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ABSTRACT Objective: Clinical urine tests are a key component of prenatal care. As of now, urine test strips
are evaluated through a time consuming, often error-prone and operator-dependent visual color comparison
of test strips and reference cards by medical staff. Methods and procedures: This work presents an automated
pipeline for urinalysis with urine test strips using smartphone camera images in home environments,
combining several image processing and color combination techniques. Our approach is applicable to
off-the-shelf test strips in home conditions with no additional hardware required. For development and
evaluation of our pipeline we collected image data from two sources: i) A user study (26 participants,
150 images) and ii) a lab study (135 images). Results:We trained a region-based convolutional neural network
that is able to detect the urine test strip location and orientation in images with a wide variety of light
conditions, backgrounds and perspectives with an accuracy of 85.5%. The reference card can be robustly
detected through a feature matching approach in 98.6% of the images. Color comparison by Hue channel
(0.81 F1-Score), Matching factor (0.80 F1-Score) and Euclidean distance (0.70 F1-Score) were evaluated
to determine the urinalysis results. Conclusion: We show that an automated smartphone-based colorimetric
analysis of urine test strips in a home environment is feasible. It facilitates examinations and provides the
possibility to shift care into an at-home environment. Clinical impact: The findings demonstrate that routine
urine examinations can be transferred into the home environment using a smartphone. Simultaneously, human
error is avoided, accuracy is increased and medical staff is relieved.

INDEX TERMS Urinalysis, smartphone, colorimetric analysis, artificial intelligence, digital health.

I. INTRODUCTION
Urinalysis with test strips is a common, simple to use and
routinely applied screening method during prenatal care for
the early detection of pregnancy-related diseases [1]. During
prenatal care, standard urinalysis test strips are frequently
applied. Regular screening throughout pregnancy every two
to four weeks is recommended to detect urinary tract infec-
tions, proteinuria, glucosuria or asymptomatic bacteriuria at
an early stage [1], [2].

The test strip is briefly dipped into a urine sample
from the patient to completely moisten all indicator fields.

The subsequent discoloration of the indicator fields is
then usually evaluated visually against a reference card by
medical personnel. Even though the visual evaluation is
time-consuming and error-prone, it is often not used in prac-
tice as the financial costs of automated analysing devices
are too high [3], [4]. Furthermore, test results are frequently
not documented, especially negative results, which makes
it impossible to reproduce the patient’s history at a later
point in time. Integrating smartphones into the evaluation of
printed diagnostic tools such as urine test strips could facili-
tate examinations and improve quality of care by eliminating
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FIGURE 1. Overview diagram describing the pipeline of the automated detection and evaluation of urine test strips, including the conducted studies, the
resulting dataset and further image processing.

observer-related errors. Patients could benefit from a shift to
the at-home environment by fewer on-site appointments.

Our key contribution is the development of a method to
differentiate and automatically measure 10 different urinaly-
sis parameters from images captured with a smartphone in a
home environment.

II. RELATED WORK
An automated evaluation of urine test strips that using
smartphones has already been investigated in previous work.
A large number of these studies focused on improving accu-
racy and reproducibility by employing custom build equip-
ment like custom-built opaque boxes or optical attachments
to the camera were used [5]–[9].

While these studies used commercially available test strips,
others employed custom-made test strips to facilitate the eval-
uation through a smartphone [10], [11]. Han et al. developed
urine test strips where the reference fields are located directly
around the test fields. Apart from that Anthimopoulos et al.
used self-developed color reference cards to enable a repro-
ducible color correction [12]. The smartphone-based urinaly-
sis for commercially available urine test strips is also possible
without any further equipment [13]–[15].

Previous studies used different approaches to automati-
cally detect the urine stick in the captured images, such as an
optical marker attached to the stick to recognize the position
and orientation [16]. Hong and Chang developed a template
matching algorithm, that uses a mono-color template with
the periodic pattern of test strip with its single fields [14].

The algorithm then estimates pixel-by-pixel the most prob-
able position. In the work of Wang et al. a Laplacian edge
detection was applied to a certain area in the image, as the
position of the urine stick in the image was predefined during
the image capturing process [17]. The ORB detector that is
also used in this workwas previously already applied to detect
urine sticks and color reference cards [12]. A high degree
of accuracywith simultaneously advantageous computational
efficiency was achieved. The existing research used a variety
of approaches to analyse and compare colors. The matching
factor, one of the methods applied in this work, has already
been used with good results. It incorporates the weighted
values of the individual color channels in the HSV color
space [18]. Fletcher et al. incorporated a weighted k-nearest
neighbors algorithm and classifier, while the approach
of He et al. was to use a quadratic discriminant analysis
[13], [16]. Three systems were identified that already under-
went an approval process as a medical device. One of
them is the Uchek urinalysis device of Biosense Technolo-
gies [19]. The study showed, such a system can increase
the efficiency of health personnel and reduce the risk
of human errors that often occur when test strips are
visually read.

Furthermore, the feasibility and acceptability of a
smartphone-based urinalysis system within prenatal care
have been analyzed [20]. The authors concluded that the
smartphone-based test strip testing is overall well accepted
and that their participants preferred self-testing. As a third
system Scanwell health developed a test kit for urinary
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FIGURE 2. Standard urinalysis test strip with 10 test fields after reaction
with control urine.

FIGURE 3. Web-app interface for image acquisition (left) and
documentation of visually evaluated results (right) provided within the
at-home study.

tract infections that detects leukocytes and nitrite in the
urine through a smartphone application and self devel-
oped test strips [21]. All three systems have in common
that they require additional hardware or self-developed test
strips.

The reviewed works on smartphone-based colorimetric
analysis of urine test strips have demonstrated high accu-
racy in a laboratory setting. However, there has been no
investigation of such a method’s performance in a home-
based environment. Therefore, the purpose of this work is
to develop and evaluate a smartphone-based method for an
automated analysis of commercially available urine test strips
that is usable in a home environment by non-trained persons
and the integration in a digital pregnancy care concept.

III. METHODS
For an automated colorimetric analysis of the urine sticks, the
position of the urine stick and the reference card in the image
is first determined. Afterwards the location of the single
test fields of the urine stick and the reference fields of the
card need to be detected. As soon as these positions are
known, the color of each field can be analyzed and com-
pared. We conducted two studies in order to develop and
validate our pipeline. An overview of the overall process
of this work is shown in Figure 1. For the urine examina-
tion, we employ the Multistix 10 SG test strips by Siemens
Healthineers AG (Erlangen, Germany) including the follow-
ing 10 parameters: glucose, bilirubin, ketone, specific grav-
ity, hemoglobin, pH value, protein, urobilinogen, nitrite and
leukocytes. An exemplary urine test strip of the ones used in
this work is shown in Figure 2.

A. AT-HOME STUDY
1) PARTICIPANTS
In total 26 participants (34.0± 11.6 years, half male, half
female, diverse educational background) conducted the urine
examination at home with a test kit, containing two test
strips, a reference card and a plastic cup. In total 23 different
devices were used for study conduction, both Android and
iOS systems. The study was conducted after approval of
the ethics committee of the Friedrich-Alexander University
Erlangen-Nürnberg (106_13 B).

2) WEB-APPLICATION
In order to facilitate image acquisition, test result documen-
tation and time compliance for untrained study participants,
a web application was provided. This application guided
users through each step and was implemented as progressive
web app. As such, it is operating system independent, requires
no app marketplace distribution or user installation. Sample
screenshots of this web application from two steps are shown
in Figure 3. ReactJS served as foundation for the application
front end [22]. This front end is connected to a NodeJS
backend to store the incoming data [23].

3) PROCEDURE
The procedure for the user conducting the study is schemati-
cally illustrated in Figure 4. Initially, general instructions are
provided in order to ensure an adequate preparation. Subse-
quently, the user is instructed to collect the urine into a dry
and clean cup. After confirming an explanation is presented,
how the test strips should be dipped into the urine. In the
following step, participants were told to place the stick on an
even and dry surface next to the reference card. Once it has
been confirmed for the test strip to be immersed, a timestamp
is saved and a timer is started in the background.

The reaction of the test fields with the urine is a
time-dependent reaction and therefore the manufacturer
defines specific time points for each parameter to be evalu-
ated, after 30, 40, 45, 60 and 120 seconds. A timer ensures,
that parameters are evaluated after each time point.

In order to evaluate the feasibility of self-testing and
the usability of the provided guidance app, the partici-
pants filled out a questionnaire including the System Usabil-
ity Scale (SUS) as well as custom questions aiming to
assess how well the participants coped with the urine test
strips, the visual evaluation and the time specifications
[24], [25].

B. CONTROL URINE STUDY
Since no pathological measurements were expected in
healthy participants in the home environment study, an addi-
tional study was conducted with control urine manufactured
by LT-SYS (Berlin, Germany). This reagent, as it is made
from human urine, has to be considered to be potentially
infectious. Therefore, a handling by non-trained participants
at home was not feasible. Control urine is available in two
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FIGURE 4. Workflow of the urine examination with the web-app for all
study participants.

levels, one that guarantees measured values simulating a
healthy patient, while level two delivers measurements in a
certain pathological range.

All ten test fields of one urine strip were moistened and a
timer was started manually. After the times specified by the
manufacturer of the urine test strips, both an image was taken
and the measured values were read visually. This procedure
was repeated with 12 different smartphones.

The image acquisition was performed with the built-in
camera applications of the smartphones. Different randomly
chosen backgrounds, light conditions and image angles were
chosen to achieve a high variance of images. Most of the
devices were used at least twicewith different light conditions
(natural, artificial) generating 27 sets of five images each.
Five devices operated on Apple iOS, five on Google Android
and two on Windows Mobile.

C. DATASET
Our experiments resulted in a total of 285 images: 150 from
the at-home study and 135 from the control urine study.
To improve the development process of the object detection
pipeline, 74 supplementary images that were excluded for the
colorimetric analysis were captured. They contain especially
strongly patterned and unusual backgrounds with randomly
chosen other objects, very dark or bright lighting conditions
and unusual imaging angles of the urine sticks.

D. IMAGE PROCESSING
1) OBJECT DETECTION
In every image, a test strip and its respective reference card
need to be identified before the test results can be determined.
Prior to the presented pipeline in this work, we evaluated
several different methods for the application at hand. Most
promisingwere featurematching and a region-based convolu-
tional neural network. Feature matching was chosen due to its
simplicity, efficiency and potential adaptability to test strips
of other manufacturers.

a: DATA LABELING
As a preparation in all images the urine sticks were
labelled with the open source VGG Image Annotator [26].

FIGURE 5. Found matches of the feature matching algorithm in an
example image.

The extracted annotations represent the urine stick as a set of
polygon points.

b: FEATURE MATCHING
The chosen method for the feature detection and matching
is based on the ORB feature detector implemented with the
open-source library OpenCV [27], [28]. The basic workflow
is identical for both objects. The images that will be compared
are converted to grayscale and the orb detector searches and
calculates keypoints and descriptors in both images. A brute
force feature matching is applied to the detected descrip-
tors. According to their Hamming distance all matches are
sorted and only best matches are kept for further processing.
An example of those found matches is shown in Figure 5.
A homographic warp is calculated to map the points of the
source image to the desired destination as specified in the
input reference. The homography matrix H indicates the per-
spective transformation of the source points to the destination
by minimizing the back projection error.

c: REGION-BASED CONVOLUTIONAL NEURAL NETWORK
As a second approach for the detection a region-based con-
volutional neural network (R-CNN) was chosen. The used
implementation of Mask R-CNN is based on the existing
implementation of Matterport Inc. (Sunnyvale, US), which
uses the open-source libraries Keras and Tensorflow [29]. It is
based on a Feature PyramidNetwork (FPN) and aResNet101.
This implementation of a region-based convolutional neu-
ral network (Mask R-CNN) was applied in previous works
for image segmentation tasks [30], [31]. These showed that
comparably small training sets sizes were sufficient to reach
a high accuracy. We used transfer learning with the model
already pre-trained on the MS COCO dataset [32].

Training and testing was performed using a three-fold
cross validation. In order to avoid similar images appearing
in both the test and training set, the images are grouped
subject-wise and respectively experiment-wise for the control
urine. In total the training was performed for 15 epochs with
200 steps per epoch and a learning rate of 0.001. The steps
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per epoch were chosen according to the small size of the
training set to ensure every image is processed during one
epoch. Training of the neural network was performed until
convergence.

d: COMPARISON
The coordinates of the corners of the stick within the original
image were calculated for both methods. These coordinates
are then compared to the annotations containing the ground
truth position of the urine stick. Only if the rotated bounding
rectangle is within the ground truth the detection was classi-
fied as successful. Since the ground truth image of the urine
stick that is used for the feature matching has a border around
it, a tolerance of 10 percent similar to this border is added to
the found coordinates of the Mask R-CNN. This ensures an
equal comparison of both methods.

2) REFERENCE FIELD DETECTION
As the detection of the reference card is working accurately,
the single reference fields can be extracted through con-
stant pixel coordinates from the extracted reference card.
Therefore distances were measured in the reference image
of the card. These values are used to find the single fields
in the images of the detected card. In order to ensure the
correct extraction, the separated color fields were reviewed
visually.

3) TEST FIELD DETECTION
Since the extracted urine sticks from the images are not as
uniform as the extracted reference cards, measuring coor-
dinates from a reference image is not sufficient. Therefore,
in order to determine the positions of the test fields automat-
ically different approaches were chosen. As a first approach,
histograms were calculated from the saturation channel after
converting the image to the HSV color space. Through a
Nelder-Mead optimization the test fields were detected [33].
However, this approach was not able to accurately and reli-
ably detect the positions of the single fields, especially
with dark backgrounds, and a skewed image recording
perspective.

As a second approach a custom pipeline based on an edge
detection was implemented. First, the image of the urine stick
is preprocessed several times with different filters, blur and
threshold settings and an edge detection is performed with
each setting. Each time the detected squares with a minimum
area of 20% of the total image height and an aspect ratio of
1 ± 0.06 are saved. In the end all found squares are used
to cluster the center points. This clustering is implemented
through a k-means algorithm [34]. Since not all of the test
fields are always detected, the number of clusters is deter-
mined by the Elbow method [35]. Afterwards the determined
center points are analyzed and if distances exceed the median
distance of more than 50% depending on the given points,
or the number of clusters does not match the number of test
fields, missing points are added automatically.

4) COLOR COMPARISON
Three different approaches were used to compare the col-
ors of the test fields with their reference fields: Hue value
comparison, Matching Factor and Euclidean distance. All
approaches rely on a color transformation of the image sec-
tions of the detected test and reference fields into the HSV
color space. This color space represents colors similar to the
human perception and colors perceived similar by the human,
are also adjacent in the HSV color space [36]. The hue chan-
nel describes the dominant wavelength of the present color,
therefore this channel contains the most relevant information
to analyze and compare the colors. For all three approaches
the values for each color channel were determined through
the peak value in the respective histogram.

Due to these characteristics of the color space, the first
approach for the comparison of two colors is to compare the
hue channels, as shown in Equation 1.

SimilarityHue = 1−
1H
Hmax

(1)

For the test field and its related reference field, the histogram
of the hue channel is generated with the built-in OpenCV
function and the peak value is determined.1H represents the
difference of the peak values. Equation 2 shows the applied
formula to calculate the matching factor in the HSV color
space according to [18]. For all three channels the histograms
are generated and the peak value is determined.With1H ,1S
and 1V representing the difference for each channel of the
test field and its related reference fields. Additionally, weight
factors are introduced, with α = 0.6429 and β = 0.1786
analogous to [18].

MFHSV = 1−
α1H + β1S + β1V
Hmax + Smax + Vmax

(2)

The values of each channel of the HSV color space can be
interpreted as cylinder coordinates. With these coordinates
the Euclidean distance between two points and therefore two
colors can be calculated as shown in Equation 3.

DistanceHSV = 1−

√
1x2 +1y2 +1z2√
(2 Smax)2 + V 2

max

(3)

5) TEST RESULT DETERMINATION
For all three color comparison methods, the color field rep-
resenting the highest similarity calculated with each method
defines the test result for the respective parameter. Since
all three approaches are based solely on the values of the
color channels, they are purely deterministic, not relying on
training data. The calculated test result is compared with
the visually determined result documented during the study
conduction. For all parameters the test results are classified
in terms of a confusion matrix. In the urine of a healthy
patient glucose, bilirubin, ketone, blood, protein, nitrite and
leukocytes are below the detection limits of the urine sticks.
The pH value is pathological above a value of 7.0. Spe-
cific gravity is classified as negative between 1.005 g/ml and
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FIGURE 6. Confusion matrices of the automated urine test strip
evaluation using three different methods: a) comparison of hue values,
b) matching factor, c) Euclidean distance.

1.025 g/ml [37], [38]. The concentration of urobilinogen is
classified as negative for a concentration below 1mg/dl [38].

IV. RESULTS
A. OBJECT DETECTION
As listed in Table 1, the feature matching algorithm detected
40.7% of the urine sticks correctly. In contrast, the Mask
R-CNN was able to detect 85.5% of the sticks correctly.
Of all reference cards 98.6% were correctly detected. Three
images from the at-home study were excluded from further
processing because the reference card was not fully depicted
and thus several reference fields were missing.

B. COLOR COMPARISON AND TEST RESULT
DETERMINATION
Figure 6a shows a confusion matrix for all parameters
and images generated during both studies. As the matrix

TABLE 1. Object detection results of the urine sticks for two different
approaches.

representing the results for the similarity of hue values in
Figure 6a illustrates, the majority of test results was classified
correctly as either true negative or true positive. This is similar
to the test results calculated through the matching factor
in Figure 6b as well as the euclidean distance, shown in
Figure 6c. All three methods were able to classify all test
results of pH-values correctly. In contrast, a high rate of false
positive classifications is generated by all three methods for
the leukocyte test result. The euclidean distance reached the
lowest average F1-score of 0.70, the matching factor 0.80.
The highest accuracy was reached through the comparison of
hue values, with an average F1-score of 0.81.

C. FEASIBILITY AND USABILITY
24 participants answered the target questions regarding
the feasibility. The results to those questions is shown in
Figure 7. As the answers indicate, insecurity regarding the
time required for the conduction was present among the
participants. Furthermore, insecurity arose during the deter-
mination of the test results. The answers to the usability ques-
tionnaire resulted in an average SUS score of 71.9± 17.3.
Figure 8 shows the duration the participants required for

the completion of a urine examination including the image
acquisition and documentation of visually read results. In pur-
ple marked is the manufacturers specification. The boxplot
highlights that there was an augmented demand for time and
parameters could not be evaluated within the specifications.
Especially the fourth time step, where five different parame-
ters need to be compared shows significant deviations.

V. DISCUSSION
Within this work a complete pipeline was implemented
to detect and evaluate urine test strips automatically from
images captured with a smartphone. Two studies were con-
ducted to generate images and evaluate the accuracy of the
chosen methods.

During the at-home study insecurity regarding the visual
determination of test results was present among the partici-
pants. This was indicated in both the feasibility and usabil-
ity questionnaires. A correlation with the level of education
could not be observed. The reason for this can be a missing
training prior to the conduction of the study.Most participants
only conducted the study once. All participants received two
test strips and many of them required both, because in a first
trial often the orientation of the stick in relation to the refer-
ence card was unclear. The conduction was then aborted and
restarted with the second stick. Those participants verbally
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FIGURE 7. Distribution of answers to the target questions from participants in the at-home study.

FIGURE 8. Required time for conducting the urine analysis of the study
participants.

indicated a higher confidence during the conduction in the
second attempt.

Furthermore, the distances between the single test fields
do not match to those of the related fields on the reference
card. This increases the difficulty to assign the fields correctly
especially on time. Due to the insecurity during the visual
evaluation, test results that are used as ground truth may be
incorrectly documented, which could have a negative impact
on performance. Especially results for the classification of
leukocytes show a significant difference between images

obtained during the at-home study and the control urine study.
While test results of the control urine study were classified
correctly for more than 60% only 21% of the at-home study
were classified correctly. Significant differences between the
devices could not be identified due to the small number of
smartphones. Similarly, the sample size was too small for a
statistical analysis of the influence of the different levels of
education of the participants.

An important limitation regarding both studies is the cov-
erage of measured values. Since the recruited participants are
mostly healthy and the used control urine is only available
in two specific levels, the range of possible measured values
could only be covered partially. However, the focus of this
work was to investigate whether an automated evaluation of
urine test strips in an at-home setting is feasible and whether
the determined values correspond to the test results of the
participants.

The majority of users was not able to conduct the urine
examination within the time specified by the manufacturer.
Although this means that the urine status of the participants
was not validly determined, however through the parallel
visual evaluation and image acquisition the color comparison
and hence the values used as ground truth are still valid.

The presented pipeline is implemented to perform an auto-
matic detection and evaluation of urine test strips. The single
steps, the detection, the field extraction and the colorimet-
ric analysis can be connected in series without a manual
operation in between. The majority of test results calculated
from images obtained during both studies were classified
correctly. Certainly, the reached accuracy, especially for the
color comparisonmethods is debatable for a valid and reliable
urine status determination.

The fully automated detection of both urine sticks and
reference cards as well as the extraction of the single color
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fields as implemented appears promising. The chosen fea-
ture matching approach was able to robustly and accurately
detect the reference cards from images with a wide variety
of perspectives, backgrounds and light conditions. Only for
few images, a detection was unsuccessful. The reason for
this is most probably a strong blur in the respective images.
The feature detection is dependent on generally sharp images.
In order to address this problem, further preprocessing and
parameter optimization of the detection can improve the
performance. Alternatively, blurry images could be directly
intercepted after capturing, so users would have to capture
the image again.

As pointed out, a feature matching based detection of urine
sticks is not promising. The number of successfully extracted
sticks of 40% is too low to be further prosecuted. As the gen-
erally small amount of detected features indicates, a further
optimization of parameters and preprocessing stepswould not
be able to significantly improve the output of this approach.
In contrast to this, the detection of urine sticks with a region
based convolutional neural network appears promising. The
used pre-trained model was able to reach an accuracy of
0.82 with a comparably small training set of 117 images.
There is a high potential to improve the implemented method
through an extension of the dataset and further parameter
tuning.

When focusing on the parameters glucose and protein,
which are especially relevant during prenatal care, all three
methods demonstrate a high sensitivity of 0.90 and a speci-
ficity between 0.87 and 1.00 for glucose. Nevertheless, the
number of samples evaluated is comparatively small and not
all possible values for the individual parameters occur in the
dataset. On average the F1-score of all three methods lies
between 0.70 for the color comparison through the euclidean
distance and 0.81 for the comparison through the hue values.

Accordingly, none of the chosen methods for the color
comparison of all the parameters on its own is able to validly
determine the urinalysis results. A combination of those
methods may be able to already improve the accuracy. Still,
further approaches need to be analyzed, especially for those
parameters with an insufficient accuracy.

According to [39] a system with a SUS score above 70 can
be considered good, but needs further improvement. Accord-
ingly, the average score of 71 is above this threshold. For
future studies and applications this score could be increased
either by improving the web-application or by employing
easier-to-use test strips.

VI. CONCLUSION
The digitalisation of examinations and treatments offers
the possibility to enable a more efficient, targeted and
patient-friendly medical care. Patients and medical personnel
invest a lot of time for routine controls that could be easily
shifted into a home environment. Against the backdrop of
a global pandemic, home monitoring offers a simple and
safe way to assure patient health without compromising the
quality of care. The application is not only conceivable in the

context of prenatal care; other medical areas could benefit
equally.

In this work, we presented a pipeline that is applicable in
real world conditions and can be adapted to generic urine test
strips. This can improve care in the future and ensure broad
adaptability to different care modalities.

The implemented pipeline is a solid foundation for fur-
ther research and development. Within the scope of further
studies, especially the integration of a more accurate ground
truth is essential. Only with a reliable ground truth a complete
validation of the implemented pipeline is possible. For this
purpose, a color analysis system for urine test strips can
be used. However, the application of such a device in a
larger study aiming to depict the home environment is not
feasible. Therefore, the accuracy of visually evaluated results
as ground truth can be improved through the incorporation
of urine test strips with a better usability. Furthermore, the
investigation of the influence of sensing parameters of the
smartphones have the potential to further increase the accu-
racy of the presented pipeline.

Futurework should include a larger number of study partic-
ipants to promote a higher variation of measurement values.
In addition, a test application in antenatal care will allow a
better assessment of the user needs of the target group and
help identifying key factors of usability for a user-centered
and accurate evaluation of urine tests in the home setting.
For this purpose, we plan to evaluate and further develop our
algorithm in a larger study with pregnant women in the near
future. A final goal is to make the results available to the users
on their smartphones in real time.
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