAP) Listeria monocytogenes Q6Q3I2 [21–24]

Aspartate ammonia lyase plasminogen binding Haemophilus influenzae P44324 [25]

Alcohol dehydrogenase (ADH1) plasminogen binding Candida albicans P43067 [26]

Bile salt hydrolase plasminogen binding Bifidobacterium lactis, B. bifidum, and B.
longum

Q9KK62 [27]

Peroxisomal catalase (CTA1) plasminogen binidng Candida albicans O13289 [26]

DnaK/Hsp70 plasminogen binding Bifidobacterium animalis Q8G6W1 [28]

DnaK/Hsp70 binding to invertase Lactococcus lactis P0A3J0 [29]

DnaK/Hsp70 plasminogen binding Mycobacterium tuberculosis H8EVI1 [30]

DnaK/Hsp70 plasminogen binding Neisseria meningitidis A9M296 [31]

Ef-Tu attachment to human cells and mucins Lactobacillus johnsonii Q74JU6 [32]

Ef-Tu fibronectin binding Mycoplasma pneumoniae P23568 [33]

Ef-Tu factor H and plasminogen binding Pseudonomas aeruginosa B7V630 [34]

Enolase plasminogen binding Aeromonas hydrophila Q8GE63 [35]

Enolase plasminogen and laminin binding Bacillus anthracis D8H2L1 [36]

Enolase plasminogen binding Bifidobacterium longum, B. bifidum, B.
breve and B. lactisa

B7GTK2 [27, 37]

Enolase plasminogen binding Borrelia burgdorferi B7J1R2 [38]

Enolase plasminogen binding Candida albicans P30575 [39]

Enolase plasminogen binding Homo sapiens P06733 [40, 41]

Enolase plasminogen and laminin binding Lactobacillus crispatus Q5K117 [42]

Enolase plasminogen and laminin binding Lactobacillus johnsonii A3F8V9 [42]

Enolase fibronectin binding Lactobacillus plantarum Q5NJY7 [43]

Enolase plasminogen binding Leishmania mexicana Q3HL75 [44]

Enolase plasminogen binding Neisseria meningitidis E0N8L2 [31]

Enolase plasminogen binding Onchocerca volvulus Q7YZX3 [45]

Enolase fibronectin binding Paracoccidioides brasiliensis A5JQI1 [46]

Enolase plasminogen binding Rattus norvegicus Q5BJ93 [47]

Enolase plasminogen binding Schistosoma bovis B2LXU1 [48]

Enolase plasminogen and laminin binding Staphylococcus aureus E5R9G0 [42, 49]

Enolase plasminogen binding Streptococcus anginosus and S. oralis E7GW07 [50]

Enolase plasminogen binding Streptococcus mutans C6SQ43 [51]

Enolase plasminogen binding Streptococcus pneumoniae H8LG96 [42, 52,
53]

Enolase plasminogen binding Streptococcus pyogenes A3F8V6 [42, 54]

Enolase plasminogen and fibronectin binding Streptococcus suis C6GGT7 [55]

Fructose 1,6-bisphosphate aldolase plasminogen binding Candida albicans C4YHS0 [26]

Fructose-1,6-bisphosphate aldolase adhesin Neisseria meningitidis F0N9L0 [56]

GAPDH plasminogen binding Bacillus anthracis Q81X74 [57]

GAPDH plasminogen, fibronectin and laminin
binidng

Candida albicans Q5ADM7 [26, 58]

GAPDH NAD ribosylating activity Escherichia coli Q0TH49 [59]

GAPDH plasminogen binding Lactobacillus crispatus D5H2B9 [60]

GAPDH binds mucin and Caco-2 cells Lactobacillus plantarum F9UM10 [61]

GAPDH binds invertase Lactococcus lactis F2HK64 [29]

GAPDH binds mucin Mycoplasma genitalium J7HIM3 [62]

(Continued)
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Table 1. (Continued)

Intracellular Function Surface Function Species UniProt Reference

GAPDH adhesin Neisseria meningitidis C6S993 [63]

GAPDH fibronectin, laminin, and type I collagen
binding

Paracoccidioides brasiliensis Q8X1X3 [64]

GAPDH transferrin-binding protein and
plasminogen binding

Staphylococcus aureus and S.
epidermidis

D9RFF4 [65]

GAPDH plasminogen binding Streptococcus anginosus and S. oralis S6AWM2 [50]

GAPDH plasminogen binding Streptococcus—group A Q1J8I3 [66]

GAPDH plasminogen binding Streptococcus agalactiae Q9ALW2 [67]

GAPDH plasminogen binding Streptococcus pneumoniae Q97NL1 [68]

GAPDH fibronectin binding and binds uPAR/CD87
receptor on human cells

Streptococcus pyogenes B5XJR2 [69, 70]

GAPDH plasminogen binding Streptococcus suis Q3Y454 [71]

GAPDH fibronectin, plasminogen, and collagen
binding

Trichomonas vaginalis Q27820 [72]

Glucose 6-phosphate isomerase laminin and collagen I binding Lactobacillus crispatus K1MPC4 [73]

Glutamine synthetase plasminogen binding Bifidobacterium lactis, B. bifidum, and B.
longum

C2GUH0 [28]

Glutamine synthetase fibronectin, laminin, collagen I and
plasminogen binding

Lactobacillus crispatus D5GYN9 [73]

Glutamine synthetase plasminogen and fibronectin binding Mycobacterium tuberculosis H8ESK0 [30]

Histone H1 thyroglobulin receptor Mus musculus P43274 [74]

Hsp60/GroEL cytotoxic activity Aggregatibacter actinomycetemcomitans C9R2H0 [75]

Hsp60/GroEL adhesin Chlamydiae pneumoniae P31681 [76]

Hsp60/GroEL adhesin Clostridium difficile Q9KKF0 [77]

Hsp60/GroEL adhesin to glycosphingolipids Haemophilus ducreyi P31294 [78, 79]

Hsp60/GroEL adhesin Helicobacter pylori Q8RNU2 [80, 81]

Hsp60/GroEL adhesin Histoplasma capsulatum P50142 [82]

Hsp60/GroEL receptor for HDL Homo sapiens and Rattus rattus P10809 [83]

Hsp60/GroEL adhesin, binds mucin Lactobacillus johnsonii F7SCR2 [84]

Hsp60/GroEL binds invertase Lactococcus lactis F2HIT2 [29]

Hsp60/GroEL adhesin Legionella pneumophila B2C318 [85]

Hsp60/GroEL adhesin Listeria Q8KP52 [23]

Hsp60/GroEL adhesin Mycobacterium tuberculosis H8EVS5 [86]

Hsp60/GroEL adhesin Plesiomonas shigelloides Q1EQW2 [87]

Hsp60/GroEL adhesin Salmonella typhimurium F5ZZ81 [88]

Inosine 5'-monophosphate
dehydrogenase

plasminogen binding Staphylococcus aureus D6SDD0 [89]

Malate synthase fibronectin and laminin binding Mycobacterium tuberculosis E2T9U8 [90]

Ornithine carbamoyltransferase fibronectin binding Staphylococcus epidermidis T0BSW2 [91]

Pyruvate dehydrogenase (E1 beta
subunit, PDH-B)

fibrinogen binding. Mycoplasma pneumoniae E1QCD9 [33]

Peroxiredoxin plasminogen binding Neisseria meningitidis J8V2K1 [31]

6-phosphofructokinase binding to invertase Lactococcus lactis F2HMQ4 [29]

6-phosphofructokinase plasminogen binding Streptococcus oralis E6KMA1 [50]

Pyruvate-ferredoxin oxidoreductase
(PFO)

adhesin Trichomonas vaginalis Q27089 [92]

6-phosphogluconate dehydrogenase adhesin Streptococcus pneumoniae Q97SI6 [93]

Phosphoglycerate kinase plasminogen bindng Candida albicans P46273 [26]

Phosphoglycerate kinase plasminogen binding Streptococcus agalactiae S8XU00 S8XU00 [94]

(Continued)
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elongation factor (Ef-Tu, elongation factor Tu), a transcription elongation factor (transcription
elongation factor 1, TEF1), a thiol specific antioxidant protein (TSA1), and a histone (H1).

Extracellular functions
The majority of the intracellular/cell surface moonlighting proteins function on the cell surface
in binding to extracellular matrix, as an adhesin to attach to host cells, or as a cell surface recep-
tor for a soluble protein (Fig 1). For those proteins described as adhesins in Table 1, the specific

Table 1. (Continued)

Intracellular Function Surface Function Species UniProt Reference

Phosphoglycerate kinase plasminogen binding Streptococcus anginosus and S. oralis E7GZG8 [50]

Phosphoglycerate kinase plasminogen binding Streptococcus pneumoniae J1RST3 [95]

Phosphoglycerate mutase plasminogen binding Bifidobacterium lactis, B. bifidum, and B.
longum

S3DNJ2 [27]

Phosphoglyceromutase plasminogen binidng Candida albicans P82612 [26]

Phosphoglycerate mutase plasminogen binding Streptococcus anginosus and S. oralis E6IYJ0 [50]

Pyruvate kinase binds invertase Lactococcus lactis F2HMQ3 [29]

Ribonucleotide reductase subunit 2 plasminogen binding Staphylococcus aureus Q7A6T1 [89]

Superoxide dismutase adhesin Mycobacterium avium P47201 [96, 97]

Superoxide dismutase Adhesion Mycobacterium tuberculosis H8F202 [97]

Transcription elongation factor
(TEF1)

plasminogen binding Candida albicans C4YDJ3 [26]

Triose phosphate isomerase adhesin Paracoccidioides brasiliensis Q96VN5 [98]

Triose phosphate isomerase adhesin Staphylococcus aureus D9RMW0 [99]

Triose phosphate isomerase plasminogen binding Streptococcus anginosus and S. oralis E6J203 [50]

Thiol-specific antioxidant protein
(TSA1)

plasminogen binding Candida albicans C4YNZ5 [26]

doi:10.1371/journal.pone.0130575.t001

Fig 1. An increasing number of intracellular enzymes, chaperones, and other proteins are being found on the cell surface where they perform
other functions. A single protein can have a function inside the cell, for example and enzyme that converts a substrate (star) to a product (hexagon), and
also be found on the cell surface (A). Some of these proteins moonlight as adhesins for binding to host cell surface proteins (B) or to extracellular matrix (C,
ECM) and play a role in infection and virulence. Other proteins bind to the zymogen plasminogen and enable its conversion to plasmin, a broad specificity
protease (D). The active protease is then used as an aide to degrade and invade host tissues.

doi:10.1371/journal.pone.0130575.g001

Intracellular/Cell Surface Moonlighting Proteins

PLOS ONE | DOI:10.1371/journal.pone.0130575 June 25, 2015 6 / 16



host protein on the host cell surface has been identified in only a few cases. Streptococcus pyo-
genes glyceraldehyde 3-phosphate dehydrogenase (GAPDH) binds to the uPAR/CD87 receptor
on human cells [70].Haemophilus ducreyiHsp60/GroEL binds to glycosphingolipids [78, 79].
On the surface of Listeria monocytogenes, alcohol acetaldehyde dehydrogenase is used to bind
to a moonlighting Hsp60 on the surface of mammalian host cells, an interesting example of a
moonlighting protein interacting with another moonlighting protein [22, 23].

Many of the bacterial moonlighting proteins bind to structural components of the host
extracellular matrix, including fibronectin, laminin, and/or collagen, or to mucin, a component
of the mucosal epithelial lining. These interactions enable a physical attachment to the host,
whether it is for a pathogen invading host tissues or a commensual gut bacterium establishing
a more symbiotic relationship with a mammalian host. When Lactococcus lactisHsp60/GroEL,
DnaK/Hsp70, GAPDH, pyruvate kinase and 6-phosphofructokinase bind yeast Invertase, a
hyperglycosylated cell surface protein, the interaction may also assist in a symbiotic relation-
ship between the bacterium and the yeast [29].

Several of the moonlighting proteins in the study are receptors for soluble proteins. Human
and mouse Hsp60/GroEL are cell surface receptors for high density lipoprotein (HDL) [83],
and mouse histone H1 serves as a thyroglobulin receptor to mediate thyroglobulin endocytosis
[74]. Staphylococcal GAPDH serves as a transferrin binding protein to acquire iron from the
host [65]. Binding to the soluble protein plasminogen aids in invasion of host tissues by many
pathogens. Plasminogen is a precursor to plasmin, which is a serine protease present in blood
that helps break down fibrin clots [100]. When an invading pathogen uses a surface moonlight-
ing protein to bind plasminogen from the host, the plasminogen can be converted to plasmin,
the active form of the protease, by tissue-type plasminogen activator (tPA) and urokinase. The
plasmin that is now attached to the surface of the invading organism can be used as a general
protease to degrade host extracellular matrix and basement membrane, thereby facilitating
migration through tissues.

We note that in many of the published reports about the proteins in our study, the intention
was to determine if the species being studied had any surface proteins that bind to a specific
target protein (plasminogen, fibronectin, etc.) Each of these intracellular/cell surface proteins
may also have other functions on the cell surface in addition to the ones that have been identi-
fied to date, for example some of the proteins that are known to bind to plasminogen might
also bind to other host proteins.

Physical features
The primary amino acid sequence for each protein and the three-dimensional structures of
each protein, when available, were studied using bioinformatics tools in order to ascertain gen-
eral shared characteristics or defining features of these proteins as a set, be they structural fea-
tures, sequence motifs, or biochemical properties. Any trends, patterns, or generalizations that
we discover among these moonlighting proteins could aid in the identification of other proteins
that may have a moonlighting function on the cell surface.

Signal sequences. In general, most proteins targeted to the cell surface contain an N-ter-
minal signal peptide, but many of these intracellular/cell surface moonlighting proteins have
been found to lack a signal sequence. SignalP [14] and Psort [15–17] were used to look for the
presence of a signal sequence for targeting to the plasma membrane for the study set of 98 pro-
teins. None of the proteins contain a signal peptide.

Molecular weight. The individual proteins of each specific type in our study varied very
little in molecular weight regardless of species of origin (Fig 2a). Most of these moonlighting
proteins are within the range of 200–600 amino acids. The longest were alcohol acetaldehyde
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dehydrogenase (866–870 amino acids) and pyruvate-ferredoxin oxidoreductase (1157 amino
acids). Brocchieri and Karlin [101] found through a study of 5 eukaryotic genomes and 67 bac-
terial genomes that the median length of proteins in eukaryotes is 361 amino acids and the
median length is only 267 amino acids in bacteria. Other studies of many genes from a genome

Fig 2. Physical features of intracellular proteins that moonlight on the cell surface. Protein molecular weight (A), calculated pI (B), aliphatic index (C),
and GRAVY score (D) are shown for each type of protein. For some types of proteins, more than one score is shown because the protein is found to
moonlight in more than one organism, and the score was determined for each protein in each organism in which it moonlights. The type of enzyme is
indicated by number on the x-axis: 1. Alcohol acetaldehyde dehydrogenase. 2. Aspartase. 3. Alcohol dehydrogenase. 4. Bile salt hydrolase. 5. Peroxisomal
catalase. 6. DnaK. 7. Ef-Tu. 8. Enolase. 9. Fructose 1,6-bisphosphate aldolase. 10. GAPDH. 11. Glucose 6-phosphate isomerase. 12. Glutamine synthetase.
13. Histone H1. 14. Hsp60/GroEL. 15. IMPDH. 16. Malate synthase. 17. Ornithine carbamoyl transferase. 18. Pyruvate dehydrogenase. 19. Peroxiredoxin.
20. 6-phosphofructokinase. 21. Pyruvate-ferredoxin oxidoreductase. 22. 6-phosphogluconate dehydrogenase. 23. Phosphoglycerate kinase. 24.
Phosphoglyceromutase. 25. Pyruvate kinase. 26. Ribonucleotide reductase. 27. Superoxide dismutase. 28. Transcription elongation factor. 29. Triose
phosphate isomerase. 30. Thiol specific antioxidant protein TSA1. Calculations were performed with ProtParam [9].

doi:10.1371/journal.pone.0130575.g002
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or from whole genomes found similar averages for protein length [102]. Interestingly, most of
the proteins in our study set are significantly longer than these median sizes. The eukaryotic
proteins in our study contain from 196 to 1157 amino acids, with eight protein types contain-
ing over 400 amino acids, three types near the observed median length (between 330 and 360
amino acids) and 4 protein types containing fewer than 250 amino acids. The bacterial proteins
ranged from 122 amino acids (peroxiredoxin) to 866 amino acids (acetaldehyde dehydroge-
nase) in length. Only three types of proteins contain fewer than the median of 267 amino acids
observed by Brocchieri and Karlin (peroxiredoxin, superoxide dismutase, and phosphoglycer-
ate mutase), and one protein was near the median length (triose phosphate isomerase (TPI),
with 252 amino acids in Streptococcus TPI and 283 amino acids in Staphylococcus TPI), twenty
of the bacterial protein types in the study contain over 300 amino acids.

Theoretical pI. The calculated isoelectric points (pI) have been found to differ among pro-
teins that localize to different sub-cellular locations [103]. Proteins are generally least soluble
near their isoelectric points, which means that a protein’s pI needs to be different from its envi-
ronmental pH for the protein to be adequately soluble. Cytoplasmic pH is usually around 7, so
proteins with a pI greater than or less than this pH are favored. The calculated pIs for known
cytosolic proteins have been found to center around 5.5 [103]. The pI’s of most of the proteins
in our study lie between 4.5–6.5 (Fig 2b), which is typical of cytosolic proteins.

Aliphatic index. The aliphatic index is a measure of the relative volume occupied by ali-
phatic side chains—alanine, valine, isoleucine, and leucine. A higher aliphatic index is an indi-
cator of higher thermostability, and also an indicator of solubility in a cell when the protein is
overexpressed [104]. Most cytosolic enzymes have aliphatic indexes around 80–100, as did
most of the proteins in this study set (Fig 2C) [104]. However, Histone H1 (55.3), which is a
nuclear protein, CTA1 peroxisomal catalase (64), bile salt hydrolase (66), glutamine synthase
(72–79), peroxiredoxin (77), and one of the superoxide dismutases (65) had aliphatic indexes
below 80.

GRAVY score. The Grand Average of Hydropathy (GRAVY) for a protein is calculated as
the sum of hydropathy values of all the amino acids, divided by the number of residues in the
sequence [10]. More hydrophobic/non-polar residues are given more positive values, whereas
more polar/ionic residues are given more negative values. The overall GRAVY scores for the
proteins in this study were negative or zero for all except aspartase, which was slightly above
zero at 0.036 (Fig 2d). These scores are typical for soluble proteins. None of the proteins had
sequences of hydrophobic amino acids sufficiently long enough to indicate the presence of a
transmembrane domain.

Intrinsically disordered regions of proteins allow many different conformational states, and
in many proteins enable highly specific interactions with multiple binding partners [105].
Intrinsically disordered regions also may be more tolerant of mutations than more structured
domains, and thereby might provide the material for evolution of an additional function. We
studied the amino acid sequences of the intracellular/cell surface moonlighting proteins using
UIPred to identify potential regions of disorder [12, 13]. Analysis using UIPred identified only
very short regions of most of the proteins that scored above 0.5 and are most likely surface
loops. Only Histone H1 contained longer intrinsically disordered regions. These results suggest
that most of the intracellular/cell surface moonlighting proteins in this study set are not likely
to be the type of moonlighting proteins that interact with multiple proteins by folding into dif-
ferent conformations with different binding partners.

Type of three-dimensional fold. Different protein folds vary in their stability and their
tolerance of amino acid sequence substitutions, insertions and deletions. In addition, some
folds might make better “scaffolds” for evolution of new functions, because of additional stabil-
ity, for example. The CATH protein structure classification system is a hierarchical
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classification of protein domains [11]. Of the 30 different types of proteins in our list, there
were 58 CATH domain classifications represented (some proteins contained multiple
domains). Thirty-nine domains were in Class 3 (containing a significant amount of both
alpha-helical and beta sheet secondary structure elements), 13 were in class 1 (mostly alpha-
helical), and only 6 domains were in Class 2 (mostly beta sheet). Consistent with the IUPred
results, no domains were classified as having very little secondary structure (Class 4). The
CATH Architectures (arrangements of secondary structures) that were represented most often
include 1.10 or mainly alpha/orthogonal bundle, 1.20 mainly alpha/up-down bundle, 3.20
alpha-beta/alpha-beta barrel, 3.30 alpha-beta/2-layer sandwich, 3.40 alpha beta/3-layer (aba)
sandwich. Two topology or fold groups were represented at least six different proteins: 3.20.20
TIM barrel and 3.40.50 Rossmann fold. TIM barrels and alpha/beta sandwiches (which
includes the Rossman fold) are two of the most common architectures for proteins in general.

Discussion
A goal of this bioinformatics analyses was to determine if there are any characteristics or trends
that could define and help identify intracellular/cell surface moonlighting proteins. Although a
variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the
cell surface, for the most part they seem to be typical intracellular proteins. Other than the few
exceptions mentioned above, they do not exhibit extremes in calculated pI, disorder, stability,
or other characteristics. The types of three-dimensional folds are diverse and common among
many proteins.

The question remains as to why and how these proteins obtained a second function. Like
many of the other known moonlighting proteins, most of the proteins in this study are ubiqui-
tous enzymes in central metabolism or ubiquitous chaperone proteins. They are likely to have
been adopted for a second function because organisms evolve by utilizing and building upon
components they already possess, and these proteins are available in many organisms. Many of
the moonlighting proteins in this study, as well as many described elsewhere [1–7, 106, 107],
are essential housekeeping proteins. These proteins first arose billions of years ago and are
expressed in many species and cell types, making them available targets for organisms to mod-
ify and use to develop a new function.

A new binding function can result if a protein’s structure is modified to create a new binding
site on the protein surface, and binding to another protein is the key characteristic of the sec-
ond function of most of the proteins in this study. Modification of a short amino acid sequence
could be sufficient to form a new protein-protein interaction site. In general, proteins appear to
contain many more amino acids than are required to form their active site, leaving a lot of sur-
face amino acids that are not involved in the first function and are therefore not under as much
selective pressure. For example, the active site amino acid residues of the glycolytic enzyme
phosphoglucose isomerase have shown to be highly conserved in over 126 species, however the
solvent-exposed areas are not as carefully conserved and contain a multitude of loops, pockets,
clefts and other structural features that have been modified during billions of years of evolution
and could have easily developed a new binding site, yielding a new moonlighting function for
this protein [108]. It is interesting to note that one trend of the proteins in this study is that
they tend to be somewhat longer than the median length of a cytosolic protein. Perhaps having
more amino acids than the average protein increases the probability that a small surface region
can be modified by evolution to form a new protein binding site without affecting the original
function of the protein.

A large number of the proteins in the study bind plasminogen on the cell surface. The bind-
ing site for plasminogen has been found in several cases to be a short lysine-containing amino

Intracellular/Cell Surface Moonlighting Proteins

PLOS ONE | DOI:10.1371/journal.pone.0130575 June 25, 2015 10 / 16



acid sequence usually at the C-terminus of the protein, although found internally in some eno-
lases [109, 110]. Addition of a plasminogen binding site by replacement of a few surface or C-
terminal residues with lysines is just the kind of modification that could add a second function
without significant changes to the overall protein structure or original function. It is also possi-
ble that proteins that already contain lysines in appropriate places could be adopted for a sec-
ond function if they were to be expressed in a new location, for example on the cell surface.
This adoption of proteins for a new function by changes in expression without significant mod-
ification of the protein structure is how several ubiquitous enzymes became taxon specific crys-
tallins [111].

Another possible reason for the increased sequence length is suggested by an observation by
Ghosh and Dill that longer proteins tend to be more stable than shorter proteins [112]. Because
the moonlighting function of each of the proteins in our study involves being displayed on the
cell surface, in a harsher environment than in the cell cytoplasm, proteins with an above aver-
age level of protein stability may have been selected for this function. Another correlation with
protein length is the degree of amino acid sequence conservation, with conserved proteins
tending to be longer [113]. This is consistent with many of the moonlighting proteins in our
list being conserved proteins with original functions in central metabolism.

These moonlighting intracellular/cell surface proteins not only need a method to interact
with another protein, but also they need a mechanism to be transported across the cell mem-
brane and a mechanism to become attached to the cell surface. None of the proteins have been
found to possess a signal peptide for targeting to the cell membrane or a sequence motif for
attachment to the cell surface, for example the LPXTGmotif that is involved in attachment to
the cell surface in Gram-positive bacteria [114]. How these intracellular proteins end up located
outside of the cell and attached to the cell surface is an active area of inquiry in this field.

Many other intracellular proteins have also been found on the surface of bacterial pathogens
and other organisms in proteomics experiments. It is quite possible that they also have a moon-
lighting function on the cell surface. The increasing number and variety of known moonlight-
ing proteins suggest that there may be more moonlighting proteins than previously thought,
and moonlighting might be a common feature of many more proteins.
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