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Abstract
Hydrology is a major environmental factor determining plant fitness, and hydrologi-
cal niche segregation (HNS) has been widely used to explain species coexistence. 
Nevertheless, the distribution of plant species along hydrological gradients does not 
only depend on their hydrological niches but also depend on their seed dispersal, 
with dispersal either weakening or reinforcing the effects of HNS on coexistence. 
However, it is poorly understood how seed dispersal responds to hydrological con-
ditions. To close this gap, we conducted a common-garden experiment exposing 
five wind-dispersed plant species (Bellis perennis, Chenopodium album, Crepis sancta, 
Hypochaeris glabra, and Hypochaeris radicata) to different hydrological conditions. We 
quantified the effects of hydrological conditions on seed production and dispersal 
traits, and simulated seed dispersal distances with a mechanistic dispersal model. We 
found species-specific responses of seed production, seed dispersal traits, and pre-
dicted dispersal distances to hydrological conditions. Despite these species-specific 
responses, there was a general positive relationship between seed production and 
dispersal distance: Plants growing in favorable hydrological conditions not only pro-
duce more seeds but also disperse them over longer distances. This arises mostly 
because plants growing in favorable environments grow taller and thus disperse their 
seeds over longer distances. We postulate that the positive relationship between 
seed production and dispersal may reduce the concentration of each species to the 
environments favorable for it, thus counteracting species coexistence. Moreover, the 
resulting asymmetrical gene flow from favorable to stressful habitats may slow down 
the microevolution of hydrological niches, causing evolutionary niche conservatism. 
Accounting for context-dependent seed dispersal should thus improve ecological and 
evolutionary models for the spatial dynamics of plant populations and communities.
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1  | INTRODUC TION

Niche theory plays a central role in explaining species–environment 
relationships (Chase & Leibold, 2003; Hutchinson, 1961; Schurr et al., 
2012). Hydrological niche segregation (HNS), in particular, has been 
widely adopted to explain species coexistence of plants (Silvertown, 
2004; Silvertown et al., 1999, 2015). HNS causes plant species to 
coexist due to partitioning of space on fine-scale soil-moisture gra-
dients (Araya et al., 2011), of water as a resource, and/or of tem-
porally variable recruitment opportunities. HNS has been used to 
predict the relationship between functional traits and community 
structure (Herberich et al., 2017) and has received strong empirical 
support in various ecosystems (Brum et al., 2019; Palacio et al., 2017; 
Silvertown et al., 2015). For example, soil moisture influences spe-
cies distributions in forests (Francis et al., 2020; McLaughlin et al., 
2020) and grasslands (Bartelheimer & Poschlod, 2016; Moeslund 
et al., 2013). Despite strong empirical support, identifying the pre-
cise mechanisms generating HNS and its consequences is an ongoing 
challenge (Araya et al., 2011; Silvertown et al., 1999). Recent studies 
showed that germination (James et al., 2020) and seedling growth 
(Silvertown et al., 2012) can vary along hydrological gradients, sug-
gesting possible underlying mechanisms. Ultimately, hydrological 
niches are determined by how local population growth (the balance 
of reproduction and mortality) responds to hydrological variation 
(e.g., Holt, 2009). Understanding HNS thus requires us to quantify 
how reproduction and mortality (and components thereof, such as 
seed production) respond to local hydrological conditions.

The coexistence-promoting effects of small-scale HNS can 
be reinforced or counteracted by seed dispersal (Hart et al., 2017; 
Levine & Murrell, 2003). In fact, dispersal is a central component of 
“growth-density covariance” as a key coexistence mechanism in spa-
tially heterogeneous environments (Barabás et al., 2018; Chesson, 
2000; Hart et al., 2017). Positive covariance between intrinsic pop-
ulation growth rate and population density occurs if dispersal is 
generally limited or if context dependence reduces dispersal from 
favorable environments. Consequently, individuals in favorable en-
vironments experience stronger intraspecific competition which 
reinforces spatial storage effects and spatial coexistence of species 
(Hart et al., 2017). Conversely, if plants in favorable environments 
have increased seed dispersal, growth-density covariance and the 
spatial storage effect will be weakened and species coexistence will 
be less likely. Hence, linking context-dependent seed dispersal with 
HNS could help to understand the mechanisms of species coexis-
tence in variable environmental conditions (Travis et al., 2013).

Context-dependent seed dispersal may also play important 
roles in gene flow and the microevolution of hydrological niches. 
Evolutionary theory predicts selection for reduced seed dispersal in 
favorable habitats, leading to restricted gene flow (Levin et al., 2003; 
Ronce, 2007), which allows local adaptation of populations in unfa-
vorable habitats (Savolainen et al., 2007). Reduced dispersal under 
favorable conditions could thus promote microevolution and dif-
ferentiation of hydrological niches. Conversely, increased dispersal 
under favorable conditions can lead to asymmetrical gene flow from 
favorable to unfavorable habitats, which prevents local adaptation 

to unfavorable conditions (Aguilée et al., 2016; Kirkpatrick & Barton, 
1997) and ultimately causes evolutionary niche conservatism (Wiens 
& Graham, 2005).

There is growing realization that seed dispersal is context-
dependent, because dispersal traits depend on the environment ex-
ternal to the individual (Beckman et al., 2019; Clobert et al., 2012). 
However, our understanding of the context dependence of seed dis-
persal is impeded by a lack of studies (Rogers et al., 2019). An excep-
tion is the study of Teller et al. (2014) who showed that the dispersal 
ability of Carduus nutans seeds decreased in drought-stressed com-
pared with well-watered conditions. Yet, it is still unclear whether 
this response of seed dispersal to drought stress is a general trend, 
and how seed dispersal responds to varying hydrological conditions 
including stress by both drought and waterlogging. Addressing these 
questions requires a mechanistic analysis of seed dispersal.

Seed dispersal by wind is one of the most important seed disper-
sal mechanisms in the plant kingdom (Willson et al., 1990), and by 
far the best studied dispersal mechanism (Nathan et al., 2011). Wind 
dispersal depends on dispersal traits and the dispersal environment. 
Crucial dispersal traits are seed terminal velocity (the constant ve-
locity a falling seed reaches in the air, Vt) and seed release height 
(Hr) (Katul et al., 2005; Nathan et al., 2001, 2011; Soons et al., 2004; 
Tackenberg, 2003). Key properties of the physical dispersal envi-
ronment are wind conditions such as mean horizontal wind speed, 
vertical uplift, and turbulence (Katul et al., 2005; Nathan et al., 2001, 
2011). Significant progress has been made in quantifying the phys-
ical dispersal environment at various scales. Global wind data are 
either directly accessible (Fick & Hijmans, 2017) or can be simu-
lated (Kling & Ackerly, 2020). On fine scales, high-resolution three-
dimensional wind data can be either directly measured in situ with 
advanced remote sensing systems (Wulfmeyer et al., 2018) or can be 
simulated with mechanistic microclimatic models (Maclean, 2020). 
In contrast, dispersal traits vary with biotic and abiotic contexts and 
are more challenging to predict. Therefore, the key to quantifying 
context-dependent seed dispersal by wind is to determine how dis-
persal traits respond to environmental contexts.

In this study, we explore how seed dispersal by wind responds 
to hydrological conditions. Specifically, we test three hypotheses: (1) 
HNS causes species to differ in how hydrological conditions affect 
seed production, (2) hydrological conditions affect dispersal traits 
and seed dispersal distance, (3) hydrological conditions that increase 
fecundity also increase per-seed dispersal distance, thereby weaken-
ing the effect of HNS on species coexistence. A positive relationship 
between fecundity and seed dispersal would reduce growth-density 
covariance and could thus counteract the spatial storage effect by 
which HNS promotes coexistence.

2  | MATERIAL AND METHODS

2.1 | Experimental design

We carried out a common-garden experiment in 2019 at the 
Heidfeldhof research station (48.7126°N, 9.1900°E, 396 m a.s.l), 
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University of Hohenheim, Germany. We used the widely distrib-
uted ruderal plant species Chenopodium album L. (Amaranthaceae), 
Crepis sancta (L.) Bornm. (Asteraceae), Hypochaeris glabra L. 
(Asteraceae), Hypochaeris radicata L. (Asteraceae), and Bellis peren-
nis L. (Asteraceae) as study species, covering a variety of seed mor-
phologies (Table S1). These species commonly co-occur in natural 
communities (Sabatini et al., 2021) and have different Ellenberg in-
dicator values for moisture (F-value; Ellenberg & Leuschner, 2010, 
Domina et al., 2018): C.  album, C.  sancta, H.  glabra, H.  radicata, 
and B. perennis with an F-value of 4, 2, 3, 5, and 5, respectively, 
suggesting that they may occupy different hydrological niches. 
For each species, we transplanted two seedlings into the center 
area (diameter 10 cm) of each pot with a volume of 20 L (height 
28  cm, diameter 35  cm) filled with sandy loam (14% clay, 70% 
sand, 16% silt; pH 7.88), and randomly put each group of seven 
pots into a pool with a volume of 275 L (height 35 cm, diameter 
106 cm). We applied four hydrological treatments with different 
water table depth (WTD) below the soil surface in the pots: “dry” 
(WTD 28  cm), “mesic” (WTD 22  cm), “late pulsed waterlogging” 
(WTD 22 cm throughout the experiment except 2 weeks of treat-
ment when the soil surface in the pots was flooded), which was 
to mimic a flooding event, and "waterlogged” (WTD 5 cm) (Lukić 
et al., 2020; Walter, 2020) (Figure S1). We used three replicates 
for each species in each treatment, except that the “late pulsed 
waterlogging” treatment was only applied to C. sancta, H. glabra, 
and H. radicata—species with pappus as seed appendage. In total, 
54 pots were used in the experiment.

2.2 | Plant survival, seed production, and 
dispersal traits

During the experiment, we monitored survival of both target and the 
neighboring plants in each pot and recorded the date when a plant 
died. For C. sancta, H. glabra, H. radicata, and B. perennis, we carefully 
collected ten seed heads (capitula) from each target plant when pos-
sible, stored each seed head separately to keep the seed appendages 
intact, and used these seed heads to determine seed production, Hr 
and Vt. Before collection, we recorded the vertical distance between 
soil surface and the seed head as Hr. After collection, we air-dried 
the seed heads in the laboratory for 2  weeks. We then carefully 
separated and counted the number of seeds from three seed heads 
that were collected from the lowest, median, and highest Hr, calcu-
lated the mean seed number per-seed head, and estimated the seed 
production by multiplying the mean seed number by the total num-
ber of seed heads. In C. album, inflorescence clusters are attached 
to the leaf axils and at terminus of stems, and each branch has the 
similar structure as the whole plant. Therefore, for C. album, we first 
randomly measured ten values of Hr from each target plant, cover-
ing the distribution of seeds on the plant. We then sampled three 
5-cm-long plant segments, air-dried and weighed them, separated 
and counted the number of seeds in each segment, and estimated 
seed production by multiplying the mean seed number per gram 
of plant segment and the total weight of the target plant. For each 

target plant, we randomly sampled nine seeds and measured Vt in 
three steps. First, we shot videos of descending seeds with a high-
speed camera (130 fps, acA1920-155um, BASLER). Second, from the 
videos we extracted the seed's three-dimensional coordinates over 
time with ImageJ (Schneider et al., 2012). Third, we fitted an accel-
eration model describing variation in vertical coordinates with time 
and calculated Vt.

2.3 | Dispersal environment

We determined mean horizontal wind speed, aerodynamic rough-
ness length, and friction velocity with an eddy covariance station 
(Wulfmeyer et al., 2018), and fitted a logarithmic wind velocity pro-
file to the wind data to calculate horizontal wind speed at any height 
of interest,

where u is mean horizontal wind speed at the height z; u* is the friction 
velocity; k is von Kάrmάn's constant (0.41); d is zero-plane displace-
ment distance; and z0 is aerodynamic roughness length (Monteith & 
Unsworth, 2013).

2.4 | Simulation of seed dispersal

We used the WALD mechanistic model (Katul et al., 2005) to simu-
late seed dispersal,

where x is predicted seed dispersal distance, � = HrU∕Vt, � =
(

Hr∕�
)2 , 

U is the horizontal wind speed, σ is a turbulent flow parameter re-
flecting wind speed variation (see detailed calculation in Supporting 
information). For each species under each hydrological condition, we 
simulated 105  seed dispersal events (Supporting information). Each 
seed released was dispersed by randomly drawing a distance from Eq. 
(2) with a unique set of parameters for U, Hr, Vt, and σ following Travis 
et al. (2011) and Schurr (2013). U was randomly drawn from a Weibull 
distribution fitted to the wind data. Hr and Vt were simulated from the 
linear mixed-effects models that respectively quantified the relation-
ship between variation in Hr and Vt and hydrological conditions and 
species identity.

2.5 | Data analyses

We determined the relationships between plant survival, seed 
production, fitness proxy, dispersal traits, seed dispersal distance, 
and hydrological conditions using generalized linear mixed-effects 
models (GLMMs) and linear mixed-effects models (LMMs) (lme4 
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package; Bates et al., 2015) in R version 4.0.3 (R Core Team, 2020). 
Plant survival was analyzed with a GLMM in which survival was 
the response variable, hydrological conditions, species identity, 
and their interaction were fixed-effect explanatory variables, and 
pot identity nested within pool identity was included as random 
effect, with the binomial error distribution. We used the product 
of survival of each plant species and reproductive output for each 
individual as a fitness proxy for each focal plant under each treat-
ment, following Sheppard and Schurr (2019). In the LMMs log-
transformed seed production (adding one to make sure that zero 
values remain zero after transformation), fitness proxy, seed re-
lease height (Hr), seed terminal velocity (Vt), and dispersal distance 
(x) were the response variables; hydrological conditions, species 
identity and their interaction were fixed-effect explanatory vari-
ables; and pot identity nested within pool identity was included 
as random effect. For analysis of Vt, we additionally included a 
random effect of seed head (nested within pot and pool identity). 
For the multi-species analysis of the seed production–dispersal 
relationship, we accounted for the large interspecific variation in 
seed production and seed dispersal by log-transforming and scal-
ing mean seed production and dispersal distance of each target 
plant within each species under each watering treatment. We de-
termined the relationship between seed dispersal distance and 
seed production using linear regression, in which log-transformed 
and scaled mean seed dispersal distance was the response vari-
able, log-transformed and scaled mean seed production, species 
identity, and their interaction were explanatory variables. We then 
used similar linear regressions to quantify the contribution of Hr 
and Vt to seed production, in which log-transformed and scaled 
mean seed production was the response variable, log-transformed 
and scaled mean Hr and log-transformed and scaled mean Vt, re-
spectively, and their interaction with species were explanatory 
variables.

Data on seed production, seed dispersal traits, simulated disper-
sal distances, survival, and fitness proxy are openly available on the 
Dryad Digital Repository (Zhu et al., 2022).

3  | RESULTS

3.1 | Effects of hydrological conditions on plant 
survival, seed production, and fitness proxy

Species differed in the response of plant survival, seed produc-
tion, and fitness proxy to hydrological conditions. Plant survival 
depended on the interaction between species and hydrological 
conditions (likelihood-ratio test, �2

10df
= 18.67, p = .045). Seed pro-

duction also depended on the interaction between species and hy-
drological conditions (�2

10df
= 23.44, p = .009). Although all species 

produced fewest seeds in the waterlogged treatment, they did not 
have the same optimum—B. perennis and C. sancta produced most 
seeds in the mesic treatment, whereas H. glabra, H. radicata, and 
C. album reached optimum seed production in the dry condition 
(Figure 1). Moreover, fitness proxy depended on the interaction 

between species and hydrological conditions (�2
10df

= 27.92, 
p = .002) (Figure S2).

3.2 | Effects of hydrological conditions on 
dispersal traits

Seed release height (Hr) did not depend on the interaction between 
species and hydrological conditions (�2

6df
= 10.52, p =  .104) but on 

the additive effects of both species (�2
4df

= 32.39, p < .001) and hy-
drological conditions (�2

3df
= 28.67, p <  .001). Hr was lowest in the 

waterlogged condition and was highest in the mesic condition in 
four out of five species except C. album, which had the highest Hr 
in the dry treatment (Figure 2). In contrast, seed terminal velocity 
(Vt) depended on the interaction between species and hydrological 
conditions (�2

5df
= 15.79, p = .007). Vt was lowest in the mesic con-

dition and highest in the dry treatment in four out of five species 
except H. glabra, which had the highest Vt in the waterlogged condi-
tion (Figure 3).

3.3 | Effects of hydrological conditions on predicted 
seed dispersal distance

Predicted mean seed dispersal distances did not depend on an in-
teraction between species and hydrological conditions (�2

6df
= 2.807 , 

p = .833), but on the additive effects of both species (�2
4df

= 30.996, 
p < .001) and hydrological conditions (�2

3df
= 8.140, p = .043). Mean 

predicted dispersal distances were longest in the mesic condition 
for four out of five species except H.  glabra, which had the long-
est mean dispersal distance in the dry treatment. Mean dispersal 
distance was shortest in the waterlogged treatment for H.  glabra 
and C. album, but in the dry treatment for H. radicata, C. sancta, and 
B. perennis (Figure 4). There was significant variation in dispersal dis-
tance among treatments. For instance, mean dispersal distance was 
14-fold (H. glabra) and 9-fold (C. album) higher in the mesic treatment 
than that in the waterlogged treatment.

3.4 | Relationship between seed dispersal and 
seed production

We found a positive relationship between mean dispersal distance 
and seed production across all the study species (F1,53 = 407.8, 
p  <  .001) (Figure 5a). This positive relationship between dispersal 
and seed production arose because plants with higher seed pro-
duction had higher Hr (Figure 5b; R2 = .95) and—to a lesser extent—
because they had higher Vt (Figure 5b; R2 = .86).

4  | DISCUSSION

The five study species showed species-specific responses of seed 
production to hydrological conditions (Figure 1), confirming their 
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hydrological niche segregation (HNS). We also found species-
specific responses of dispersal traits and predicted seed dispersal 
distances to hydrological conditions (Figures 2–4). Despite these 
species-specific responses, we found a generally positive relation-
ship between seed dispersal and seed production (Figure 5a). When 
growing in stressful hydrological conditions, plants not only produce 
fewer seeds, but they may also have lower Hr (Figure 5b; Figure S3a) 
and greater Vt (Figure 5b; Figure S3b), causing their seeds to be dis-
persed over shorter distances. In the following, we discuss potential 
mechanisms underlying this context-dependent seed dispersal, how 
context-dependent dispersal may modify the effect of HNS on spe-
cies coexistence, and how it may affect the evolution of hydrological 
niches.

4.1 | Mechanisms of context-dependent seed 
dispersal by wind

Context-dependent wind dispersal arises from the species-specific 
responses of dispersal traits (Hr and Vt) to hydrological conditions. 
Lower Vt increases the flying time of seeds, and higher Hr increases 
both flying time and the wind speed that flying seeds experience, 
leading to longer dispersal distances (Soons et al., 2004). In stressful 
hydrological environments, plants grow shorter and tend to produce 
fewer but larger seeds (with higher Vt), causing shorter dispersal dis-
tances. Additionally, seed production increases more strongly with 
Hr than it decreases with Vt. The correlated response of seed produc-
tion and Hr to hydrological stress causes wind-driven seed dispersal 

F I G U R E  1   Effects of watering regime 
on seed production. Watering treatments 
are dry (D), mesic (M), waterlogged (L), and 
late pulsed waterlogging (LPL)
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to be highest in favorable environments and lowest in stressful en-
vironments. In fact, we posit that the positive relationship between 
seed production and context-dependent seed dispersal also holds 
for dispersal mechanisms other than wind. This is because stress 
generally reduces both seed production and plant height and be-
cause plant height is positively correlated with seed dispersal dis-
tance across different dispersal mechanisms (Thomson et al., 2011).

4.2 | The relevance of context-dependent 
seed dispersal

Context-dependent seed dispersal can have important ecological and 
evolutionary consequences (Clobert et al., 2012). By failing to consider 

the context dependence of seed dispersal, one could overestimate 
the dispersal ability of plants under drought-stressed conditions and 
thereby underestimate the probability of local extinction (Teller et al., 
2015). Additionally, our study shows two other consequences of fail-
ing to consider the context dependence of seed dispersal: One could 
underestimate the extinction probability of plants in waterlogged con-
ditions and underestimate the dispersal ability of plants in favorable 
hydrological conditions, thereby underestimating spread rates (which 
should be particularly relevant for invasive species). Hence, quantify-
ing context-dependent seed dispersal directly leads to more realistic 
predictions of dispersal distances, which are valuable for conservation 
planning and plant invasion control (Trakhtenbrot et al., 2005).

Although this study focused on seed dispersal at small spatial 
scales, context-dependent seed dispersal might also be relevant at 

F I G U R E  2   Effects of watering 
regime on seed release height. 
Watering treatments are dry (D), mesic 
(M), waterlogged (L), and late pulsed 
waterlogging (LPL). Crosses indicate that 
the plants in the respective treatment did 
not produce seeds
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large spatial scales. For instance, the environments at leading and 
trailing edges of species’ ranges could differ substantially from the 
range core (Thuiller et al., 2008), and context-dependent seed dis-
persal may have different effects on leading and trailing edges and 
produce complex eco-evolutionary dynamics (Nadeau & Urban, 
2019; Weiss-Lehman & Shaw, 2020). Increased dispersal in favor-
able environments also means that niche-distribution mismatches 
resulting from migration limitation (Pagel et al., 2020) might be 
strongest in stressful conditions where plants have reduced dis-
persal, whereas these mismatches should be reduced in favorable 
conditions. It is thus worth exploring whether the incorporation of 
context-dependent seed dispersal into dynamic range models could 
improve predictions of geographic distributions of plant species 
under changing climate (Pagel & Schurr, 2012; Schurr et al., 2012).

4.3 | Context-dependent seed dispersal and 
hydrological niche segregation

There can be a bidirectional interaction between context-dependent 
seed dispersal and HNS. Our findings confirm that hydrological con-
ditions can alter dispersal traits, leading to intraspecific variation 
in dispersal ability. The detected increased seed dispersal under 
favorable hydrological conditions could reduce growth-density co-
variance, thereby reducing intraspecific competition and increasing 
interspecific competition between species with different hydrologi-
cal niche optima (Hart et al., 2017). This reduced growth-density co-
variance should counteract the spatial storage effect by which HNS 
promotes coexistence (Hart et al., 2017). Importantly, however, HNS 
is not invalidated if seed dispersal is generally higher under favorable 

F I G U R E  3   Effects of watering 
regime on seed terminal velocity. 
Watering treatments are dry (D), mesic 
(M), waterlogged (L), and late pulsed 
waterlogging (LPL). Crosses indicate that 
the plants in the respective treatment did 
not produce seeds
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hydrological conditions, and this is because the resulting source-sink 
dynamics cause mismatches between niches and distributions (Pagel 
et al., 2020; Schurr et al., 2012). Consequently, niche segregation 
should in this case be even stronger than suggested by observed 
species sorting along hydrological gradients (Araya et al., 2011; 
Silvertown et al., 1999).

4.4 | Context-dependent seed dispersal and 
niche evolution

Context-dependent seed dispersal affects gene flow and may in-
fluence local adaptation. The detected context-dependent seed 

dispersal might cause unidirectional dispersal from optimal to sub-
optimal habitats, resulting in “migration load” that slows down the 
local adaptation of lineages to suboptimal habitats (Kirkpatrick 
& Barton, 1997; Savolainen et al., 2007). Consequently, increased 
dispersal from optimal habitats may reduce intraspecific niche dif-
ferentiation (Schiffers et al., 2014) and ultimately contribute to evo-
lutionary niche conservatism (Wiens et al., 2010).

4.5 | Conclusions

Our finding that seed dispersal by wind decreases when plants 
are hydrologically stressed, provides concrete evidence that seed 

F I G U R E  4   Effects of watering regime 
on predicted seed dispersal distance. 
Watering treatments are dry (D), mesic 
(M), waterlogged (L), and late pulsed 
waterlogging (LPL). Crosses indicate that 
the plants in the respective treatment did 
not produce seeds. Note that the y-axis 
was plotted on a logarithmic scale
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dispersal is context-dependent, highlighting consequences of hy-
drological niche segregation for fine-scale dispersal. The detected 
increase in dispersal in favorable environments might counteract the 
effects of HNS on species coexistence and could potentially slow 
down the microevolution of hydrological niches, causing evolution-
ary niche conservatism. Hence, our findings may offer new insights 
into mechanisms linking seed dispersal to species coexistence and 
niche evolution. Moreover, accounting for context-dependent seed 
dispersal should improve models for the spatial dynamics of plant 
populations and communities.
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