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Abstract

Many biological data acquisition platforms suffer from inadvertent inclusion of biologically
irrelevant variance in analyzed data, collectively termed batch effects. Batch effects can
lead to difficulties in downstream analysis by lowering the power to detect biologically inter-
esting differences and can in certain instances lead to false discoveries. They are especially
troublesome in predictive modelling where samples in training sets and test sets are often
completely correlated with batches. In this article, we present BARA, a normalization
method for adjusting batch effects in predictive modelling. BARA utilizes a few reference
samples to adjust for batch effects in a compressed data space spanned by the training set.
We evaluate BARA using a collection of publicly available datasets and three different pre-
diction models, and compare its performance to already existing methods developed for
similar purposes. The results show that data normalized with BARA generates high and con-
sistent prediction performances. Further, they suggest that BARA produces reliable perfor-
mances independent of the examined classifiers. We therefore conclude that BARA has
great potential to facilitate the development of predictive assays where test sets and training
sets are correlated with batch.

Introduction

Data acquisition techniques designed to quantify biological signals from gene- or protein
expression are often associated with batch effects. The problem with batch effects is that it
leads to the inclusion of biologically irrelevant variance in the obtained data, which can lower
the power of subsequent analyses or lead to false discoveries [1-4]. The variance may be due to
a variety of different experimental parameters, including analysis date, sample processing or
reagent quality [5]. Further, batch effects are not exclusive to high throughput acquisition
methods but are also observed in data from lower throughput methods such as gPCR or Nano-
String nCounter technologies [6, 7]. The high incidence of batch effects in multiple biological
platforms is a contributing factor to the relatively small number of diagnostic and prognostic
biomarker signatures that have been implemented in clinical settings [6, 8].

Some actions have been shown to reduce the impact of batch effects. One such action is to
carefully design experiments to minimize the correlation between possible sources of technical
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variance and known biological factors. However, this action is not possible for all types of
experiments. For predictive modelling, for example, the correlation between biological factors
and batches cannot be eliminated. This is due to the inherent nature of these experiments,
where fixed training sets are often used to infer parameter values used to predict subsequently
acquired test sets. This leads to total confoundment between batches and samples in the test
sets, which can result in poor predictive performances on test sets [9]. Another option to
reduce the impact of batch effects is to apply analytical methods on already obtained data.
Many such methods have been designed, but most require prior knowledge of the biological
factors of interest and low confoundment between batches and the biological groups [10-12].
Examples of such methods are ComBat and surrogate variable analysis (SVA). ComBat is a
supervised batch correction method that requires that the sources of batch effects are known.
It is a location and scale method that uses the empirical Bayes method to moderate the batch
effect estimates, making it better equipped to handle smaller datasets [10]. In contrast to Com-
Bat and other supervised batch effect adjustment methods, SVA does not require that the
sources of batch effects are known. Instead, the biological sources of interest should be known
and specified in the model. The initial step of SVA estimates and removes the variance associ-
ated with the known biological information. Latent structures are then identified in the resid-
ual matrix, which can either be removed to generate a cleaned dataset or be incorporated in
subsequent significant analyses. Identified latent structures can contain information linked to
batch effects, but they can also contain other sources of expression heterogeneity, such as bio-
logical factors not included in the initial modeling [11]. Both SVA and ComBat were originally
developed for datasets in discovery studies, where biological sources of interest and possible
sources of batch effects are known. Because of this, they and other methods developed for sim-
ilar purposes are not directly applicable to datasets generated in predictive settings. However,
by making certain assumptions, the algorithms can be modified to be used in predictive
modelling. For ComBat, one must assume that the composition of test sets is similar to that in
the training set. But this assumption can be violated when, for example, the size of the test set
decreases, as shown in [13]. For SVA, one can assume that latent structures identified in the
training set can also be identified in test sets. This assumption was used to develop the frozen
SVA algorithm [14]. However, this assumption is not valid if latent structures associated with
batch effects are different in the training set and test sets. This can lead to poor predictive per-
formances as shown in [13]. In general, for a normalization method to be applicable in a wide
range of prediction problems, it should allow for training sets and test sets to be correlated
with batch. Further, the training set should not be altered when normalizing with different test
sets. Finally, it should ideally allow test sets to be acquired without the need to include a large
amount of reference samples.

In this paper, we introduce Batch Adjustment by Reference Alignment (BARA) to adjust for
batch effects in predictive modelling. The method has the advantage that only a few reference
samples are necessary to perform batch corrections. Also, rather than attempting to clean the
data by removing batch effects from both training set and test sets, BARA aims to transform
the test set to make it more similar to the training set. BARA performs the adjustment in a
compressed data space spanned by the training set, thereby alleviating the number of necessary
batch estimates that needs to be performed. We test the BARA method on a collection of 25
publicly available datasets and show that BARA consistently aids the classifier to achieve high
prediction performances. We further show that the performance of BARA is better or compa-
rable to the performance of existing methods on the examined datasets. By reducing the nega-
tive impact of batch effects, the prediction performances observed with BARA can facilitate
the development of predictive assays.
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Materials and methods

The R software environment was used to perform the analyses presented in this paper [15].
Figures were created with the R-package ggplot2 [16]. In addition, the following R-packages
were used; reshape2, dplyr, stringr, data.table, magrittr, foreach, doParallel, e1071, random-
Forest, class and bapred [17-27]. The scripts used to generate the results, including the BARA

algorithm, are available at: https://github.com/gradinetal2018/BARA.

Cross-study datasets

25 datasets compiled by Hornung et. al. [13] were downloaded from ArrayExpress [28], see
Table 1. The gene expression levels of all datasets were quantified with Affymetrix GeneChip
Human Genome U133 Plus 2.0. The raw data files (CEL files) were normalized using single
channel array normalization [29]. For each dataset, duplicated samples were removed, and

only samples with existing annotations of gender were retained. All samples were annotated

by gender/sex.

Cross-study prediction evaluation

Cross-study prediction performances were used to evaluate the performance of BARA and to
compare it to existing normalization methods. The normalization methods included in this

Table 1. Datasets used in the cross-study analysis.

Accession Number Sample Size Reference
E-GEOD-19722 46 [30]
E-GEOD-28654 112 [31]
E-GEOD-29623 65 [32]
E-GEOD-39084 70 [33]
E-GEOD-45216 31 (34]
E-GEOD-45670 38 [35]
E-GEOD-46474 40 [36]
E-GEOD-48278 57 [37]
E-GEOD-48350 83 [38, 39]
E-GEOD-48780 49 [40]
E-GEOD-49243 73 [41,42]
E-GEOD-50774 21 [43]
E-GEOD-53224 53 [44]
E-GEOD-53890 41 [45]
E-GEOD-54543 30 [46]
E-GEOD-54837 226 [47]
E-GEOD-58697 124 [48]
E-GEOD-59312 79 [49]
E-GEOD-60028 24 [50]
E-GEOD-61804 325 [51]
E-GEOD-63626 63 [52]
E-GEOD-64415 209 [53]
E-GEOD-64857 81 [54]
E-GEOD-67851 31 [55]
E-GEOD-68720 97 [56]

The table describes each dataset’s accession number and the number of samples extracted from it.

https://doi.org/10.1371/journal.pone.0212669.t001
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analysis were; BARA, ComBat [10], FABatch [21], fSVA exact [14], mean centering, ratio A,
reference centering, reference ratio A and standardization. The reference centering method
subtracts the reference samples’ mean expression of each gene from all samples in the training
set and the test set respectively. Similarly, the reference ratio A method scales each gene and
sample in the training set and the test set by their respective reference samples mean expres-
sion. To examine the predictive performance on normalized data, each of the 25 datasets was
iteratively used as a temporary training set. First, 3 samples from the same biological group
were randomly selected as reference samples in the training set. Next, using all samples in the
training set, the 500 most significant differentially expressed genes, comparing males to
females, were identified using limma [57, 58]. Because the normalization methods had all been
adjusted to be used in predictive modelling, as implemented in the bapred package [21] or
through implementations in R, each method was first applied to the training set. Next, the
transformed training set was used to define the prediction models. Three different prediction
models were examined; k-nearest neighbors (kNN), random forest, and support vector
machines (SVM). The prediction models were tuned using repeated cross-validation on the
training set, with 3 repeats and 10 folds. The parameters resulting in the highest mean predic-
tion performance, evaluated using Mathews Correlation Coefficient (MCC), were selected to
establish the final prediction model. To allow for variation among the samples acting as refer-
ence sample, the test set normalization and prediction procedure was repeated 10 times for
each test set, using a different selection of reference samples in each iteration. More specifi-
cally, when classifying the samples in each test set, 3 samples from the same group as the refer-
ence samples in the training set were randomly selected from the test set. The normalization
methods that did not rely on reference samples used all samples in the test set, including the 3
reference samples, while the reference-based normalization methods only used the reference
samples to normalize the data. Because information about the group of the reference samples
could be considered being leaked during the normalization procedure, the reference samples
were removed from the test sets before the predictions were made. The final prediction perfor-
mance for each test set was calculated as the median MCC from the 10 iterations. To obtain an
overall prediction performance for each training set, the MCCs of the 24 test sets were aver-
aged. A summarized prediction score for each normalization and prediction model was calcu-
lated as the mean MCC from all the training sets.

Assessment of BARA’s dependence on the number of reference samples

To assess the performance of the BARA algorithm as the number of reference samples was var-
ied, the cross-study prediction approach described above was repeated. The performance esti-
mation was repeated 6 times, where the number of utilized reference samples was varied from
1 sample to 6 samples. The predictive performances were summarized as described above.

The BARA algorithm

The BARA algorithm was created specifically for predictive modelling, where a fixed training
set is used to classify test samples possibly affected by batch effects. The training set is used to
identify a set of directions that captures the largest part of the variance in the data, using singu-
lar value decomposition (SVD). This step allows the data to be compressed into a lower dimen-
sional space, which reduces the number of necessary batch estimates, and simultaneously
decreases the complexity of the data.

The training dataset, X, contains m samples in rows and n variables in columns. Each vari-
able in X is centered by its mean value, and the matrix is decomposed using SVD to identify
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the directions where the batch adjustment is performed.

Xy = Z£1Z;:1XU — % 1

USV" = SVD(x) 2

where X represents a 1*n dimensional vector containing the column means of X, U is the left
singular vectors, S the singular values, and V the right singular vectors. The number of dimen-
sions retained, k, is an adjustable parameter that can be set by using a predetermined value,
estimated with for example cross-validation, or determined by setting an acceptable loss of var-
iance in the training set, for example 10%. The centered training data is then multiplied by the
first k columns of the right singular vector to obtain a transformed training set.

X =X, * V ik 3

The test dataset, Z, contains p samples in rows and n variables. The variables are first
adjusted by subtracting the mean values of the training data, and is then projected onto the
identified directions.

Z,= }::12;:12:)' - ’_Cj 4

Z = Zy * V,Lk 5

A batch adjustment factor, aj, is estimated for all retained dimensions, using the reference
samples present in both the training set and the test set. For example, the adjustment factor of
dimension j is estimated by comparing the mean value of the reference samples in the training
set for dimension j, to the mean value of the reference samples in the test set for dimension j.

= Y
G = Zr ~ Frefj

Where Z ; and X ; are 1"k dimensional vectors containing the variable means for the refer-
ence samples in the transformed test set and the transformed training set respectively. The
transformed test data is then adjusted by the adjustment factors and both datasets are recon-
structed to the original data space.

' k /
Z = f:]Zj:lZij -9 7
Xt =XV, 8
Zk = Zl * V{:k 9

To achieve a level of expression to what was originally observed, the mean values estimated
from the training set are finally added to the reconstructed data.

k m n k -
X = Zi:le:lXij +Xx; 10
VAED D) DRVAEES 11

The predictions are then performed as normal, where the model is built from the com-
pressed training dataset, X, and the predictions are made on the adjusted test set, Z*.
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Normalization methods and parameter settings

The following methods were used through their implementations in the R-package bapred;
ComBat, FAbatch, fSVA exact, mean centering, ratio A and standardization. For FAbatch, the
default values of the parameters were used, i.e. the number of factors to estimate for each batch
was left unspecified, the preliminary probabilities were estimated using leave-one-out cross-
validation, maximum number of iterations were 100, and the maximum number of factors
were 12. For fSVA exact, the algorithm parameter was changed to correspond to the exact
algorithm instead of the fast, while the default values were used for the remaining parameters.
For the other methods implemented in the bapred package, no additional parameter values
could be specified.

The two reference-based methods, reference mean centering and reference ratio A, where
implemented in R. Reference mean centering subtracted each batch’s genes by the mean
expression of its reference samples, and reference ratio A scaled each batch’s genes expression
by the mean expression of the reference samples.

BARA was implemented by specifying the loss parameter as a criterion for selecting the
number of dimensions to retain. The loss parameter was set to 10%. Thus, at most 10% of the
variance in the training data was lost in the normalization.

Prediction models

Three types of prediction models were used to assess the performance of the normalization
methods in the cross-study analysis. The prediction models were; random forest, KNN and
SVM with linear kernel. The prediction models were implemented using the R-packages ran-
domForest, class and e1071 [18, 22, 26]. The prediction models were selected to include both
linear and non-linear classifiers. For every training set, the prediction models were tuned to
maximize the MCC using repeated cross-validation with 3 repeats and 10 folds. For the respec-
tive prediction model, the following parameters and parameter values were tuned:

o kNN

o Number of nearest neighbors: 1,2, 3, 4, 5,6,7,8,9
» Random Forest

o Mtry:5,7,9,10,11, 13,15, 17

o Ntree: 500, 1000, 1500, 2000, 2500, 3000
« SVM

o Cost: 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50

Results

To assess the performance of BARA and to compare it to existing normalization methods,
cross-study predictions were examined. Because the acquired datasets originated from separate
studies, the biological annotation used for classification was sex/gender. Fig 1 shows a PCA
plot of the 25 datasets, which shows clear signs of batch effects.

To assess the different normalization methods, each dataset was iteratively used as training
set to define a prediction model. Batch effects between the training sets and the test sets were
adjusted with the examined normalization methods. Normalized test sets were classified with
the trained prediction models and MCCs were calculated to estimate the prediction
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Fig 1. PCA plot of the datasets. The figure shows the first two principal components after merging the acquired
datasets. The samples were colored by the datasets from where they originated.

https://doi.org/10.1371/journal.pone.0212669.g001

performances. The resulting MCCs for the normalized data and for the unnormalized data on
the 3 different prediction models are shown in Figs 2-4. Further, the mean performance for
each normalization method and prediction model can be seen in Table 2. Figs 2-4 show that
data normalized with BARA seems to generate consistent performances independent of the
examined prediction model. Further, the estimated MCCs are high with low variance. In fact,
considering the calculated performance scores in Table 2, BARA achieves the highest mean
MCC compared to the other examined normalization methods. Lastly, BARA also shows an
improved prediction performance compared to the unnormalized data.

Because all information used to adjust for batch effects in the BARA method is estimated
from the reference samples, the performance of the method as the number of reference sam-
ples was varied was examined. The number of reference samples was varied from 1 sample to
6 samples, and the cross-study prediction approach described above was repeated. Again, the
performances were summarized by calculating the mean MCC for each run. The perfor-
mance for each repeat can be seen in Fig 5. The plot suggests that the performance of BARA
in the examined datasets is robust to the number of reference samples utilized. However, it is
also evident that the run with a single reference sample achieve the lowest performance
metric.
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Fig 2. Prediction performance, kNN. The plot shows the predictive performances for the different methods when
normalized data were classified with KNN models. The boxes represent the 25 MCCs obtained in the iterative exercise
where each dataset was used as training set to classify the remaining datasets.

https://doi.org/10.1371/journal.pone.0212669.9002

Discussion

Batch effects are a widespread problem that exist in most biological data acquisition platforms
and hinder the development and implementation of promising biomarker signatures [1-5].
Batch effects are especially difficult to account for in predictive modelling where the biological
factors in the test set are completely confounded with batch. In this paper, we have introduced
BARA, a normalization method for the adjustment of batch effects in predictive modelling,
and compared it to already existing methods. The aim of normalization methods applied in
settings of predictive modelling is to make prediction models and inferred information trans-
ferable to test sets affected by batch effects. Common strategies suggest using reference samples
to estimate the perturbation induced by batch effects [9]. However, including multiple addi-
tional samples in each batch of test samples can be both time consuming and add analytical
costs. Therefore, normalization methods should ideally require none or few reference samples.
Only a few reference samples are required by BARA; three were used in the comparison
described above and BARA was also found to achieve robust performance metrics when only a
single reference sample was used. However, the optimal number of reference samples could
generally be assumed to be based on a trade-off between costs and accuracy. Because the refer-
ence samples are used to estimate mean adjustments for every batch in a compressed data
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Fig 3. Prediction performance, random forest. The plot shows the predictive performances for the different methods
when normalized data were classified with random forest models. The boxes represent the 25 MCCs obtained in the
iterative exercise where each dataset was used as training set to classify the remaining datasets.
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space, additional reference samples should provide more certain estimates of the mean values.
This was also observed when the number of reference samples used by BARA was varied, see
Fig 5. Because mean values are estimated, it is also expected that the ideal number of reference
samples will not be the same for different data acquisition techniques and datasets but will
depend on, for example, the variation between replicates. Further, even though random assign-
ment of reference samples does not represent an ideal selection strategy, the performance of
BARA could be considered stable as indicated by the low variance in the performance metrics,
see Figs 2-4. In an ideal scenario, the reference samples should represent a standardized sam-
ple where the major difference compared to other reference samples are batch effects. This
could lead to better estimates with a lower number of required reference samples.

BARA estimates the batch adjustments in a compressed data space spanned by the training
set. The compression is calculated with SVD and is thus a linear combination of the original
variables along the directions of maximum variance. SVD was chosen because we hypothe-
sized that it would be suitable for many datasets associated with predictive modelling where
biomarker signatures have been identified to optimize prediction performances, which sug-
gests that low-dimensional representations of the data exist that captures large fractions of the
important variance. Further, SVD is a well-known operation that offers a convenient way of
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Fig 4. Prediction performance, SVM. The plot shows the predictive performances for the different methods when
normalized data were classified with SVMs. The boxes represent the 25 MCCs obtained in the iterative exercise where
each dataset was used as training set to classify the remaining datasets.
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compressing data, performing batch adjustment and reconstructing the original variables.
Because SVD is used in BARA, multiple levels of compression can be selected for a dataset
depending on the number of directions that are retained. In the cross-study analyses described

Table 2. Prediction performances.

Normalization Method kNN Random Forest SVM
BARA 0.88 + 0.20 0.80 + 0.31 0.78 £ 0.28
ComBat 0.80 £ 0.30 0.60 £ 0.37 0.57 £ 0.36
FAbatch 0.65+0.24 0.55 + 0.30 0.54 + 0.27
fSVA Exact 0.82 £0.27 0.74 £ 0.35 0.39 £ 0.29
Mean Centered 0.82+0.26 0.63 +0.34 0.60 + 0.31
None 0.81 £ 0.30 0.76 £ 0.34 0.43 £0.29
Ratio A 0.04 £ 0.07 0.60 £ 0.39 0.20 £ 0.10
Reference Centered 0.86 £ 0.21 0.70 £ 0.32 0.51 £ 0.31
Reference Ratio A 0.20 £ 0.26 0.71 £ 0.34 0.37 £ 0.16
Standardized 0.60 £ 0.30 0.66 £ 0.36 0.59 £ 0.35

Prediction performances for each normalization and prediction model. Each performance is given as the mean MCC = the standard deviation.

https://doi.org/10.1371/journal.pone.0212669.t002
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https://doi.org/10.1371/journal.pone.0212669.9005

above, a maximum of 10% of the variance in the training set was considered an acceptable loss,
and the smallest number of dimensions satisfying this condition was selected in the normaliza-
tion steps. However, other approaches for selecting an optimal number of dimensions to retain
in a specific dataset could be pursued. For example, cross-validation performances could be
compared as the number of dimensions retained are varied, or an external validation set
affected by batch effects could aid the selection by better mimicking an actual prediction
scenario.

The ability of BARA to restore the predictive performances in datasets suffering from batch
effects was assessed by cross-study predictions, and the obtained performances were compared
to those obtained using existing normalization methods or no normalization. Due to the diffi-
culty in procuring public datasets containing training sets suitable for predictive modelling
where external test sets affected by batch effects exist, a collection of datasets previously com-
piled [13] were used, where sex/gender was used as classification label. Successively, each of
the 25 datasets in the collection were designated as a training set. From the training set, the
500 most significant genes after comparing the gene expression of females to males were iden-
tified, and prediction models were defined using kNN, random forest and SVM. Batch effects
between the training sets and the test sets were removed with the examined normalization
methods, and the samples in the test set were classified. Figs 2—4 shows the predictive perfor-
mances after applying the examined normalization methods. The figures show that BARA pro-
duces high and consistent performances for the examined datasets independent of prediction
model. The results further suggest, that BARA outperforms the other examined normalization
methods on the examined datasets, by reaching the highest mean MCC values and consistently
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show low variation in performance. Further, the performance is also improved compared to
using no normalization, which indicates that the BARA algorithm mitigates some of the nega-
tive effects caused by batch effects in the studied datasets. It is also worth noting that genes
associated with sex/gender are strong predictors, and the performance of the unnormalized
data was often higher than those obtained by some of the normalization methods. In fact,
BARA was the only normalization method that consistently resulted in improved mean pre-
diction performance compared to the unnormalized data in all three prediction models.

In conclusion, we have introduced a novel method to adjust for batch effects in predictive
modelling and compared it to already existing methods. We show that BARA improves the
prediction performances in the examined datasets compared to applying no normalization.
Further, the BARA-normalized datasets achieved higher or comparable prediction perfor-
mances compared to datasets normalized with the other examined methods. These results sug-
gest that BARA can be considered a useful tool to reduce the negative impact of batch effect in
predictive modelling.
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