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Recently, an increasing interest in investigating interactions between brain regions

using functional connectivity (FC) methods has shifted the initial focus of cognitive

neuroimaging research from localizing functional circuits based on task activation to

mapping brain networks based on intrinsic FC dynamics. Leveraging the advantages

of the latter approach, it has been shown that despite primarily invariant intrinsic

organization of the large-scale functional networks, interactions between and within

these networks significantly differ between various behavioral and cognitive states. These

differences presumably indicate transient reconfiguration of functional connections—an

instantaneous process that flexibly mediates and calibrates human behavior according

to momentary demands of the environment. Nevertheless, the specificity of these

reconfigured FC patterns to the task at hand and their relevance to adaptive processes

during learning remain elusive. To address this knowledge gap, we investigated (1)

to what extent FC within the somatomotor network is reconfigured during motor

skill practice, and (2) how these changes are related to learning. We applied a

seed-driven FC approach to data collected during a continuous task-free condition,

so-called resting state, and during a motor sequence learning task using functional

magnetic resonance imaging. During the task, participants repeatedly performed a short

five-element sequence with their non-dominant (left) hand. As predicted, such unimanual

sequence production was associated with lateralized activation of the right somatomotor

cortex (SMC). Using this “active” region as a seed, here we show that unimanual

performance of the motor sequence relies on functional segregation between the two

SMC and selective integration between the “active” SMC and supplementary motor

area. Whereas, greater segregation between the two SMC was associated with gains

in performance rate, greater segregation within the “active” SMC itself was associated

with more consistent performance by the end of training. Nether the resting-state FC

patterns within the somatomotor network nor their relative modulation by the task state
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predicted these behavioral benefits of learning. Our results suggest that task-induced

FC changes reflect reconfiguration of the connectivity patterns within the somatomotor

network rather than a simple amplification or silencing of its intrinsic dynamics. Such

reconfiguration not only supports motor behavior but may also predict learning.

Keywords: motor cortex, motor learning, motor sequence, memory representation, functional connectivity,

fMRI—functional magnetic resonance imaging, resting state, task activation

INTRODUCTION

The neural basis of high dimensionality (e.g., a large repertoire
of actions that can be performed in various ways) and
adaptability of human behavior has been extensively studied with
functional magnetic resonance imaging (fMRI) (1, 2). Using this
technological approach, the brain-behavior relationships have
been primarily investigated by localizing task-activated brain
regions, i.e., areas that exhibit significant increases in mean
blood-oxygenated-level-dependent (BOLD) fMRI signal during
tasks compared to rest or control conditions [for reviews, please
see (3, 4)]. Over the past decade, however, there has been

an exponential increase in the number of studies investigating

spontaneous hemodynamic activity measured at rest with fMRI;

that is, while participants lie quietly in the scanner without any
explicit task or stimulus. In fact, assessing correlations of BOLD
signal between brain regions during this resting state—a method
referred as functional connectivity (FC) (5)—has proven to be a
valuable technique for mapping functional networks, including
the somatomotor system (6–11). A highly synchronized neural
activity between distributed brain regions forming functional
networks has been repeatedly demonstrated not only at rest
but also during various tasks indicating their resilience to the
behavioral or cognitive context (12–15). Together with the
observation that spontaneous fluctuations in neural activity
account for variability in task-evoked activations and associated
behaviors (16–18), such findings lend support to the notion
that functional networks in the brain are primarily invariant
across behavioral states, whereas momentary demands of the
environment play only a modulatory role in their intrinsic
functions (19). As such, this view suggests that the functional
ability and processing capacity of the brain can be inferred
based on FC dynamics during the resting state, meaning that
these intrinsic dynamics not only reflect unceasing intrinsically
synchronized activity patterns, which are constrained by neuro-
anatomical connections (20), but they also determine task-
evoked activation and behavior (15, 21–25).

Recently, however, it has become clear that, despite the state-
invariant, intrinsic organization of the large-scale functional
networks, interactions between and within these networks during
the task state significantly differ from their interactions during
the resting state (26, 27). Such dissociation between the two
states is expressed by rather complex pattern of FC changes, even
during simple activities such as passive movie watching (26, 28),
with some connections being significantly weakened, whereas
others strengthened or unchanged. Although these changes
are relatively small, in terms of their magnitude, it has been

argued that at least some of them reflect reconfiguration of the
functional neural connections rather than a simple amplification
or silencing of the intrinsic brain dynamics. This idea of rapid
reconfiguration is supported by previous work showing that
some of the task-induced changes in the individual whole-brain
FC patterns are specific to the ongoing task, hence allowing
to accurately decode the type of cognitive processing imposed
by such task (29, 30). Moreover, some of those transient FC
patterns are related to individual differences in performance
levels, suggesting that they are relevant to behavior (27, 31–
38). Thus, despite a mainly preserved intrinsic large-scale FC
topography across behavioral states, some transient changes in
FC on a smaller scale, as captured with the BOLD-fMRI signal,
may be the ones that grant humans the ability to flexibly adapt
their behavior according to the task at hand (13, 14).

Yet, the relevance of task-induced changes in FC to specific
behavior and adaptive processes during learning remains elusive.
For instance, it has been shown that the FC strength between
and within functional networks increases with task complexity,
greater attentional demands, and better performance levels (31,
38–40), but may decrease with learning, which would indicate
diminished cognitive control and sensory input dependency to
enable automaticity (36, 41). It is worth noting that changes in
FC are not limited to task-activated regions and may be dictated
by the region’s functional connectivity profile (i.e., a relative
number of within- and between-network connections) (13), and
the level of information processing (e.g., primary vs. multimodal
associative areas) (42). Specifically, primary sensory and motor
circuits have been found to be particularly prone to change their
FC patterns when the brain is engaged in the task, as compared
to the resting state. However, our current understanding of these
dynamics under specific conditions and their potential role in
learning is rather limited.

In the current study we sought to assess the extent to which FC
of the somatomotor network is reconfigured by the task state and
how these changes support motor task execution and learning.
The hypothesis that some aspects of learning are associated with
the FC of the somatomotor network during the resting state
was also tested. To this end, we applied FC analyses to data
from the fMRI experiment conducted by Albouy et al. (43), who
scanned participants during both the continuous resting state
period and a motor sequence task. During the task, participants
repeatedly performed a short five-element sequence using their
non-dominant (left) hand. Prior to the task, they were asked
to memorize the sequence, i.e., five digits in the predetermined
order—this amount of information is within the normal working
memory capacity (44) and is easily remembered. In that way,

Frontiers in Neurology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 1242

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gabitov et al. Functional Connectivity During Motor Learning

during the task, participants were able to reproduce the sequence
continuously in a self-paced manner without relying on any
external cue or input. Also, no feedback was provided at any time
during the actual performance.

This approach suits well our goal to investigate FC dynamics
within the somatomotor network during motor execution and
learning for several reasons. First, this version of the motor
sequence learning task has been widely used to probe motor
executive function, and is thought to engage the somatomotor
network in relative isolation from the rest of the brain (31,
38). The segregation of the somatomotor network from other
functional networks not only underlies actual motor sequence
production, but is also associated with higher performance
levels and better learning (23, 31, 41, 45). This suggests
that specialized regions within this low-level network may
contain dedicated neural populations that encode and represent
motor sequences (46–48). Second, the stimulus-free mode of
performance and the continuous nature of the task minimize
attentional and cognitive load, thereby allowing greater isolation
of the endogenous processes within the somatomotor network.
This design is also advantageous for separation between the
task-evoked activation and task-based FC patterns—an issue
that is inherently present during stimulus-driven and event-
related paradigms (49). Finally, the unimanual motor sequence
production allowed us to compare FC dynamics between the
two somatomotor cortices (SMC) that have highly coherent
intrinsic activity but are differentially recruited during the task
and, therefore, may differentially contribute to learning (50,
51). Such focus on the FC dynamics within the somatomotor
network will provide novel insights into the type and level
of knowledge represented within this primary circuit—a topic
that has been debated for several decades but still remains
controversial (46, 48, 52, 53).

Operationally, we refer to increases in FC strength as evidence
for greater functional integration and information sharing,
whereas decreases most likely reflect more segregated processing.
Both processes may act in parallel and operate on multiple spatial
scales affecting FC strength between networks, between regions
within the same network, or between neural populations within
the same region. Some of these changes, however, may also
reflect reduction of correlated noise. Animal studies suggest that
stimulus-driven noise reduction is a general property of the brain
(54). It contributes to overall stabilization of functional circuits
when the brain is engaged in information processing but lacks
specificity and, by itself, does not improve fidelity of neural
encoding (55, 56).

Using a seed-driven approach with the seed ROI within the
SMC contralateral to the performing hand (i.e., the “active”
SMC), our analyses were primarily focused on changes in
FC within this task-activated region itself as well as between
the two SMC. In addition, significant changes in FC with
the supplementary motor area (SMA)—a region presumably
involved in sequence representation across multiple domains
(57)—are also reported. Similar to the SMC, the SMA contains
somatotopic information (58, 59) and is part of the somatomotor
network (11, 15, 60, 61). Specifically, we sought to distinguish
between FC dynamics associated with (1) selective engagement of

task-relevant neural representations during motor performance
(62, 63) and (2) selective stabilization of these representations
during practice (64)—two experience-driven processes proposed
by animal studies. Clear behavioral consequences of the
execution of the motor sequence task provide a reliable basis to
assume that changes in FC between the resting and task states will
capture reorganization within the somatomotor network relevant
to motor performance. It is also well-established that repeated
experience with the motor sequence results in faster and more
stable performance (46, 47, 52, 65–68), thereby providing reliable
and testable behavioral correlates of learning at the level of action
execution and action selection (69).

MATERIALS AND METHODS

Ethics Statement
All participants gave their written informed consent to take
part in the study, which was approved by the Research
ethics board of the RNQ (Regroupement Neuroimagerie
Québec). All procedures were in accordance with the approved
guidelines and regulations. Participants were compensated for
their participation.

Participants
The current report is based on the analyses of data collected
during the initial resting state scan and the training session
from a previous fMRI experiment published elsewhere (43). The
sample included 55 healthy young right-handed (70) volunteers
(mean age: 24.1 ± 3.5 years, 34 females) who were recruited
by local advertisements to participate in the study. Participants
were included in the study if they reported no history of medical,
neurological or psychiatric disease. None of them were taking
medications at the time of testing. All participants had a normal
quality of sleep, as assessed by the Pittsburgh Sleep Quality
Index questionnaire (71) and the St. Mary Hospital questionnaire
(72). Also, none of the participants received formal training as a
musician or as a typist.

In addition to the above-mentioned exclusion/inclusion
criteria, we have also removed some participants’ data from the
analysis based on their performance. As such, one participant
was excluded because his initial performance rate was slower
than the group average by more than three standard deviations
indicating a significantly lower general ability to use the keypad
(participant’s and group average time to complete the first three
training blocks: 56.34 and 28.94 ± 8.01 s, respectively). Two
additional participants showed very low accuracy levels by the
end of training with only six correctly performed and completed
sequences or less (out of the 12 repetitions of the sequence)
during each of the last three blocks. Five others showed degraded
performance levels by the end of training with slower tapping rate
during the last than during the first three blocks. Poor accuracy
and decreased performance rate below its initial levels by the end
of training may indicate loss of interest or attentional biases that
are out of the scope of the current study. Finally, one participant
had excessive head movements and one participant did not have
resting state data. Consequently, a total of 45 subjects, out of 55,
were included in the analyses.
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Overall Experimental Design
All scanning runs were performed using functional magnetic
resonance imaging (fMRI) while participants were lying supine
in the scanner. First, participants underwent a resting state scan
(6min 40 sec) keeping their eyes open and looking at the fixation
cross. They were asked to remain still and “not to think about
anything in particular.” In that way, intrinsic activity during the
resting state was not affected by the experience with the motor
sequence task per se (73, 74). Next, while still in the scanner,
participants received instructions about the motor sequence task
(see below) and were scanned again while being trained on this
procedural paradigm.

Motor Sequence Task
The motor sequence task was designed according to a paradigm
that has been widely employed to study procedural memories
in humans since its development (46) and was programmed in
Matlab R2014a (The Mathworks, Inc., Natick, MA) using Cogent
2000 developed by the Cogent 2000 team at the FIL and the
ICN and Cogent Graphics developed by John Romaya at the
LON at the Wellcome Department of Imaging Neuroscience
(http://www.vislab.ucl.ac.uk/cogent_2000.php). Training on this
task required participants to tap a five-element sequence of
finger movements on a keypad using their non-dominant (left)
hand (Figure 1). The sequence (4-1-3-2-4) was introduced to
participants using the numbers from 1 to 4 that corresponded
to the four fingers of their left hand (excluding the thumb) from
the index to the little finger, respectively. Participants received
a full explicit introduction of the sequence and were asked to
memorize it. The training session was initiated only after the
sequence was reproduced three times in a row, without any
error. During the actual training, participants were asked to
look at the fixation cross and to tap the memorized sequence
repeatedly “as fast and with as few errors as possible.” In case
of occasional errors, they were instructed “to continue with the
task from the beginning of the sequence.” No feedback was
provided to the participants about their performance at any time
of the experiment. The training session consisted of 14 successive
blocks of practice with 60 keypresses within each block, i.e.,
equivalent to 12 repetitions of the sequence, and 15-s periods of
rest between the blocks. Thus, the duration of the training blocks
varied between participants as a function of their performance
rate. Furthermore, participants developed faster performance
rate spending less time to complete each block as training
progressed. During the rest periods, participants were instructed
to remain still and look at the fixation cross. A change in color
of the fixation cross, from red to green and from green to red,
indicated the beginning (“GO” cue) and the end (“STOP” cue) of
each training block, respectively. Participants’ performance was
recorded by saving the code-number (i.e., 1, 2, 3, or 4) and time
of each keypress.

Behavioral Data Analyses
It has been consistently shown that experience with explicitly
known motor sequences is associated with substantial changes
in performance rate while the number of errors is extremely
low (43, 52, 65, 66, 75). In line with these observations, the

FIGURE 1 | Motor sequence task. Participants were instructed to tap a

five-element sequence (4-1-3-2-4) on a keypad using their left hand. The

session consisted of 14 successive performance blocks with 60 keypresses

each, equivalent to 12 repetitions of the sequence, separated by 15-s periods

of rest. During performance blocks, participants were asked to look at the

fixation cross and to tap the sequence repeatedly “as fast and with as few

errors as possible.” A change in color of the fixation cross, from red to green

and from green to red, indicated the beginning and the end of each

performance block, respectively.

number of errors in the current sample of participants was indeed
very low with 0.75 ± 0.08 errors per block (mean ± s.e.m.; an
error corresponding to all, i.e., one or more, keys comprising
one unsuccessful attempt/trial to perform the sequence—the
initiation of each trial was determined by the first two elements
within the sequence, i.e., 4-1. . . , and included these and following
keypresses till the next trial; all incorrect keys following correctly
performed and completed sequences till the next trial were also
considered as an error). Therefore, performance levels were
assessed using a measure reflecting performance rate, i.e., the
time (duration in sec) per block spent executing the motor
sequence task (43, 75).

In addition to the development of faster performance, motor
sequence learning also involves the formation of a novel tapping
rhythm or pattern to generate the same sequence of movements
(76). The tapping pattern, which is defined here as the relative
temporal spacing between consecutive keypresses, may vary in
the beginning but stabilizes by the end of the initial training (75).
To assess experience-driven changes in that pattern, we used the
same approach as the one published in our previous reports (75,
77). This approach estimates individual changes in the tapping
pattern using correlation coefficients, thereby allowing to account
for the inter-subject differences in the overall performance rate
and the tapping pattern variability (68, 76, 78). To do so, we
first extracted inter-keypress intervals, i.e., durations between
successive keypresses, within and between all correctly performed
and completed sequences separately for each performance block
(Figure 2A). Next, these intervals were averaged according to
their position within and between sequence repetitions in each
block; values that were two standard deviations away from their
corresponding mean were excluded. This procedure resulted
in 14 five-element vectors (one for each block) representing
individual tapping patterns of the sequence throughout the
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training. Finally, changes in these patterns were assessed using
Fisher’s z-transformed Pearson’s correlation coefficients. These
coefficients were calculated for blocks 1–13 using the tapping
pattern generated during the last block as a reference. Thus,
these correlation coefficients indicated the degree of similarity
to the tapping pattern formed by the end of training. This
measure is sensitive to the relative differences between successive
keypresses so that higher values correspond to greater pattern
similarity, i.e., greater consistency, and vice versa. However, it
does not directly reflect changes in the overall performance
rate. Furthermore, the correlation coefficients are sensitive to
dynamic changes in the tapping pattern independently of its
specific characteristics, such as shape and chunks, allowing valid
comparisons at the group level without making any assumption
in that regard.

Individual measures, reflecting performance rate and the
degree of tapping pattern similarity, were analyzed using
Statistical Package for the Social Sciences (SPSS Statistics for
Windows, Version 24.0; IBM Corp., Armonk, NY). The analyses
were run separately for each measure using repeated measures
Analysis of Variance (ANOVA) with block as a within-subject
factor. The results were corrected for non-sphericity violation
using the Greenhouse-Geisser adjustment, when appropriate.We
also calculated individual training-related gains in performance
rate and the degree of tapping pattern similarity by averaging
performance duration and correlation coefficients across the
last six blocks. The former values were converted into percents
relative to the mean performance duration during the first six
blocks to account for inter-subject differences in the initial
performance rate. These values were then used as covariates in
analyses of functional connectivity patterns (see below).

fMRI Data Acquisition
The fMRI time-series were acquired using a 3.0 T TIM TRIO
scanner system (Siemens, Erlangen, Germany), equipped with a
32-channel head coil. T2∗-weighted axial fMRI images sensitive
to change in the BOLD signal were obtained with a gradient echo-
planar sequence using interleaved acquisition mode in ascending
direction (TR= 2.65 s, TE= 30ms, FA= 90◦, FoV= 220× 220
mm2, matrix size = 64 × 64 × 43, voxel size = 3.4 × 3.4 × 3
mm3, 10% inter-slice gap). T1-weighted sagittal 3D MP-RAGE
structural images were also obtained (TR= 2.30 s, TE= 2.98ms,
TI= 900ms, FA= 9◦, FoV= 256× 256 mm2, matrix size= 256
× 256× 176, voxel size= 1× 1× 1 mm3).

fMRI Data Preprocessing
Both structural and functional images were converted to the
Neuroimaging Informatics Technology Initiative (NIfTI) format
using MRIcron (University of South Carolina). Preprocessing
of the data was carried out with SPM12 (http://www.fil.
ion.ucl.ac.uk/spm/software/spm12/; Wellcome Trust Center for
Neuroimaging, London, UK) operating under Matlab R2014a
(The Mathworks, Inc., Natick, MA). Functional volumes were
realigned using a least squares approach and a six-parameter
(rigid body) spatial transformation to correct for a movement-
related variance. Following segmentation and skull-stripping
of the structural data, functional images were coregistered

FIGURE 2 | Behavioral results. (A) Tapping patterns, i.e., patterns of

inter-keypress intervals, for each performance block (Block 1–14) are shown

for two representative subjects. Each line connects data points representing

mean duration (i.e., inter-keypress interval) for each of four possible transitions

between successive elements within a sequence (from 1st to 4th) plus an

additional transition between sequences (btwn) for each block. Thus, the

shape of each line depicts an individual tapping pattern for a single block.

Note, that the initial tapping pattern and its changes throughout the training

differed between participants. With practice, the tapping pattern became

progressively more similar to the one generated during the last training block

(Block 14, red line). Yet, such increased similarity does not necessarily imply

faster performance rate. (B) Performance duration and degree of tapping

pattern similarity averaged across participants are shown for each

performance block. The duration of each performance period was assessed in

seconds starting from the first keypress following the “GO” cue. The degree of

tapping pattern similarity to the tapping pattern formed by the end of training

(i.e., during block 14) was assessed based on normalized Pearson’s

correlation coefficients using the Fisher’s z-transformation. These coefficients

were calculated for each block (blocks 1–13). Error bars represent standard

error of the mean (s.e.m.). Fast improvement in performance speed, as

indicated by significant decreases in performance duration across training

blocks (orange markers), was also paralleled by significant changes in the

tapping pattern so that its similarity to the tapping pattern formed by the end

of training significantly increased (blue columns).

to the individual skull-stripped 3-D anatomical image and
normalized to the Montreal Neurological Institute (MNI) space
using parameters obtained from the segmentation procedure.
The normalized functional images were resampled to voxel
dimensions of 3 mm3 and spatially smoothed with an isotropic
Gaussian kernel with a full-width at half-maximum (FWHM) of
6mm to improve the signal-to-noise ratio. Head motion artifact
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detection was also applied using the Artifact Detection Tools (79)
(normalized z-threshold= 5, movement threshold= 0.9 mm).

Task-Induced Changes in Activity
Task-induced changes in brain activity were assessed on the
preprocessed task-related fMRI images using a general linear
model (GLM) approach implemented in SPM12. This approach
was applied on the preprocessed fMRI images acquired during
scanning of the motor task. Statistical analyses of fMRI time-
series consisted of a two-stage summary statistics model (80).
In the first stage, BOLD signal changes were estimated for each
subject using a fixed-effect GLM. A covariate of interest for
performance periods was modeled as a boxcar function, time-
locked to the onset and duration of each block, convolved with
the canonical hemodynamic response function (HRF). Volumes
with motion artifacts were ignored using nuisance regression.
A high-pass filter of 128 s was used to remove low-frequency
noise. Serial correlations in fMRI signal were estimated through
a restricted maximum likelihood (ReML) algorithm using a
first-order autoregressive plus white noise model. Following
parameter estimation, a linear contrast was defined to test the
mean effect of performance blocks relative to the rest period.

In the second stage, the resulting individual contrast images
(t-maps) were carried forward to the random effects GLM
analysis to assess the consistency of the effect between subjects.
The statistical inferences were done at the group level using
a one-sample t-test. The resulting group activation map
was thresholded at p ≤ 0.05 (two-tailed) using peak-level
family-wise error (FWE) correction over the entire brain and
overlaid on the mean structural image of all participants using
Functional Imaging Visualization Environment toolbox for SPM
(FIVE, http://mrtools.mgh.harvard.edu).

Regions of Interest
Amain region of interest (ROI), which was also used as a seed for
the FC analyses, was defined within the primary somatomotor
cortex (SMC) significantly activated during the task as compared
to rest. All participants used their left hand to perform the
sequence and, therefore, activation within the SMC was strongly
lateralized to the right hemisphere. The ROI within this “active”
SMC was defined as a sphere (r = 6mm) centered at the
nearest local activation maximum to the knob of the precentral
gyrus, that is, the motor hand area (81). Due to the close
proximity between the motor and somatosensory cortices and
their simultaneous activation during the motor sequence task we
refer to this region as a somatomotor hand area throughout the
manuscript. An ROI within the left (“passive”) SMC was also
defined in a similar way, in terms of its size and proximity to
the hand knob, but using the task-related functional connectivity
map of the “active” SMC (i.e., the seed; see below).

Functional Connectivity Analyses
Analyses of functional connectivity (FC) patterns were
performed on the preprocessed functional images acquired
during the resting and task state using the Functional
Connectivity Toolbox (Conn) for SPM (82). FC patterns
were assessed using a seed-driven approach.

Prior to the FC analysis, the data underwent additional
temporal preprocessing. We applied a component-based noise
correction method (CompCor) (83) implemented in Conn to
extract five principal components derived from the white matter
and cerebrospinal fluid. These components were entered as
temporal confounding factors along with the detected volumes
with motion artifacts. For the time-series acquired during
the training on the motor sequence task, the main effect of
performance blocks convolved with the canonical HRF and the
corresponding first-derivative terms were included as additional
confounds. All confounding factors were removed from the
time-series using linear regression. Finally, the resulting residual
BOLD time series were also high-pass filtered (0.008Hz < f).

Individual maps of FC patterns were generated by analyzing
the resting state time-series (6min 40 s, 150 volumes) and the
time-series acquired while participants were performing the
motor sequence task, separately. The overall time spent on actual
performance varied between participants as a function of their
performance rate. On average, they spent 5min and 25 s (123
volumes) practicing the sequence; the total performance time of
the fastest and slowest participant being 3min 42 s (84 volumes)
and 10min 15 s (232 volumes), respectively. The performance
periods were separated from the interleaved periods of rest by
including a regressor related to performance blocks. To take into
account the hemodynamic delay, this regressor was convolved
with a canonical HRF and rectified. Thus, the task-based FC
analyses were performed on the data acquired during continuous
periods of actual performance leaving out the rest. In that way,
FC measures reflected interaction between brain regions during
the task state that was separated from the task-evoked activation
(i.e., global changes in signal from rest to task and vice-versa) or
signal fluctuations during interleaved periods of rest.

FC analyses were performed using the ROI within the “active”
SMC as a seed. Individual FC maps were generated by estimating
Fisher’s z-transformed Pearson’s correlation coefficients between
the BOLD signal averaged across voxels within the seed region
and that at every voxel in the brain.

The individual maps were introduced into a second level
GLM analyses to obtain group-level estimates. The statistical
inferences of the resting state and task-based FC patterns were
done at the group level using a one-sample t-test. Task-induced
changes were assessed by contrasting statistical maps between
the two states ([Task state]—[Resting state]). The resulting maps
were thresholded at p ≤ 0.001 (two-tailed) and overlaid on the
mean structural image of all participants using FIVE. For the 3D
visualization, maps were projected on the inflated mean cortical
surface of all participants using a surface display implemented
in Conn.

Regression Analyses
In addition to the second-level analyses to obtain the group-level
estimates described above, regression analyses with individuals’
behavioralmeasures as covariates of interest were also performed.
This approach allowed us to test for regions where FC
strength with the “active” SMC was associated with individual
training-induced changes in performance. These analyses were
run separately for each performance measure (i.e., gains in

Frontiers in Neurology | www.frontiersin.org 6 November 2019 | Volume 10 | Article 1242

http://mrtools.mgh.harvard.edu
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gabitov et al. Functional Connectivity During Motor Learning

performance rate and the degree of tapping pattern similarity)
using the task-based FC maps. Possible relationships between
the behavioral measures and the FC during the resting state,
as well as its relative changes induced by the task state were
also tested. Statistical inferences were made at the peak-level
using family-wise error correction (FWE) over a small volume
of interest. The volumes of interest were defined as spheres (r
= 10mm) around a center of each ROI. Statistics for clusters
that survived a cluster-level extent threshold of p < 0.05
following a peak-level threshold of p < 0.005 (two-tailed) is also
reported. The specificity of associations between FC values and
learning measures to the behavioral state was tested as post-hoc
comparisons between correlations from dependent samples using
an online calculator (https://www.psychometrica.de).

RESULTS

Behavioral Results
The time to complete each training block (i.e., performance
duration) and the degree of tapping pattern similarity to the
one attained by the end of training are shown in Figure 2B.
Training-related changes in performance were assessed using
repeated measures ANOVA with block as a within-subject factor.
As expected, training on the motor sequence task led to a
faster performance as indicated by a significant effect of block
[F(6.70, 294.43) = 53.49, p < 0.001]. On average, performance
duration decreased from 30.03 ± 0.97 to 20.73 ± 0.814 s (mean
± s.e.m. of the first and the last training block, respectively).
These robust gains in performance rate were paralleled by
significant changes in the subjects’ tapping pattern as indicated
by a significant effect of block [F(5.92, 260.31) = 4.76, p < 0.001]
on the correlation coefficients between the tapping patterns of
the last training block and each of the other training blocks. The
degree of similarity to the tapping pattern generated during the
last training block increased from 0.78 ± 0.10 to 1.21 ± 0.14
(mean ± s.e.m., Fisher’s z-transformed correlation coefficients
for the first and penultimate training block, respectively). Thus,
practice on the motor sequence resulted not only in faster task
execution, but also in the formation of a new, presumably more
efficient, pattern for generating the motor sequence.

Task-Induced Changes in Activity
Task-induced changes in activity are shown in Figure 3. As
expected, task-evoked activation was strongly lateralized to the
right SMC contralateral to the performing (left) hand with no
significant activation of its homolog within the left hemisphere.
Cortical activations were also observed within the supplementary
motor area (SMA) as well as in the dorsal premotor and parietal
regions, bilaterally.

Task-Induced Changes in Functional
Connectivity
Task-induced changes in FC were assessed using a whole-
brain functional connectivity analysis approach with the ROI
within the “active” SMC as a seed. Comparison of the FC
patterns between the resting and task states revealed that
during the task the FC strength within the somatomotor

FIGURE 3 | Regions of interest and task-induced changes in activity. A

statistical map of the whole-brain analysis of task-induced changes in activity

was thresholded at p < 0.05 (two-tailed) using peak-level family-wise error

(FWE) correction over the entire brain. The map is displayed over the mean

structural image of all participants. Color bar represents t values with

yellow-red and green-blue shades indicating regions with task-induced activity

increases and decreases, respectively. Regions of interest (ROIs, white circles)

were defined as spheres (r = 6mm) within the hand area of the left (“passive”)

and right (“active”) somatomotor cortex (SMC; xyz = −36, −24, 57, and xyz =

42, −21, 57, respectively). Columns represent group mean of task-induced

increases in activity for each ROI. Error bars represent standard errors of the

mean (s.e.m.).

network encompassing bilateral somatosensory and motor
cortices significantly decreased (Figure 4). These decreases
were evident not only in the FC estimates between the two
hemispheres but also within the “active” hemisphere contralateral
to the performing hand. Specifically, FC values between the
two ROIs within the somatomotor hand areas during the
task state were significantly lower than during the resting
state (Figure 4, left plots), indicating task-induced functional
segregation between the two SMC. These decreases reflected
only a relative decline in FC between the “active” and “passive”
SMC, as indicated by FC values significantly greater than zero
during either state (t > 17.43, p < 0.001). The preserved
functional connections between the two SMC during unimanual
task are in line with the resilience of intrinsic brain networks to
momentary demands of the environment (19). The significant
task-induced decreases in the FC strength were also observed
within the “active” somatomotor hand area itself, despite the
increased task-induced activation of this primary region. Such
suppressive effect of the task state on the FC strength within
the “active” SMC may derive from selective synchronization
and amplification of activity within neural populations that
are better suited to elicit the desired action, thereby locally
segregating them from other task-irrelevant units within the
same ROI. These changes in the FC strength within the “active”
SMC were statistically robust, yet, relatively small, in terms
of their magnitude, as compared to the particularly high FC
values across the two states (mean ± s.e.m: 1.54 ± 0.04
and 1.26 ± 0.03, for the resting and task state, respectively)
(Figure 4, right plots), indicating strongly synchronized intrinsic
activity between neural populations representing the performing
hand. This relative decline in FC strength with the “active”
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FIGURE 4 | Task-induced change in the whole-brain functional connectivity of the “active” somatomotor cortex. The results of the whole-brain analysis are showing

regions where FC with the hand area of the “active” SMC significantly changed during the motor sequence task comparted to the resting state ([Task state]—[Resting

state]). The analysis was performed using the ROI within the “active” SMC as a seed (the white circle). The statistical map is displayed over the inflated mean cortical

surface of all participants at p < 0.001 (two-tailed). A horizontal color bar represents t values with red-yellow and blue-magenta shades indicating task-induced

stronger and weaker FC with the “active” SMC, respectively. L and R—left and right hemisphere, respectively. The values of the FC between the two SMC (the white

arrow) and within the “active” SMC (the white circle) were extracted separately from the resting and task state time-series (lower left and right plot, respectively); the

task-induced decreases in the FC strength between the two SMC and within the “active” SMC are also plotted (upper plots). Columns represent group means. Error

bars represent standard errors of the mean (s.e.m.). SMC, somatomotor cortex.

SMC extended beyond the somatomotor hand areas and was
widespread along both central sulci. Additional decreases were
observed within the occipital lobe, bilaterally. In parallel, the
task state resulted in stronger FC between the “active” SMC
and higher-level parietal, temporal and prefrontal cortical areas,
including the SMA, indicating the need to integrate information
from these regions to meet the task goals. Increased FC
was also observed within the basal ganglia, including bilateral
putamen and thalamus.

Segregation Within the Somatomotor
Network and Learning
We next explored the relationship between FC patterns of the
“active” SMC and the effect of learning. To this end, the reduction
in block duration when performing the task, as ameasure of gains
in performance rate, and the degree of tapping pattern similarity
by the end of training, as a measure for performance consistency,
were calculated for each individual. These measures were entered
as covariates of interest in the whole-brain FC analyses using the
“active” SMC as a seed (Tables 1, 2).

Significant effects within the somatomotor network were
observed only when the correlation analyses were performed
on the task-based FC maps; no significant correlation was
evident with FC estimates within the somatomotor network
during the resting state either with their relative changes when
comparing between the two states (brain regions that exhibited
significant effect are listed in Table 1). Specifically, during the
task, individual differences of gains in performance rate were
associated with weaker FC of the seed ROI (the “active” SMC)
with its homolog in the left hemisphere (Figure 5, right panel;

Table 1.3). Importantly, despite the fact that the analysis was
conducted across the entire brain, the significant effect was
notable only around the hand knob. This result may indicate that
reduced influences of somatomotor representations of the passive
hand on ongoing activity of somatomotor representations of the
active hand facilitated the development of faster performance
rate. Individual differences in the degree of tapping pattern
consistency, on the other hand, were associated with weaker
FC within the “active” somatomotor hand area itself (Figure 6,
right panel; Table 2.3). A similar association was found with FC
values between the seed ROI and SMA. These results link more
consistent performance by the end of training with segregation
processes within the “active” SMC and, presumably, its selective
information integration with the SMA. Note that all associations
were negative (i.e., individuals with greater gains in performance
rate and greater consistency by the end of training had reduced
seed-based FC within the somatomotor network) and specifically
present during the task state (see Table 3 for detailed statistics
of correlation analyses) but not during the resting state (see
also left graphs in Figures 5, 6). The direct comparison between
correlations resulted in significant effect of state (z > 2.53, p <

0.01), confirming that the relationship between FC values and
learning measures differed between the resting and task state.
The significant difference between the two states suggests that
FC patterns within the somatomotor network were reconfigured
during the task. Only these reconfigured patterns predicted
individual differences in learning.

As the results reported above suggest, the two SMC were
functionally segregated during the task as compared to the resting
state (Figure 4). The task-induced segregation, as reflected in
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TABLE 1 | Areas where functional connectivity correlated with gains in performance rate.

MNI coordinates Peak-level statistics Cluster-level statistics

Label x y z z-score p # of voxels p

1. TASK STATE—RESTING STATE

A. Positive correlation

No areas with significant effect

B. Negative correlation

82 0.002

Frontal_Sup_Medial L −6 66 3 4.132 <0.001

Frontal_Med_Orb R 6 54 −9 3.632 <0.001

33 0.029

Temporal_Pole_Mid L −36 9 −45 3.875 <0.001

Temporal_Pole_Sup L −30 15 −33 2.963 0.002

57 0.006

Temporal_Mid L −60 −15 −18 3.718 <0.001

Temporal_Inf L −57 −21 −24 3.226 <0.001

2. RESTING STATE

A. Positive correlation

40 0.028

Frontal_Med_Orb L −9 57 −3 3.831 <0.001

Frontal_Sup_Medial L −6 66 0 3.115 <0.001

B. Negative correlation

84 0.003

SupraMarginal R 69 −42 27 3.552 <0.001

Temporal_Sup R 69 −45 18 2.976 0.002

3. TASK STATE

A. Positive correlation

No areas with significant effect

B. Negative correlation

Postcentral

13 0.137

*left SMC (xyz = −36, −24, 57) L −36 −27 54 3.263 0.046 FWE*

Functional connectivity analyses were performed for the whole-brain using the right sensorimotor cortex as a seed. Gains in speed were included as a covariate of interest. The resulted

maps were thresholded at p < 0.005 (two-tailed). The inferences were made at the peak-level using family-wise error correction (FWE) over a small volume of interest. Volumes of

interest were defined as spheres (r = 10mm) around center coordinates of the regions of interest within the hand area of the somatomotor cortices (SMC) and supplementary motor

area (SMA) (*). Clusters that survived a cluster-level extent threshold of p < 0.05 are also reported. Cluster labeling was performed using AAL (84).

the reduced FC strength, was also evident within the “active”
SMC itself. Did the suppressive effect of the task state on
the FC strength extend to the somatomotor representations
linked to learning? If so, does such effect indicate functional
segregation ormerely an overall reduction of noise correlations—
a phenomenon suggested by animal studies that may lead to
a widespread reduction in connectivity strength at the level
of neural populations (54)? To answer these questions, we
performed correlation analyses on the individual FC values
extracted from clusters (peak voxels) where decreased FC with
the seed (i.e., the ROI within the “active” SMC) was associated
with learning; these clusters are shown in Figures 5, 6. During
the resting state, participants who showed stronger FC within
the “active” SMC itself, also showed stronger FC between the
two SMC (r = 0.38, p = 0.01) (Figure 7, left plot). However,
no significant correlation between these estimates of intra- and
inter-hemispheric interactions was observed during the task
state (r = 0.10, p = 0.51) (Figure 7, right plot). This finding,

which indicates that relationship between the intra- and inter-
hemispheric interactions differed between the two states, rules
out the possibility that suppressive effect of the task state on
the FC strength within the somatomotor network can be fully
explained by the overall noise reduction. Instead, it suggests that
ongoing activity within the “active” and “passive” SMC became
less synchronized during the task compared to the resting state
and thereby indicates task-induced segregation. This segregation
was specifically present between somatomotor representations in
each hemisphere linked with different aspects of learning.

The same analysis performed on the individual FC values of
the seed ROI with the peak of the significant clusters within
the “active” SMC and SMA showed an inverse relationship.
No significant correlation between these values was observed
during the resting state (r = 0.18, p = 0.25). However, during
the task state, participants with stronger FC within the “active”
SMC itself also showed stronger FC between the seed ROI and
SMA (r = 0.45, p < 0.01). This finding indicates that ongoing
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FIGURE 5 | Inverse relationship between individual differences in performance gains and task-based FC strength between the two somatomotor cortices. Gains in

performance rate during the training were negatively correlated with the degree of the task-based functional connectivity (FC) between the two somatomotor cortices

(SMC). The whole-brain FC analysis was performed on the task state time-series using the ROI within the “active” SMC as a seed (the white circle); individual gains in

performance rate were entered as a covariate of interest (middle panel). These gains were calculated as a percentage change in mean performance duration during

the last six vs. the first six blocks of training—higher values indicating greater improvement. Gains in performance rate are plotted against FC values extracted from the

resting and task state time-series (left and right plot, respectively). The FC values were calculated between the ROI within the “active” SMC and the peak voxel of the

significant cluster within the left somatomotor hand area (xyz = −36, −27, 54) (the white arrow). The cyan blob resulted from the statistical maps thresholded at

p < 0.005 (two-tailed). L and R—left and right hemisphere, respectively.

activity of the specific neural populations within the “active” SMC
and SMA, whose FC patterns during the task were inversely
related to more consistent performance by the end of training,
was also stronger synchronized during the task but not during
the resting state.

Differences in Performance Rate as a
Possible Confound
The overall time spent on the actual task performance varied
between participants as a function of their performance rate so
that faster performers spent less time on the task than slower
performers. Therefore, it is possible that the current pattern of
results might be confounded by the inter-individual variation
in the length of the time series used to estimate the task-based
FC. However, neither the gains in performance rate nor the
degree of the tapping pattern consistency by the end of training
were significantly correlated with the individuals’ time spent on
the actual task performance (|r| < 0.20, p > 0.18). Therefore,
the possibility that the current pattern of results can be fully
explained by the differences in the overall performance rate or
the length of the time series is unlikely.

DISCUSSION

In the current study, we investigated how functional connectivity
within the somatomotor network is reconfigured during a
unimanual motor sequence task, and how these changes are
related to individual learning capacities. To do so, we applied
seed-driven functional connectivity analysis to fMRI data
collected in a previous study (43). Participants were scanned
during resting state, as well as during a motor sequence task,

which required them to repeatedly generate a five-element
sequence using their non-dominant hand. Our results suggest
that unimanual performance of the motor sequence relies on
functional segregation between the two SMC and selective
integration between the SMC engaged in the task and the
SMA. We thus provide supportive evidence to the notion
that task-induced changes in FC reflect reconfiguration of
the connectivity patterns within the somatomotor network
rather than a simple amplification or silencing of its intrinsic
dynamics. Such reconfiguration, as captured with the BOLD-
fMRI signal, not only support motor behavior but may also
predict learning capacity.

The Widespread Task-Induced Reduction
in Functional Connectivity
Here we show that the unimanual motor sequence task induced
significant reduction in the FC of the “active” SMC with
extensive regions along the central sulcus, bilaterally. Such
suppressive effect of the task state on the FC strength is
consistent with previous studies that also compared FC patterns
between the resting and task states and reported task-induced
FC decreases within the somatomotor network (13, 28, 85).
However, these within-network decreases were observed across
various paradigms, including passive movie watching (28),
thereby raising the possibility that FC suppression within the
somatomotor network characterizes transitions between brain
states (i.e., from the resting to task state) but may not reflect
specific processes related to motor action. Moreover, previous
findings suggest that the suppressive effect of the various tasks on
the FC strength extends beyond the somatomotor network and
may be a core feature of local brain circuits regardless of their
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TABLE 2 | Areas where functional connectivity correlated with the tapping pattern consistency.

MNI coordinates Peak-level statistics Cluster-level statistics

Label x y z z-score p # of voxels p

1. TASK STATE—RESTING STATE

A. Positive correlation

56 0.006

Cerebelum_6 R 30 −54 −36 4.005 <0.001

Cerebelum_Crus1 R 30 −63 −36 3.825 <0.001

43 0.015

Frontal_Sup_Medial R 6 33 57 3.873 <0.001

B. Negative correlation 32 0.031

Precentral L −30 −3 48 4.076 <0.001

2. RESTING STATE

A. Positive correlation

112 <0.001

Frontal_Sup_Orb R 12 72 −3 4.550 <0.001

Frontal_Med_Orb L −3 69 −3 3.859 <0.001

65 0.007

Precuneus L −12 −60 42 4.110 <0.001

Parietal_Inf L −33 −57 45 3.593 <0.001

B. Negative correlation

121 <0.001

Cerebelum_6 R 30 −54 −36 4.798 <0.001

Cerebelum_Crus1 R 24 −66 −36 4.327 <0.001

Cerebelum_8 R 15 −69 −36 3.324 <0.001

51 0.015

Cerebelum_Crus1 L −33 −57 −39 3.394 <0.001

3. TASK STATE

A. Positive correlation

204 <0.001

SupraMarginal R 57 −45 33 4.274 <0.001

Angular R 57 −57 36 3.185 <0.001

Parietal_Inf R 57 −42 48 3.894 <0.001

Temporal_Sup R 45 −42 3 4.168 <0.001

38 0.017

Angular R 39 −72 42 4.141 <0.001

57 0.005

Temporal_Inf L −42 9 −39 3.348 <0.001

40 0.015

Occipital_Mid R 30 −90 15 3.459 <0.001

B. Negative correlation

Postcentral 18 0.083

*right SMC (xyz = 42, −21, 57) R 33 −21 57 3.796 0.009FWE*

44 0.011

Supp_Motor_Area L −15 0 54 3.540 <0.001

Functional connectivity analyses were performed for the whole-brain using the right sensorimotor cortex as a seed. The degree of the tapping pattern consistency was included as a

covariate of interest. The resulted maps were thresholded at p < 0.005 (two-tailed). The inferences were made at the peak-level using family-wise error correction (FWE) over a small

volume of interest. Volumes of interest were defined as spheres (r = 10mm) around center coordinates of the regions of interest within the hand area of the somatomotor cortices

(SMC)(*). Clusters that survived a cluster-level extent threshold of p < 0.05 are also reported. Cluster labeling was performed using AAL (84).

network affiliation, functional properties or cognitive demands
of the task (31, 86, 87).

Indeed, the widespread task-induced reduction in FC strength
reported by fMRI studies may reflect a global suppression of
noise correlations. Such interpretation is in line with the results
from animal research that has shown attenuation in correlated
variability of neurons’ firing rate, which is commonly considered

as noise, upon various stimuli and task events (54, 55, 88).
This effect was observed across different neural populations
regardless of their tuning properties lending support to the
notion that the suppression of neural variability may be an overall
feature of the cortical response to the task state (54). At the
network level, such reduction of noise implies that functional
circuits become more stable when driven by stimulus or task.
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FIGURE 6 | Inverse relationship between individual differences in degree of the tapping pattern consistency attained by the end of training and task-based FC

strength within the “active” somatomotor cortex. The degree of consistency in the tapping pattern by the end of training was negatively correlated with the degree of

the task-based FC within the hand area of the “active” somatomotor cortex (SMC) as well as between this region and the supplementary motor area (SMA). The

whole-brain FC analysis was performed on the task state time-series using the ROI within the “active” SMC as a seed (the white circle); individual measures of the

tapping pattern consistency were entered as a covariate of interest (middle panel). The degree of the tapping pattern consistency was assessed by averaging

normalized Pearson’s correlation coefficients between the tapping patterns generated during the last six blocks excluding block 14 (i.e., blocks 8–13) and the tapping

pattern formed by the end of training (i.e., during block 14)—higher values indicating greater tapping pattern similarity and, therefore, greater consistency by the end of

training. These coefficients are plotted against FC values extracted from the resting and task state time-series (left and right plot, respectively). The FC values were

calculated between the ROI within the “active” SMC and the peak voxel of the significant cluster within the somatomotor hand area (xyz = 33, −21, 57) (the white

arrow). The cyan blobs resulted from the statistical maps thresholded at p < 0.005 (two-tailed). L and R—left and right hemisphere, respectively.

TABLE 3 | Correlations between the FC strength and behavioral correlates of

learning.

Resting state Task state Correlations’

comparison

between the states

r p r p z p

Gains in performance rate in association with:

FC with the

“passive” SMC

0.58 0.71 −0.47** 0.001 2.53* 0.006

Tapping pattern consistency in association with:

FC within the

“active” SMC

−0.11 0.47 −0.54** <0.001 2.56* 0.005

FC with the SMA −0.003 0.99 −0.51** <0.001 2.69* 0.004

*Significant results at 0.01 level; **Significant results at 0.001 level.

Nevertheless, the reduction of correlated noise lacks specificity
and, by itself, does not improve fidelity of neural encoding (55,
56). If, however, the noise reduction is correlated with the task-
relevant signal, it could improve encoding accuracy and facilitate
learning (89, 90).

Reduction in Functional Connectivity and
Selective Engagement of Task-Relevant
Neural Representations
As predicted in the current study, the task-evoked activation
within the somatomotor hand area was lateralized to the
hemisphere contralateral to the performing hand [e.g., (2, 91–
93)], in line with the known phenomenon of lateralization of

somatomotor representations specifically tuned to movements
generated by contralateral body parts (94). Given the well-
defined somatotopic organization of these representations along
the central sulcus, here we argue that the widespread and
local task-induced reduction in FC with the “active” SMC may
reflect different neurophysiological processes. Specifically, the
suppressive effect of the task state on FC strength between the
two SMC may derive from the overall non-selective suppression
of spontaneous activity to reduce noise correlations. Such
noise reduction may also explain task-induced decreases in FC
between the seed ROI within the “active” SMC and somatomotor
representations of other body parts. The FC suppression within
the “active” somatomotor hand area itself, however, may further
reflect selective co-activation of neural populations that are
particularly tuned to perform the finger tapping task, thereby
segregating them from other intrinsically connected, but task-
irrelevant units. Supporting fMRI evidence of non-selective
decreases in local FC driven by a finger tapping task has been
provided by Lv et al. (95), who showed that both fast and
slow finger tapping rates have a similar suppressive effect on
local FC in the SMC ipsilateral (“passive”) to the performing
hand. The effect observed within the contralateral (“active”)
SMC, however, was different, such that the faster tapping rate,
which usually results in stronger activation of this region (96–
98), was associated with greater reduction in its local FC,
hence indicating a greater segregation. Thus, the combination of
increased task demands, the stronger activation and the more
segregated activity within the contralateral SMC support the
idea that FC dynamics within the “active” somatomotor hand
area observed in our study constitute a signature for selective
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FIGURE 7 | Task-induced segregation between the two somatomotor cortices. Individual functional connectivity (FC) values between the two somatomotor cortices

(SMC) (vertical axis) are plotted against FC values within the “active” SMC (horizontal axis) during the resting and task state (left and right plots, respectively). The FC

values were calculated between the ROI within the “active” SMC (white circle) and peak voxels of clusters resulted from the whole-brain FC analyses, which were

conducted using behavioral measures as covariates of interest (for details see Figures 5, 6). L and R—left and right hemisphere, respectively. *significant correlation

at 0.01 level. During the resting state, FC between the two SMC was positively correlated with FC within the “active” SMC. No such relationship was observed during

the task state.

engagement of task-relevant neural representations duringmotor
task execution.

The idea of selective engagement of task-relevant neural
representations resonates with the emerging recognition that
task-induced changes in FC reflect rapid reconfiguration of
functional connections (26, 27, 42). Evidently, these changes are
relatively small, in terms of their magnitude, as they are probably
constrained by mainly invariant large-scale functional brain
network topography (13, 14). Nevertheless, some characteristics
of such changes are specific to the task at hand, allowing to
accurately decode the task state of a participant (29, 30), and
are linked to better performance (27, 31–38). Notably, weaker
correspondence between FC patterns during the resting and
task states particularly characterizes primary sensory and motor
circuits (42). Such deviation from the intrinsic brain dynamics
may depend on attentional state, stimulus properties, and task
complexity (27, 35, 42, 99), hence supporting the idea that
transient sub-networks within the sensory and motor circuits are
formed to process incoming information or carry out the desired
action. Here we show that reconfigured FC patterns within
the somatomotor network are not only behaviorally relevant,
but may also support learning. In fact, better learning, which
was expressed as a faster and more consistent performance by
the end of training, was related to individual differences in
the FC strength during the task, but not during the resting
state. Such dissociation is consistent with the “idling” view on
the intrinsic brain function during the resting state (26) and
suggests that reconfigured FC patterns within the somatomotor
network during the task can capture the neural dynamics that
sub-serve learning.

Task-Based Functional Connectivity
Strength Is Inversely Related to Learning
Behaviorally, the beneficial effects of motor sequence practice
were assessed based on improved performance rate, which can be
achieved by simple acceleration of single movements reflecting
learning at the executive level, and greater tapping pattern
consistency, which presumably reflects formation of internal
sequence representation (100, 101). Here we show that these
two complementarymetrics to estimate learning are differentially
associated with individual differences in FC strength between the
two SMC and within the “active” SMC itself.

Particularly, participants who exhibited weaker FC between
the two SMC showed greater improvement in performance
rate. The effect within the “passive” SMC was localized
to the hand knob, indicating that greater inter-hemispheric
segregation between somatomotor units representing hand
movements facilitated learning at the executive level. Such
increased autonomy between the two somatomotor hand areas
may reflect the release from inter-hemispheric inhibition—an
effect postulated by transcranial magnetic stimulation (TMS)
studies (102, 103). In fact, it has been shown that virtual

“lesion” to the “passive” SMC induced by repetitive TMS leads
to improved performance in the ipsilateral hand, presumably
due to the suppressed inter-hemispheric inhibition (104–108).
The inter-hemispheric inhibition is also reduced following
unimanual training (109–111) and is associated with faster
performance not only in the trained, but in the untrained hand as
well (111). Alternatively, the improved performance associated
with greater segregation between the two SMC reported here
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may also indicate beneficial effects of release from irrelevant
somatosensory input from the “passive” hemisphere. Indeed, the
cluster showing significant effect within the “passive” SMC is
located slightly posteriorly to the central sulcus encompassing
the somatosensory hand area. To reliably dissociate between
somatosensory andmotor representations nested closely together
around the hand knob, however, higher spatial resolution of
the fMRI data is required. In any case, we suggest that the
facilitatory effect of greater segregation between somatomotor
representations is selective to the effector engaged in the
task (i.e., the hand as compared to other body parts). Thus,
effector-selective “pruning” of inter-hemispheric connections
may facilitate learning primarily at the level of motor execution
rather than movement synergy and sequence representation.
It is worth noting, however, that under certain conditions,
influences from the “passive” SMC are excitatory and may
facilitate performance in a sequence-specific manner (48, 112).

In addition to a faster performance rate, which may develop
due to more efficient execution of single movements regardless of
their serial order, repeated experience with the motor sequence
also shapes the tapping pattern of that sequence (76). Being
determined by the relative spacing between the keypresses, this
pattern may vary at the beginning, but stabilizes by the end of
training (75). In the current study, participants who expressed a
more stable performance by the end of training, hence generating
a highly reproducible pattern when tapping the sequence, also
exhibited weaker FC within the “active” SMC itself during
the task. Animal studies suggest that same movements can be
generated by various activity patterns within the motor cortex
(64, 113). With repeated experience, however, the variability in
these patterns decreases (64, 114). The greater reproducibility of
the spatiotemporal patterns of neural activity concurs with the
emergence of movement stereotypy and, therefore, may indicate
the formation of dedicated internal representations of a new
motor synergy. During initial phases of skill acquisition, these
neural representations are shaped through selective activation
of specialized neural populations and tuning of their firing rate
(115). Evidence from fMRI studies onmotor sequence learning in
humans points out to similar processes (46, 47, 52). Our current
results are thus consistent with the existence of an experience-
driven mechanism of selective tuning and stabilization among
neural populations representing the performing hand. We
suggest that greater selectivity and stabilization of task-relevant
representations are reflected in the reduced FC strength within
the “active” SMC during the task.

Concurrently, the degree of task-based FC strength between
the “active” SMC and SMA was also inversely related to the
degree of performance consistency. Together with task-induced
integration between these two regions, which was indicated
by increases in FC strength during the task compared to the
resting state, such relationship suggests that selective tuning
at the lower level of primary somatomotor cortex may be
governed by higher level processes within the SMA. The latter
interpretation relies on three widely accepted views that are
strongly supported by animal and human studies. First, the SMA
has direct projections to the primary motor cortex (116). These
projections are primarily excitatory (117) and are organized

bilaterally with no clear lateralization (118). Second, the SMA
is situated high within the hierarchy of the motor control
system and is involved in initiation, monitoring and regulation
of voluntary movements (119–122). Finally, this supra-motor
region is crucially involved in sequencing of actions (123–125)
and representations of practiced motor sequences (126–129).
Accordingly, our results add up to accumulative fMRI evidence
suggesting that SMA plays a role in encoding a sequence-specific
pattern of finger movements (130) and orchestrates processes of
rapid reorganization within the “active” SMC.

Methodological Considerations
Currently, there is a growing interest to study cognitive
brain function using large-scale network modeling [for the
recent reviews, please see (131, 132)]. This approach has been
developed upon the foundations of graph theory by leveraging
the mathematical description of a graph, which is composed
of nodes and weighted edges, to represent brain networks.
Nodes are commonly chosen as contiguous volumes/regions
with boundaries defined either anatomically, using parcellation
atlases, or functionally, using community detection algorithms.
Edge weights are commonly defined by a degree of correlation
or coherence between pairs of nodes. The sensitivity of this
approach to dynamic changes within and between functional
brain circuits depends on the size of each node, which
consequently determines their overall number, and the way these
nodes are grouped into networks. Whereas, both factors alleviate
the multiple comparison problem, since they reduce high
dimensionality of the whole-brain fMRI data, as a drawback, they
also inherently reduce local specificity, thereby limiting special
resolution of investigations to large-scale changes. For example,
testing the integration of large-scale functional neural circuitry
during the unimanual motor task, when participants practiced to
generate different sequences upon visual guidance, Bassett et al.
(41) provided evidence for growing autonomy between the visual
and somatomotor systems over the course of a 6-week training
(41). This segregation was also paralleled by disengagement
of cognitive control networks including connections originated
from frontal and anterior cingulate cortices. Whereas, such
autonomy is consistent with the obvious decreased dependency
on the visual cue and higher cognitive processes with practice
[see also (36)], the researchers reported no significant changes
in the overall degree of integration/segregation within the
somatomotor network, which included primary somatosensory
and motor regions representing both the active and passive
hands, as well as SMA. However, when the analysis was
conducted using the intra-network integration values calculated
for each area separately, it revealed significant within-network
changes that were associated with the amount of training
[Supplementary Figure 8 in Bassett et al. (41)]. The results of the
current study are consistent with this supplementary finding and
further suggest that experience-driven reorganization within the
somatomotor network occurs early in learning and involves both
segregation and integration.

There are several key advantages of our study as compared
to others in the literature. First, it is worth noting that our
experimental design employed a motor sequence paradigm
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without any external input or feedback during continuous
periods of actual performance, thereby, minimizing influences
of complex interactions among heterogeneous networks during
the task state. The only external cue provided during the training
was a change in color of the fixation cross, from red to green
and from green to red, that indicated the beginning and the
end of each training block, respectively. Second, this design
also allowed us to separate the functional data collected during
continuous performance periods (i.e., performance blocks) from
the interleaved periods of rest. Finally, continuous nature of
actual performance upon self-guided regime was advantageous
for separation of FC measures from activation biases evoked
at task transitions. In that way, FC values were calculated
based on ongoing fluctuations of the fMRI signal during
continuous periods of either resting or task state, thereby
providing comparable estimates of connectivity patterns between
those states.

CONCLUSION

Our results suggest that a hypothesis-driven seed-based
FC approach reliably captures the task-induced changes in
functional connectivity within the somatomotor network
during the unimanual motor sequence task. These changes are
not limited to the task-activated regions, hence revealing the
existence of distributed processes of segregation and integration
that act in parallel to allow for the generation of fine motor
movements. These reconfigured connectivity patterns not
only support task execution but also facilitate learning. The
limited correspondence between the patterns of task-induced
activity and connectivity is a known phenomenon within the
scientific community. While there is an increasing recognition of
potential benefits of combining the assessment of both metrics
obtained from the task-based fMRI data series in order to
understand cognitive brain functions (133), here we show that
a careful consideration of the activation profile and functional
specialization of each region of interest is not only desirable,
but also critical to draw meaningful conclusions based on FC
measures. In the current study, this approach, in combination
with reliable behavioral correlates of motor sequence learning,
allowed us to tease apart neural dynamics that may drive the
adaptive processes during the initial phases of skill acquisition,
the ones that need to be “silenced” and the ones that should be
selectively pruned to rule out their task-irrelevant influences.

Our results suggest that during the task, more segregated
activity patterns between neural populations representing hand
movements within the somatomotor cortex were beneficial for
the development of both faster and more consistent performance
by the end of training. Whereas, greater segregation between
the two SMC may indicate effector-specific pruning of inter-
hemispheric connections, which may facilitate gains at the level
of motor execution, the same effect observed within the “active”
SMC may possibly indicate the existence of selective tuning and
stabilization processes, thereby resulting in more reproducible
patterns of activity that allow to generate the motor sequence
with greater consistency.
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