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Purpose of review

The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has
generally reduced reactogenicity but in many cases also immunogenicity. Although only used when
necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to
variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity.
Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted
vaccines under development.

Recent findings

Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity
thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and
induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for
reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns
regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been
established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates
principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-
engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity.

Summary

Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary
approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development.

Video abstract

http://links.lww.com/MOP/A53.
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While vaccines were originally made from live atten-
uated microorganisms, modern biotechnology,
through the use of genetic engineering, contributed
to the development of vaccines containing highly
purified recombinant antigens, which has been
gradually replacing self-adjuvanted live attenuated
and killed vaccine formulations. This approach has
successfully lowered reactogenicity ratesas compared
with live attenuated or killed vaccines. However,
recombinant-antigen-based vaccines are often insuf-
ficiently immunogenic, especially in populations
with distinct immunity, such as the very young,
elderly, and chronically ill, highlighting the
need for approaches to amplify protective vaccine
responses.

Originally named on the Latin root adjuvare, to
help or aid, adjuvants are defined as components
which can enhance antigen-specific vaccine
uthor(s). Published by Wolters Kluwe
formulations should be kept as simple as possible for
development and regulatory purposes, adjuvants can
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KEY POINTS

� Established and novel adjuvants with increasingly
elucidated mechanisms of action can greatly enhance
immune responses in vulnerable populations such as
young infants and the elderly.

� New approaches to discovery and development are
ushering in a new era of personalized adjuvants
tailored for optimal safety and efficacy in populations
in need of protection.

� Continued comprehensive assessment of undesirable
reactogenicity and other potential safety concerns
associated with vaccine formulations including
adjuvanted vaccines is warranted.

� Multidisciplinary approaches including
standardized human in-vitro models, systems
vaccinology, and innovations of formulation and
delivery systems will enhance identification of
mechanisms of action and biomarkers of safety and
efficacy of adjuvants and adjuvanted vaccines
thereby accelerating and derisking adjuvanted
vaccine development.

Infectious diseases and immunization
be key for antigen/dose-sparing, broadening immu-
nity to variable antigens and enhancing responses
from vulnerable populations with weak immune
responses. Characterizing adjuvant mechanism of
action (MOA) is important for effective translation
and increasingly desirable from a regulatory and
licensing perspective. Aluminum salts (alum) have
been widely used to enhance humoral immunity, but
their MOA is still under study [1–3]. Over the past 2
decades, a greater understanding of innate immu-
nity, including identification of pattern recognition
receptors (PRRs), has informed development of mod-
ern adjuvants [4,5].

Because the immunostimulatory effects of adju-
vants can potentially induce undesirable reactoge-
nicity, discovery and development must focus on
yielding adjuvanted vaccines that are not only
immunogenic, but also highly tolerable. Herein,
we comprehensively review current available adju-
vants incorporated into modern vaccines, as well
highlight several new classes under investigation,
with a focus on MOA for enhancing immunogenic-
ity as well as mechanisms that may impact safety,
such as reactogenicity. To inform this review, we
performed literature searches in PubMed with
terms such as ‘adjuvant’ ‘vaccines’ AND/OR ‘safety’
AND/OR ‘reactogenicity’ in November 2019. Titles
and abstracts of articles were screened by two
authors (E.N. and O.L.), and those deemed
most relevant, comprehensive and timely were
reviewed.
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OVERVIEW OF VACCINE ADJUVANTS
Alum is the most widely used vaccine adjuvant in
history. Depot mechanisms were initially hypothe-
sized to be the main MOA for alum’s adjuvanticity.
However, alum injection sites can be excised shortly
after injection with no impact on immunogenicity
[6]. Several MOAs, both direct and indirect, are
thought to contribute to alum-mediated enhance-
ment of antibody production [7,8], including first,
enhancement of antigen delivery to antigen pre-
senting cells (APCs) such as macrophages and den-
dritic cells [9,10], partially through preferential
binding of lipids on the surface of dendritic cells
without alum itself being internalized by the cells
[11]; second, triggering of innate immunity via
inflammasome complexes inducing production of
IL-1b, independent of Toll-like receptor (TLR) sig-
naling [3]; and third, induction of cell death with
consequent release of host cell DNA that can act as
an endogenous adjuvant [2]. Alum has been also
used as a component of combination adjuvantation
systems wherein it is codelivered with other adju-
vants such as TLR agonists (TLRAs) [7]. While alum
has been the main adjuvant in vaccine formulations
licensed for pediatric use in the United States, other
adjuvants have been or are currently employed in
licensed pediatric vaccines including live attenuated
vaccines containing endogenous adjuvants (i.e., are
‘self-adjuvanted’) such as Bacille Calmette-Guérin
(BCG), given at birth or early infancy in tuberculo-
sis-endemic countries, that activates multiple PRRs
including TLRs 2, 4, and 8 as well as the C-type lectin
receptor Mincle [12,13], or exogenously added adju-
vants such as the formerly used outer membrane
protein-adjuvanted Hib vaccine that activates TLR2
[14] as well as human papilloma vaccine (Cervarix)
containing monophosphoryl lipid a (MPLA), avail-
able to in the European Union and China for girls
(staring at age 9 years) and adolescents and young
adults (from 16 to 25 years of age) (Table 1).

Diverse water-in-oil emulsions were originally
evaluated in human trials during the mid-20th
century [15]. Water-in-oil emulsions, wherein water
droplets are held within a continuous mineral oil
phase, either containing killed Mycobacterium tuber-
culosis (Freund complete adjuvant) or not (Freund
incomplete adjuvant) provided potent immunoge-
nicity and were used in early influenza vaccines
[16,17]. However, they demonstrated intolerable
reactogenicity such as abscess and cyst formation
at the site of injection [18]. Furthermore, instability
of the antigen and lack of formulation reproducibil-
ity led to the consensus to avoid the use of water-in-
oil for human prophylactic vaccines for infectious
diseases, although some water-in-oil emulsions are
still used as therapeutic vaccines for cancer [19,20].
Volume 32 � Number 1 � February 2020



Table 1. US Food and Drug Administration-approved vaccines containing novel adjuvants

Adjuvant Composition Formulation Vaccines Year

(a) – Licensed adjuvanted pediatric vaccines

Aluminum One or more of the following:
AAHS, aluminum hydroxide,
aluminum phosphate, potassium
Alum

Various/
Aqueous (PBS-
based)

Anthrax (BioThrax), DT, DTaP (Daptacel),
DTaP (Infanrix), DTaP-IPV (Kinrix),
DTaP-IPV (Quadracel), DTaP-HepB-IPV
(Pediarix), DTaP –IPV/Hib (Pentacel),
Hep A (Havrix), Hep A (Vaqta), Hep B
(Engerix-B), Hep B (Recombivax),
HepA/Hep B (Twinrix), HIB
(PedvaxHIB), HPV (Gardasil 9),
Japanese encephalitis (Ixiaro), MenB
(Bexsero, Trumenba), Pneumococcal
(Prevnar 13), Td (Tenivac), Td (Mass
Biologics), Tdap (Adacel), Tdap
(Boostrix)

1930–Present

(b) – Licensed adjuvanted adult vaccines

MF59 Oil in water emulsion composed
of squalene

Emulsion-based TIV (Fluad) (for adults aged 65 or older) 2015

AS01B MPL and QS-21, a natural
compound extracted from the
Chilean soapbark tree

Liposome-based RZV (Shingrix) (for adults aged 50 or
older)

2017

CpG-1018 CpG, a synthetic form of DNA
that mimics bacterial
oligodeoxynucleotide and viral
genetic material

PBS-based Hep B (Heplisav-B) (for adults aged 18
or older)

2017

(c) – Approved, but not commercially available in the U.S.

AS04 MPLþaluminum salt VLPsþMPL
adsorbed onto
Alum, PBS
based

HPV (Cervarix) 2009

AS03 a-Tocopherol, squalene, and
polysorbate 80

Emulsion-based Monovalent Pandemic H5N1 Swine
Influenza A (Q-Pan H5N1) (for adults
aged 18 or older)

2013

AAHS, aluminum hydroxyphosphate sulfate; Alum, aluminum sulfate; CpG, cytosine phosphoguanine; DT, diphtheria and tetanus toxoids; DTaP, diphtheria and
tetanus toxoids with acellular pertussis; HPV, human papillomavirus; IPV, inactivated polio vaccine; MPL, Monophosphoryl lipid A; RZV, recombinant zoster vaccine;
Td, tetanus and diphtheria toxoids; Tdap, tetanus and diphtheria toxoids with acellular pertussis; TIV, trivalent inactivated influenza vaccine; VLP, virus-like particle.

Safety and efficacy of vaccine adjuvants Nanishi et al.
Oil-in-water emulsions were developed as an
alternative to water-in-oil emulsions and demon-
strated significantly better reactogenicity profiles.
The most common oil phase contained in vaccine
formulations is squalene, a natural organic com-
pound originally obtained for commercial purposes
from shark liver oil and some plant sources. Since
the introduction of MF59, that enhances both
humoral and cell mediated Th1 and Th2 responses,
oil-in-water emulsions have been routinely used in
many seasonal and pandemic influenza vaccines
for adults [21–23]. The MOA of MF59, a squalene-
containing oil-in-water emulsion, appears to
include enhancing antigen uptake of monocytes
and dendritic cells [24]; and secretion of chemo-
kines to create an ‘immunocompetent environ-
ment’ for enhanced antigen transportation to the
draining lymph nodes [25]. AS03, an oil-in-water
emulsion containing squalene, polysorbate 80 and
a-tocopherol (a form of vitamin E), is a component
1040-8703 Copyright � 2019 The Author(s). Published by Wolters Kluwe
of multiple influenza vaccines (e.g., Pandemrix,
Arepanrix). Studied in mice, a-tocopherol in AS03
modulated cytokine and chemokine expression,
increased antigen loading in monocytes, enhanced
recruitment of granulocytes in draining lymph
nodes, and enhanced antibody responses [26].

Saponins are triterpenoid molecules extracted
from a variety of plants. Quil-A, which is a heteroge-
neous product extracted from the Chilean soapbark
tree Quillaja saponaria, has been used in veterinary
vaccinology since the 1950s. Although Quil-A had
excessive reactogenicity forhuman use, its affinity for
cholesterol had prompted development of immune
stimulating complexes (ISCOMs) [27,28]. ISCOMs
are spherical cage-like nanoparticles formed via
self-assembly of a mixture of Quil-A, cholesterol,
phospholipids, and antigens [29,30]. ISCOMs in
the absence of an antigen (called ISCOMATRIX)
can be mixed with an antigen of interest. ISCOMs
stimulate enhanced cellular responses with lower
r Health, Inc. www.co-pediatrics.com 127



Infectious diseases and immunization
antigen doses through enhanced antigen cross-pre-
sentation [31]. The saponin QS-21, a natural com-
pound extracted fromQ. saponaria, consists of a single
saponin peak detectable by HPLC and is a compo-
nent, together with MPLA, of the AS01B-adjuvanted
zoster subunit vaccine (Shingrix) (Table 1) [32,33]. The
combination adjuvant systems AS01 and AS02, com-
ponents of the candidate RTS,S malaria vaccine, also
contain both MPLA and QS21. Although the exact
MOA of QS-21 is not fully elucidated, the nanoparti-
culate nature of saponin/ISCOM formulations may
lead to their preferential interaction and pore
formation within cholesterol-rich dendritic cell
membranes [4]. Furthermore, QS-21 elicits synergistic
NLRP3-Asc-caspase-1-dependent IL-1b and IL-18
release in APCs when costimulated with MPLA [34].

The discovery of PRRs has accelerated discovery
and development of PRR agonists as adjuvants. A
number of these are now in clinical use or late
preclinical stages of development. At the forefront
is the 30-deacylated monophosphoryl lipid A
(MPLA), a TLR4A. TLR4 recognizes several patho-
gen-associated molecular patterns, including lipo-
polysaccharides (LPS) from the outer membrane of
Gram-negative bacteria. Although LPS have long
been recognized as a potent adjuvant, its pyrogenic
activity had limited its use in human [35]. MPLA is
a detoxified form of the LPS from the bacterium
Salmonella minnesota, with significantly lower
reactogenicity (�1000-fold lower), but robust
adjuvanticity via Th1 polarization [4,36].

Synthetic single-stranded oligodeoxynucleoti-
des (ODNs) containing unmethlyated cytosine
phosphate guanine (CpG) motifs (CpG ODNs)
found in bacterial DNA, have demonstrated adju-
vant activity as a TLR9A [37]. CpG-ODN enhance
antibody responses and enhance Th1-cell responses
[38]. In humans, CpG motifs are recognized by TLR9
expressed on natural killer cells, B cells, and plasma-
cytoid dendritic cells but not myeloid dendritic cells
and monocytes [39]. The licensed hepatitis B vac-
cine, Heplisav-B, indicated for use in adults at least
18 years, contains a TLR9A CpG adjuvant and, as
compared with three doses of conventional alum
adjuvanted hepatitis B vaccine, induces superior
immunogenicity in older adults and the elderly
(40–70 years of age) with only two doses [40,41].

Small molecule imidazoquinolines (IMQs) such
as resiquimod (R848) are TLR7/8As [42]. These mol-
ecules activate human plasmacytoid dendritic cells
and myeloid dendritic cells, enhancing expression
of costimulatory molecules and production of type I
IFN and IL-12 [43,44]. Although use of these small
IMQ molecules is limited by their low molecular
weight and rapid removal from the site of injection,
several formulation methods, including covalent
128 www.co-pediatrics.com
lipidation or incorporation into nanoparticles,
enable use of these molecules as effective adjuvants
in vivo [45

&

]. Additional PRR agonists, including
agonists of TLR3, TLR5, C-type lectin receptors,
retinoic acid-inducible gene (RIG)-like receptors,
and the stimulator of interferon genes are under
evaluation as potential vaccine adjuvants [4,46,47].

Virosomes are enveloped virus-like particles that
contain viral proteins in the liposomal membrane,
and can act as adjuvants and carrier system for vacci-
nal antigens [48]. They are typically produced from
reconstituted envelopes of influenza viruses, and
enable robust and long-lasting immune responses
with an excellent safety profile [49]. Virosomes have
been licensed in vaccines against hepatitis A and
pandemic influenza (Table 1), and also used in several
clinical trials of malaria and hepatitis C vaccines.

Several additional types of adjuvants are under
development. Proinflammatory cytokines such as
granulocyte-macrophage colony-stimulating factor,
IL-2, IL-12, and IL-15 were evaluated in vaccines
against foot and mouth disease, hepatitis B, and
HIV [50–53]. Diphtheria, tetanus, pertussis, and
poliomyelitis vaccines containing calcium phos-
phate, in the form of hydroxyapatite nanoparticles
with Th-polarizing cytokine inducing activity, have
been licensed in France [54].

Combination adjuvantation systems can be a
powerful approach to enhance immunogenicity
[55]. As with any pharmacologic agents, adjuvant
combinations can demonstrate additivity, antago-
nism or synergy [56]. Indeed, several of adjuvanta-
tion systems contained in licensed vaccines are
comprised of combination systems such as AS01
(MPLAþQS21 in liposomes), AS02 (MPLAþQS21
in oil-in-water emulsion), AS03 (squaleneþ alpha-
tocopherol in oil-in-water emulsion), and AS04
(MPLþ alum) [57]. Of note, effects of at least some
combination adjuvants may vary with age [58],
though this has not been systematically studied.
DISCOVERY OF ADJUVANTS

The first adjuvant observation was recorded in 1893,
reporting that administration of killed bacteria
(Coley toxins) may be beneficial in treating some
forms of cancer [59]. In 1925, Ramon observed that
substances inducing sterile inflammation at the site
of injection were able to increase antisera produc-
tion of tetanus and diphtheria [60]. Since Glenny
observed that alum enhanced antibody responses in
1926, alum was widely used as an adjuvant for
numerous human vaccines. Although water-in-oil
emulsions were withdrawn for their high reactoge-
nicity in the 1960s, they were soon followed by
development of oil-in-water emulsions. Liposomes
Volume 32 � Number 1 � February 2020



Safety and efficacy of vaccine adjuvants Nanishi et al.
and virosomes that adsorb or encapsulate antigen
were developed in the 1970s. Hepatitis A vaccine
adjuvanted with virosome was licensed in the 1990s,
as the first nonlive vaccine to use an adjuvant other
than alum [60]. However, characterization of adju-
vants and their MOA lagged for many years [61].

In 1990s and early 2000s, the discovery of PRRs
and their agonists opened new opportunities in
adjuvant discovery and development. Many adju-
vants can activate PRRs directly or indirectly, to
trigger different types of innate immune responses,
and, if combined with an antigen, can initiate and
enhance specific arms of the adaptive immune sys-
tem [59,60]. In 2009, the US Food and Drug Admin-
istration (FDA) approved the first novel adjuvanted
vaccine against human papillomavirus which con-
tains AS04, comprised of alum and TLR4A MPLA.
Thereafter, several vaccines with novel adjuvants
were approved worldwide, such as hepatitis B
vaccines containing TLR9 ligand CpG-ODN or
AS04, and subunit zoster vaccine adjuvanted with
AS01B, comprised of MPLA and saponin (Table 1).
EFFICACY OF VACCINE ADJUVANTS

Historically, vaccinologists sought to increase specific
antibody responses with adjuvants such as alum.
However, these classical adjuvants administered with
subunit or recombinant antigens could not always
induce sufficient immunity among naı̈ve popula-
tions because some of the intrinsic immunogenic
factor in the live, live attenuated or whole killed
organisms are lost or inactivated via purification
processes.Consequently, forchildrenless than2years
of age multiple booster doses of routine inactivated
vaccines are typically needed to protect them from
infectious diseases (Fig. 1). In addition, for multiple
vaccines durability of humoral antibody responses is
often insufficient due to the waning immunity, as is
the case with acellular pertussis vaccines [62,63].

Modern adjuvants represent a powerful tool to
overcome these challenges by enhancing a magni-
tude, durability, and/or quality of the immune
response that in some instances mimicsnatural infec-
tion [5]. Adjuvants can therefore improve vaccine-
specific immune responses in vulnerable populations
such as young infants, elderly, immunocompro-
mised, and chronically ill patients. For example,
novel recombinant hepatitis B vaccines adjuvanted
with AS04 (alum with the TLR4A MPLA) or with CpG-
ODN (TLR9A) demonstrated enhanced immunoge-
nicity in patients with chronic renal failure or elderly
individuals with type 2 diabetes mellitus [64–66].
Adjuvants may be added to enhance responses to
recombinant-antigen-based vaccines or be used to
complement live attenuated vaccine formulations
1040-8703 Copyright � 2019 The Author(s). Published by Wolters Kluwe
[60,67]. A key example is Shingrix, the recombinant
subunit vaccine for varicella–zoster virus (VZV) adju-
vanted with AS01B (MPLA and saponin) [32,33]. This
adjuvanted vaccine was also immunogenic for recip-
ients of autologous hemopoietic stem-cell trans-
plants and solid organ transplant [68

&&

,69
&

]. To our
knowledge Shingrix has not yet been evaluated in
pediatric cohorts wherein it may be promising for
children with primary or secondary immunodefi-
ciency, who are vulnerable to VZV but unable to
receive live attenuated varicella vaccine.

Use of appropriate adjuvants to enhance immu-
nogenicity can decrease the amount of antigen con-
tained in each vaccine (antigen sparing), reducing
the quantity of costly vaccinal antigen and the
number of vaccine doses required to achieve suffi-
cient protection (dose sparing) (Fig. 1), thereby
reducing the need for clinic visits and enhancing
the effective vaccination rate for consequent herd
immunity [70]. These adjuvant effects enhance sus-
tainability of the global vaccine supply. Finally,
adjuvants can broaden an immune response
(Fig. 1) to variable antigens, and may thus be crucial
for developing effective vaccines against key patho-
gens such as respiratory syncytial virus, influenza,
and HIV, viruses that display substantial antigenic
drift, strain variation or both [71–73].
REGULATORY PERSPECTIVE REGARDING
THE SAFETY OF ADJUVANTED VACCINES

Clinical trials evaluating vaccines containing novel
adjuvants have recently supported licensing by the
FDA as described above. FDA defines adjuvants as one
of the constituent materials of the vaccine, therefore,
unless the adjuvant has a ‘stand alone’ indication,
they do not usually evaluate and approve adjuvants
in of themselves but rather as part of a vaccine
formulation [74]. Key guidance from FDA states ‘an
adjuvant shall not be introduced into a product
unless there is satisfactory evidence that it does not
adversely affect the safety or potency of the product’
[74]. While there is no requirement for demonstrat-
ing the safety of the adjuvant administered alone, the
safety of an adjuvanted vaccine formulation has to be
demonstrated with special considerations in ade-
quate and well controlled studies. WHO published
a guideline in 2013 and described the nonclinical,
quality, pharmacological, toxicological, and other
information needed to support initiation of clinical
trials with a vaccine combined with a novel adjuvant
[75]. In addition to appropriate safety studies, the
guideline for supporting approval places emphasis
on the importance of demonstrating the rationale
for use of an adjuvant with defined MOA in human
in-vitro and well defined animal models [76

&

].
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FIGURE 1. Adjuvants enhance vaccine immunogenicity. (a) Nonadjuvanted subunit vaccines that contain only purified
recombinant antigens induce modest T helper-polarizing cytokines, T-cell activation, and antibody production typically require
multiple booster doses and often result in narrow and/or waning immunity. (b) Adjuvanted vaccines, in turn, enhance the
quality and quantity of antigen presenting cell maturation and costimulation, T helper-polarizing cytokine production,
polyfunctional T cells, and antibody production, resulting in broad and durable immunity, as well as dose and antigen
sparing. Multiple cell colors indicate broader protective immunity. APC, antigen presenting cell; DC, dendritic cell. This figure
was created using BioRender (https://biorender.com/).

Infectious diseases and immunization
ADJUVANT SAFETY
Although adjuvants are added to many vaccines for
their immunostimulatory effects, they can potentially
simultaneously induce undesirable reactogenicity,
physical manifestations of the immunomodulatory
and/or inflammatory response occurring within
72h of vaccination [77

&&

,78
&

]. Reactogenicity can be
divided into local and systemic depending on the site
of symptoms. Local reactogenicity includes erythema,
130 www.co-pediatrics.com
swelling, pain, tenderness, or induration at the injec-
tion site, while systemic reactogenicity, often referred
to as ‘flu-like’ symptoms, include chills, fever, fatigue,
nausea, arthritis, myalgia, and headache.

Since the introduction of novel adjuvants, safety
experience has been accumulated with their use in
diverse vaccines as well as different target popula-
tions and settings. Although the safety profile of one
adjuvanted vaccine in one target population cannot
Volume 32 � Number 1 � February 2020
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Safety and efficacy of vaccine adjuvants Nanishi et al.
be extrapolated to other vaccines or populations,
novel adjuvants showed no increase in serious
adverse events so far. However, some vaccines with
novel adjuvants had higher rates of local reactoge-
nicity compared with their controls (placebo, non-
adjuvanted, or alum-adjuvanted vaccines) [57,79

&

]. A
systematic review evaluating safety data in vaccine
trials in adults at least 50 years, focused on AS01
(liposomal MPLA and saponin QS21), AS02 (oil-in-
water with MPLA and QS21), AS03 (squalene-based
adjuvant), and MF59 [80

&&

]. Rates of local pain were as
high as 45.7–91.1% for AS01/AS02, 41.0–68.6% for
AS03, and 0.7–64.8% for MF59, respectively. Relative
risk of fever was 5.51 (95% confidence inter-
val¼3.49–8.71) for AS01/AS02, 1.51 (0.46–4.90)
for AS03, and 1.41 (0.83–2.40) for MF59 [80

&&

]. A
similar study evaluating safety data of novel adju-
vants among children 10 years of age or less demon-
strated that local pain was the most frequent adverse
event, with rates reported as 8.0–91.4% for AS01/
AS02, 31.7–84.6% for AS03, and 1.0–59.0% for
MF59, respectively [81]. The rate of Grade 3 pain,
defined as spontaneous pain or which induce crying
when children move their limb, reported in phase 3
trials was 0.1–0.3% for AS01, less than 1% for MF59,
and4.3–12.4%forAS03-adjuvantedvaccines, respec-
tively [82–85]. The incidence of Grade 3 fever defined
asmore than39 8C was2.5%forAS01 amongchildren
5–17 months of age and less than 1% among infants
6–12 weeks of age (consistent with the generally
lower reactogenicity of vaccines in early life [86]),
1.9–5.4% for AS03, and 1% or less for MF59-adju-
vanted vaccines, respectively [82–85,87,88].

While reactogenicity is defined as acute inflam-
matory reactions after vaccination, the term ‘safety’
refers to all adverse events attributable to vaccination
that could potentially be caused, triggered, or wors-
ened after vaccine administration [77

&&

]. In addition
to the symptoms described above as reactogenicity,
safety would include adverse events such as anaphy-
lactic reactions after administration of an adjuvanted
vaccine. Although not proven via epidemiological
research, and partially influenced by the immuno-
modulatory MOA of most adjuvants, concerns have
been raised regarding the hypothetical potential of
adjuvanted vaccine to increase autoimmune diseases
[89–91]. Unexpected rare adverse events may also
occur which are challenging to ascribe causality to.
For example, an increased risk of narcolepsy was
observed in several European countries after AS03-
adjuvanted 2009 H1N1 influenza vaccine, and alum
has been linked to macrophagic myofasciitis,
although underlying mechanisms and causality are
not fully elucidated [91–96]. Because the sample size
of prelicensure clinical trials is not usually sufficient
to detect rare adverse events, it is essential to monitor
1040-8703 Copyright � 2019 The Author(s). Published by Wolters Kluwe
postlicensure data (i.e., phase 4) with well selected
controls [79

&

]. Reporting potential vaccine side-
effects, including attributable adverse events, is cru-
cial to the integrity of vaccine development and will
inform development of vaccines optimized safer vac-
cines via transparency and public awareness of possi-
ble vaccine-associated adverse events [97]. If an
adverse event is associated with a given vaccine, it
is important to assess which of the vaccine compo-
nents, potentially including the adjuvant, may con-
tribute to that adverse event. The Vaccines Adverse
Events Reporting Systems (www.vaers.hhs.gov) is
important for reporting, assessing and addressing
vaccine safety. WHO provides an e-learning course
which is to establish a shared understanding among
professionals whose work is linked to vaccine safety
issues [98]. Prospectively designed vaccine studies in
which systems biology assays are conducted on sam-
ples from rare events as compared with unaffected
controls may represent an approach to get further
insight into rare events.
MECHANISM OF REACTOGENICITY

After injection, adjuvants alongwithantigens rapidly
stimulate the immune system. Adjuvants that are
PRR agonists (e.g., MPLA, a TLR4A) directly activate
innate immune cells, such as dendritic cells, and
induce production of proinflammatory mediators
including cytokines (e.g., IL-1b, IL-6, and tumor
necrosis factor), chemokines (e.g., CCL2, CXCL1,
and CXCL9), lipid mediators [e.g., prostaglandin-E2

(PGE2)], complement cascade components (e.g., C3a
and C5a) and vasodilators (e.g., vasoactive amines
and bradykinin) [77

&&

,99]. These soluble factors may
sensitize peripheral nociceptive responses [100].
Adjuvants may drive injection site cell death/cyto-
toxicity and induce release of damage-associated
molecular patterns (DAMPs) from injured/dead cells
and tissue. DAMPs, such as chromatin-associated-
protein-high-mobility group box 1, heat shock pro-
teins, purine metabolites, and host cell DNA, can
act as autologously derived endogenous adjuvants.
Endogenous adjuvants may act in an additive or
synergistic way with exogenous adjuvants [58,101].

Neutrophils, monocytes and lymphocytes accu-
mulate at the site of immunization as early as 3–6 h
after vaccine injection [26,99]. Vasodilators and
chemokine promote cell recruitment from blood,
but may also lead to the development of redness
(erythema) and swelling. Most cytokines and che-
mokines in the injection site decrease within 24 h
and reach baseline after 72 h [99,102,103]. For exam-
ple, MF59 increases recruitment of immune cells
into the injection site through secretion of chemo-
kines, such as CCL2, CCL3, CCL4, and CXCL8 [76

&

].
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MF59 also accelerates and enhances monocyte
differentiation into mature dendritic cells, and facil-
itates migration of dendritic cells into tissue-
draining lymph nodes to prime adaptive immune
responses [76

&

]. Because each adjuvant has a distinct
MOA that may further vary with vaccine dose and
demographics of the target populations, including
age [58,104], their contribution to reactogenicity
symptoms may vary. Although these phenomena
may be crucial for strong immunogenicity, these
same inflammatory events may also lead to the
development of local reactogenicity. Systemic reac-
togenicity may be initiated when pyrogenic factors
such as proinflammatory cytokines (e.g., IL-1b) and
chemokines, and PGE2 are produced in sufficient
levels to enter the systemic circulation and the
central nervous system (Fig. 2). Within the brain,
the coupled induction of the inducible enzymes
cyclooxygenase-2 and microsomal PGE synthase-1
enhances intracerebral PGE2 concentrations,
thereby causing an elevation of body temperature
[105,106].
FIGURE 2. Medicinal chemistry and formulation can limit adju
adjuvants are rapidly released and dissipated from the injection sit
production of cytokines and prostaglandin-E2 thereby increasing sy
Lipidation of small molecules adjuvants, is one approach to reduce
through the slow release of the adjuvant with low systemic distribut
BioRender (https://biorender.com/).
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BIOMARKERS FOR REACTOGENICITY

Several new scientific approaches are proposed to
strengthen the assessment of science and safety of
vaccine adjuvants. Preclinical human in-vitro models
that consider age-specific and sex-specific differences
can generate hypotheses to be tested in appropriate
animal models and eventually in targeted clinical
trials [107]. Using in-vitro biomarkers as surrogate
markers of in-vivo immunogenicity and reactogenic-
ity would be highly desirable as well [4]. Indeed, given
the substantial list of infectious disease pathogens
and cancers for which new or improved prophylactic
or therapeutic vaccines are urgently needed; the long
list of candidate vaccinal antigens; the growing list of
candidate adjuvants, combinations adjuvants, and
formulations thereof; andthediversityandvariability
of target populations, it will not be possible to con-
duct multiple large-scale phase 3 clinical trials for
each and every potential adjuvanted vaccine formu-
lation. In this context, in-vitro systems that model
innate and adaptive immune responses may be key to
vant-related systemic reactogenicity. (a) Free small molecule
e. Entry of such adjuvants into the systemic circulation induces
stemic reactogenicity, including fever and malaise. (b)
the systemic reactogenicity without reducing immunogenicity

ion. PGE2, prostaglandin-E2. This figure was created using
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Table 2. Biomarkers of adjuvant reactogenicity

Biomarker
Adjuvant tested (and vaccine
containing similar adjuvant) In vivo In vitro Comment References

IL-1b FSL-1, Pam3CSK4, flagellin, R848 – Human Strong correlation between in-vitro
production of IL-1b and PGE2

[111,113,116]

IL-6 AS01, AS03, AS04, FSL-1,
Pam3CSK4, flagellin, R848

Human Human Associations with systemic or severe
local symptoms

[111,112
&&

,117]

Tumor necrosis
factor, IL-8

FSL-1, Pam3CSK4, flagellin, R848 – Human Associations with systemic or severe
local symptoms

[111]

IFNg, CXCL10 AS01, AS03, AS04 Human – Associations with systemic or severe
local symptoms

[112
&&

,117]

CCL4, CCL8 AS01 Human – Associations with systemic or severe
local symptoms

[112
&&

]

CRP AS01, AS03, AS04, FSL-1,
Pam3CSK4, flagellin, R848

Human,
rabbits

– Associations with systemic or severe
local symptoms

[111,112
&&

,117,118]

Fibrinogen AS01, AS03, AS15 Rabbits – Associations with systemic or severe
local symptoms

[119]

PGE2 FSL-1, Pam3CSK4, flagellin, R848 Rabbits Human Strong correlation between in-vitro
production of PGE2 and an increase
in body temperature in rabbits

[115,118]

PTX3 R848, MPLA, alum (Bexero,
EasyFive, Cervarix)

Mouse Human,
mouse

PTX3 is a glycoprotein produced in
response to proinflammatory stimuli
(e.g., tumor necrosis factor, and IL-
1b) and TLR agonists. PTX can act
as an endogenous adjuvant

[102,113,114,120]

Lactoferrin, matrix
metalloproteinase-9

R848, MPLA, alum (Bexero,
EasyFive, Cervarix)

– Human Correlated with PTX3 adjuvant-induced
human monocytes secretome in vitro

[114]

Creatine kinase N/A Rabbits – A marker of muscle damage at the
injection site. Appears to have poor
concordance with the systemic CRP
response

[118]

Transitional
B-cell subset

AS03 Human – Healthy adults with a relatively high
number of a transitional B-cell subset
at baseline who received AS03-
H1N1 flu vaccine demonstrated
greater frequency of medium and
high adverse events

[121]

Clustered
biomarker
genes

CpG-K3, virosome, alum,
pam3CSK4, nanoSiO2, DMXAA

Mouse, rats – Genes (Cxcl11, Cxcl9, Zbp1, Mx2,
Irf7, Lgals9, Ifi47, Tapbp, Csf1,
Timp1, Trafd1, Lgals3bp, Psmb9,
Ifrd1, C2, Tap2, Psme1, Ngfr)
expressed in the lungs were
correlated with reactogenicity.
Genes are functionally classified
into 3 groups: IFN pathway;
modification and presentation of
antigens; and intracellular signaling
of chemokines and cytokines

[122–125]

DMXAA, stimulator of interferon agonist; FSL, TLR2/6 agonist (also a putative TLR10 ligand); nanoSiO2, single particles of silica dioxide; pam3CSK4, TLR1/2
agonist. CRP, C-reactive protein; PGE2, prostaglandin-E2; PTX3, pentraxin 3; TLR, Toll-like receptor.

Safety and efficacy of vaccine adjuvants Nanishi et al.
accelerating and derisking vaccine development
[101,108–110].

Although there is a growing evidence of general
associations between local and systemic inflamma-
tory mediators and systemic symptoms after vaccina-
tion, no single biomarker of systemic reactogenicity
has been definitely identified (Table 2). However,
several contenders, either analyzed alone, or in com-
bination are under investigation. PGE2 was reported
as an early marker of febrile responses in vivo. PGE2

upregulation in the plasma preceded elevation of
body temperature (within 6–8 h), while upregulation
1040-8703 Copyright � 2019 The Author(s). Published by Wolters Kluwe
of C-reactive protein (CRP) occurred only at 24 h
[111]. A study of healthy adults vaccinated with
AS01-adjuvanted hepatitis B vaccine reported that
several cytokines, chemokines, and acute phase reac-
tants such as IL-6, IFN-g, CXCL10 (IP-10), CCL8
(MCP-2), and CRP were correlated with intensity of
systemic symptoms, but not with local reactogenicity
[112

&&

]. In-vitro production of PGE2 correlated with
tumor necrosis factor, IL-1b production in human
primary monocytes and a human monocytic cell line
in vitro, and with reactogenicity in rabbits in vivo
[111,113,114]. PGE2 may be a useful biomarker to
r Health, Inc. www.co-pediatrics.com 133
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predict reactogenicity [115], but its utility in predict-
ing reactogenicity in the pediatric area has yet to be
defined [114,116]. Ultimately, benchmarking of
novel adjuvants and adjuvanted vaccines to estab-
lished adjuvants (e.g., Alum, MPLA, CpG), licensed
adjuvanted vaccines [e.g., alum-adjuvanted pneumo-
coccal conjugate vaccine (PCV), the group B menin-
gococcus (MenB) vaccine Bexsero (containing TLR4A
activity), Heplisav (containing CpG, a TLR9A)], and
live attenuated vaccines (e.g., BCG), may provide
fresh insight into their age-dependent activation of
innate signatures important for reactogenicity [116].
These approaches will enable us to apply precision
medicine principles to tailor vaccines for optimal
safety and efficacy for vulnerable populations.

Systems vaccinology, employing integration of
approaches such as genomics, transcriptomics, pro-
teomics, metabolomics, and miRNomics with con-
ventional immunological and clinical data, is
another promising approach to characterizing adju-
vant MOA and defining biomarkers of adjuvanticity
and safety [115,126]. For example, a global proteo-
mic approach to characterize adjuvant-induced pro-
tein release (i.e., secretome analysis) from human
neonatal and adult monocytes, demonstrated adju-
vant-specific and age-specific differences (Table 2)
[114]. This comprehensive approach has begun to
shed light on adjuvanted vaccine-induced molecu-
lar signatures that correlate with reactogenicity and
immunogenicity [22,127

&

]. Several studies have
demonstrated promising underlying mechanisms
possibly associated with vaccine efficacy and safety,
but considerable effort is still required to compre-
hensively standardize and apply these approaches
[127

&

]. Thus, systemic and local reactions after
vaccination may involve different innate immune
response parameters, or a different kinetic of the
same parameters. Among healthy adults who
received the squalene-based AS03-adjuvanted
H1N1 flu vaccine moderate or severe local or sys-
temic reactogenicity (as calculated and categorized
from self-reported participant parameters), corre-
lated with a higher quantity of a transitional B-cell
subset at baseline prior to vaccination. In contrast,
neither basal numbers of memory T cells nor anti-
body titers correlated with adverse events [121].
DRUG DELIVERY SYSTEM FOR
TARGETING ADJUVANTED VACCINE
FORMULATIONS AND REDUCING
REACTOGENICITY

As described previously, several adjuvant platforms
such as liposome, nanobeads, and VLPs are catego-
rized as vaccine delivery systems, representing their
inherent adjuvant effects through modulating
134 www.co-pediatrics.com
antigen delivery to APCs [5]. Advances in immu-
noengineering and formulation science have
enabled some adjuvants to be rationally engineered
as ‘pathogen-like particles’ to mimic the size, shape,
and surface chemistry of pathogens [4,10,109]. Fur-
thermore, formulation technologies may not
only increase adjuvant immunogenicity but also
optimize safety [101,128]. Formulation strategies
to increase vaccine delivery to draining lymph
nodes can often simultaneously decrease the sys-
temic distribution of adjuvants, thereby limiting
systemic reactogenicity [67]. For example, we had
previously reported some promising innovations in
formulation and use of delivery systems for TLR7/
8As including lipidation approaches, encapsulating
nanoparticles, adsorption to alum adjuvants, and
conjugation to polymers and/or protein antigens
[45

&

,101,109]. Lipidated IMQ TLR7/8As, such as
3M-052, maintain the adjuvant for an extended
period within a localized tissue region to decrease
metabolismandsystemic reactogenicity (Fig.2) [128].
TOWARD ‘PRECISION ADJUVANTS’

Traditionally adjuvants have been developed on a
‘one size fits all’ basis. However, a growing body of
evidence suggests that responses to adjuvants can
markedly vary based on genetic and epigenetic fac-
tors. Ontogeny, the change in an individual across
their life span, is a key factor in determine the
quality and quantity (magnitude) of an immune
response [129]. Early life immunity varies with age
during fetal gestation, neonatal phase, and infancy
[108]. For example, human neonatal APCs (e.g.,
monocytes, dendritic cells) demonstrate reduced
Th1 but robust anti-inflammatory IL-10 responses
to stimulation by most PRR agonists studied to date
[130]. Human newborn cord blood includes soluble
mediators such as maternal antibodies, high levels
of immunosuppressive adenosine, and low levels of
complement, important for triggering adaptive
immune responses [131]. Thus, newborns present
with distinct ontogeny resulting in decreased mag-
nitude of immunogenicity and reduced persistence
of functional antibodies, both limit early life immu-
nization strategies [45

&

].
The concept of precision medicine can be

applied to vaccinology to generate precision vac-
cines, that is, those optimally tailored to a given
target population. Indeed, with the growing realiza-
tion that responses to adjuvants may vary by target
population, the most recent National Institutes of
Health strategic plan on adjuvants (2018) highlights
the importance of discovery and development of
adjuvants targeted for particular demographic
groups such as age and sex [132]. Accordingly,
Volume 32 � Number 1 � February 2020



Table 3. Characteristics of ideal vaccine adjuvants

Efficacy

Initiate and enhance specific arms of the immune system

Optimally enhance immunogenicity in a target population

Improve immune response in vulnerable populations

Enhance inactivated vaccine immunogenicity to mimic that of a
live vaccine

Induce potent and durable immunity

Broaden an immune response to variable antigens

Reduce number of vaccinations – dose sparing

Known mechanism of action and biomarkers for adjuvanticity

Safety

No or limited systemic reactogenicity

Low local reactogenicity

Broad safety spectrum

Known mechanism and biomarkers for reactogenicity/adverse
effects

Material

Age-optimized formulation to increase immunogenicity and
reduce reactogenicity

Ease of production, scalability, high stability, and ease of use

Enable dose – and antigen-sparing and reduced vaccine
manufacturing costs

Safety and efficacy of vaccine adjuvants Nanishi et al.
precision vaccines are defined as vaccines that take
into account the target population; are formulated
to selectively activate the immune system by target-
ing anatomic sites, cells, and pathways that generate
a protective response; and may, as needed, contain
adjuvantation systems that optimally enhance
immunogenicity in a target population (Table 3)
[107]. The use of optimized adjuvanted vaccine
formulations targeted to a vulnerable population
such as newborns or young infants may overcome
barriers in vaccine development. The target of pre-
cision vaccines can also be applied to vulnerable
populations such as the elderly, immunocompro-
mised, and therapeutic vaccines for immunosup-
pressed opioid users [133,134].

TLR7/8As, as a key example for this context,
have demonstrated unique utility. Unlike most
TLRAs that elicit reduced Th1 cytokine production
by newborn and infant leukocytes, TLR7/8 or TLR8
agonists induces robust Th1-polarizing responses
from neonatal dendritic cells in human and nonhu-
man primates (NHPs) [135–137]. The robust activity
of TLR7/8As, including IMQs and ssRNAs, likely
reflects that these agents are refractory to mecha-
nisms that limit Th1 polarization, including the
adenosine/cAMP axis [137]. Indeed, as predicted
by human and NHP in-vitro studies, newborn NHPs
immunized with PCV resulted in accelerated and
enhanced specific B cells, specific antibody titers,
and antibody-mediated phagocytic killing when the
1040-8703 Copyright � 2019 The Author(s). Published by Wolters Kluwe
vaccine was adjuvanted with TLR7/8A [101]. These
data suggest that appropriately formulated TLR7/8A
adjuvants could enhance responses to vaccines
administered even very shortly after birth, though
much remains to be learned regarding optimal for-
mulation safety and efficacy.
LESSONS FROM LIVE VACCINES:
ADJUVANTS FOR TRAINED IMMUNITY

Although they represent an older approach to vac-
cine development, we have much to learn from live
attenuated vaccines. Indeed, live vaccines with
inherent adjuvant activity (i.e., ‘self-adjuvanted’
vaccines), such as BCG, yellow fever vaccine, and
varicella vaccine, are still routinely administered to
newborns and infants [138]. Not only does such live
vaccine tend to induce more durable immunity, but
it is increasingly appreciated that they may have
beneficial effects in preventing a range of infections
that exceed those attributable to prevention of the
infection they are targeted to [139,140]. This phe-
nomenon of heterologous immunity is apparently
due in part to immunometabolic and epigenetic
enhancement of innate immunity, potentially via
trained immunity, that is, an altered innate immune
response to subsequent stimulation [141–143].
Certain adjuvants or combination adjuvantation
systems may be able to reproduce the benefit of live
vaccines in animal models [144] but whether these
effects can be demonstrated in humans remains to
be determined.
CONCLUSION

Currently employed and novel adjuvants with well
defined MOA can greatly enhance immune
responses in vulnerable populations such as young
infants. Concurrently, a comprehensive under-
standing and assessment of undesirable reactogenic-
ity associated with adjuvanted vaccine formulations
is pivotal for developing optimal prophylactic and
therapeutic vaccines. Recent advancements in adju-
vant discovery and development including systems
immunology, immunoengineering and population-
specific human in-vitro modeling for identification
of MOA and biomarkers of immunogenicity and
reactogenicity promises to open a new era of per-
sonalized adjuvanted vaccines tailored to vulnerable
populations.
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