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In this study, the mitogenome of Hannaella oryzae was sequenced by next-generation
sequencing (NGS) and successfully assembled. The H. oryzae mitogenome comprised
circular DNA molecules with a total size of 26,444 bp. We found that the mitogenome
of H. oryzae partially deleted the tRNA gene transferring cysteine. Comparative
mitogenomic analyses showed that intronic regions were the main factors contributing to
the size variations of mitogenomes in Tremellales. Introns of the cox1 gene in Tremellales
species were found to have undergone intron loss/gain events, and introns of the
H. oryzae cox1 gene may have different origins. Gene arrangement analysis revealed
that H. oryzae contained a unique gene order different from other Tremellales species.
Phylogenetic analysis based on a combined mitochondrial gene set resulted in identical
and well-supported topologies, wherein H. oryzae was closely related to Tremella
fuciformis. This study represents the first report of mitogenome for the Hannaella genus,
which will allow further study of the population genetics, taxonomy, and evolutionary
biology of this important phylloplane yeast and other related species.

Keywords: Hannaella, mitochondrial genome, protein coding gene, repeat sequence, gene rearrangement,
phylogenetic analysis 3

INTRODUCTION

Hannaella is a basidiomycetous yeast genus belonging to the order Tremellales, phylum
Basidiomycota. It was proposed to accommodate species closely related to the genera Derxomyces
and Dioszegia, which belong to the Bullera sinensis clade of the Luteolus lineage of the Tremellales
based on a series of molecular markers (Wang and Bai, 2008; Kaewwichian et al., 2015; Han
et al., 2017). So far, about 12 species have been described in this genus, including Hannaella
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coprosmaensis, Hannaella dianchiensis, Hannaella kunmingensis,
Hannaella luteola, Hannaella phyllophila, Hannaella
phetchabunensis, Hannaella pagnoccae, Hannaella surugaensis,
Hannaella sinensis, Hannaella siamensis, Hannaella zeae, and
Hannaella oryzae (Landell et al., 2014; Kaewwichian et al., 2015;
Han et al., 2017). These species are found widely distributed on
the leaf surfaces of various plants, including rice, wheat, and fruit
trees (Han et al., 2017). As an important phyllosphere-inhabiting
yeast, H. oryzae was considered to play an important role in
promoting plant growth and biocontrol. This genus is considered
to be monophyletic in nature, and H. kunmingensis showed
genotypic and phenotypic variability (Dayo-Owoyemi et al.,
2013). Both the basidiomycetous and the ascomycetous yeasts
have been found colonizing on phylloplane from various regions
of the world (Glushakova et al., 2007; Landell et al., 2010;
Molnarova et al., 2014). These basidiomycetous genera were
found to be the most common phylloplane yeasts, including
Sporobolomyces, Rhodotorula, Cryptococcus, Trichosporon, and
Hannaella (de Azeredo et al., 1998; Kaewwichian et al., 2015).
The mitochondrial genomic characteristics of representative
species of the two phylloplane yeast genera (Cryptococcus
and Trichosporon) have been published, which facilitated our
understanding of phylloplane yeasts (Yang et al., 2012; Gomes
et al., 2018; Yan et al., 2018). However, no mitochondrial
genome has been published on the genus Hannaella or the
family Bulleribasidiaceae. H. oryzae has been isolated from the
phylloplane of various plants. The report of its mitochondrial
genome will help us understand the genetic characteristics of this
important phylloplane yeast.

Mitochondrial genomes are effective tools for analyzing the
phylogenetic and genetic evolution of eukaryotes because they
contain many available molecular markers (Burger et al., 2003;
Bullerwell and Lang, 2005; Cheng et al., 2021). Besides, the
arrangement of mitochondrial genes, their transfer RNA (tRNA)
structure, their codon usage, and the dynamic changes of
introns can also be used to infer the evolutionary status of
eukaryotes (Li et al., 2018a; Wang et al., 2018, 2020b; Wu
et al., 2021). With the rapid development of next-generation
sequencing technologies in recent years, more and more
mitochondrial genomes have been obtained (du Toit et al.,
2017; Yang et al., 2018; Zhang et al., 2018; Wang et al., 2020c).
However, the mitochondrial genomes of fungi are less studied
than those of animals. So far, less than 130 basidiomycete
mitochondrial genomes have been reported1, which limits
our understanding of the “second genome” (mitochondrial
genome) of fungi. Studies on the fungal mitogenomes have
shown that fungal mitogenomes exhibited significant variations
in gene order, introns, intergenic regions, genome size, and
repetitive sequences (Zhang et al., 2016; Zhang S. et al., 2017;
Zhang Y.J. et al., 2017; Fourie et al., 2018; Wang et al.,
2020a; Li et al., 2021). Despite enormous variations in the
fungal genome, the 15 protein-coding genes, including atp6,
atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4,
nad4L, nad5, nad6, and rps3, have been detected in most
basidiomycete mitochondrial genomes, which were considered

1https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/

to be core protein-coding genes (PCGs) in the basidiomycete
mitochondrial genomes.

In the present study, the complete mitochondrial genome
of H. oryzae was sequenced and assembled by next-generation
sequencing technology. The content, organization, and structure
of the mitochondrial genes were revealed. We compared the
mitochondrial genome of H. oryzae with its closely related
species to identify variations and similarities in the gene content,
genome organization, and gene order. The dynamic changes of
introns were also revealed in H. oryzae and other basidiomycete
species. In addition, the phylogenetic relationships among
various basidiomycete species based on combined mitochondrial
gene sets were analyzed. The mitochondrial genome of H. oryzae
will allow further study of the population genetics, taxonomy,
and evolutionary biology of this important phylloplane yeast and
other related species.

MATERIALS AND METHODS

Sample Collection, DNA Extraction, and
Sequencing
The H. oryzae strain s11 was isolated from the surface of
corn leaves collected in Sichuan, China, using the improved
ballistoconidia-fall method as described by Kaewwichian et al.
(2015). The morphological, biochemical, and physiological
characteristics of the collected yeast strains were examined
according to standard methods described by Kurtzman et al.
(2011). The total genomic DNA was extracted using the
method described by Wang and Bai (2008). H. oryzae was
further identified based on the internal transcribed spacer
(ITS) sequence and the mitochondrial cob gene. Whole-genome
sequencing libraries were constructed using NEBNext Ultra II
DNA Library Prep Kits (NEB, Beijing, China) with the extracted
genomic DNA following the manufacturer’s instructions. Whole-
genome sequencing was carried out on an Illumina HiSeq
2500 Platform (Illumina, San Diego, CA, United States). To
verify the accuracy and integrity of our assembled genome,
we further sequenced the genomic DNA using the Pacbio
RSII platform (Pacific Biosciences, CA, United States). A 40-
kb SMRTbell DNA library was prepared to perform the
Pacbio sequencing.

De novo Assembly and Annotation of the
H. oryzae Mitogenome
Illumina PCR adapter reads and low-quality reads from the
paired-end reads were filtered using custom scripts. Clean reads
were obtained after the quality control step. The mitogenome
of H. oryzae was assembled by CANU v1.6 (Koren et al.,
2017) using the Pacbio long reads. The assembled contigs
were further polished using the paired-end Illumina reads with
Pilon v1.22 (Walker et al., 2014). The obtained H. oryzae
complete mitogenome was annotated according to the methods
previously described (Li et al., 2020b,c). Briefly, the complete
mitogenome of H. oryzae was firstly annotated based on
the results of MITOS (Bernt et al., 2013) and MFannot
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(Valach et al., 2014). At this step, PCGs, ribosomal RNA
(rRNA) genes, and tRNA genes were initially annotated. Open
reading frames (ORFs) were modified or predicted with the
NCBI Open Reading Frame Finder [ORFs less than 100
amino acids (aa) were excluded] (Coordinators, 2017) and
annotated with BLASTp searches against the NCBI non-
redundant protein sequence database (Bleasby and Wootton,
1990). tRNA genes were also predicted with tRNAscan-
SE v1.3.1 (Lowe and Chan, 2016). The graphical map of
the complete mitogenome was drawn with OGDraw v1.2
(Lohse et al., 2013).

Sequence Analysis
The base composition of the H. oryzae mitogenome was
analyzed using DNASTAR Lasergene v7.12 software. Strand
asymmetry of the H. oryzae mitogenome was assessed using
the following formulas: AT skew = [A − T]/[A + T] and
GC skew = [G − C]/[G + C] (Wang et al., 2017). The
non-synonymous substitution rate (Ka) and the synonymous
substitution rate (Ks) for the core PCGs in the four Tremellales
mitogenomes were calculated using DnaSP v6.10.01 (Rozas
et al., 2017). We used MEGA v6.06 (Caspermeyer, 2016) to
calculate the overall mean genetic distances between each pair
of the 15 core PCGs (atp6, atp8, atp9, cob, cox1, cox2, cox3,
nad1, nad2, nad3, nad4, nad4L, nad5, nad6, and rps3) using
the Kimura-2-parameter (K2P) model. The genome synteny
of the closely related mitogenomes was analyzed using Mauve
v2.4.0 (Darling et al., 2004). The introns of the cox1 gene in
33 basidiomycete species were classified into different position
classes (Pcls) and named according to previously described
methods (Zhang and Zhang, 2019).

Phylogenetic Analysis
In order to investigate the phylogenetic status of H. oryzae
among the Basidiomycota phylum, we constructed a phylogenetic
tree of 33 species based on the combined mitochondrial gene
set (15 core PCGs + two rRNA genes) (Li et al., 2018d).
The individual mitochondrial gene was first aligned using
MAFFT v7.037 (Katoh et al., 2019). Then, these alignments were
concatenated in SequenceMatrix v1.7.8 (Vaidya et al., 2011). In
order to detect potential phylogenetic conflicts between different
genes, we carried out a preliminary partition homogeneity
test. Phylogenetic trees were constructed using both Bayesian
inference (BI) and maximum likelihood (ML) methods. Best-
fit models of evolution and partitioning schemes for the gene
set were determined according to PartitionFinder 2.1.1 (Lanfear
et al., 2017). BI analysis was performed with MrBayes v3.2.6
(Ronquist et al., 2012). The RAxML v 8.0.0 software (Stamatakis,
2014) was used for ML analysis.

Data Availability Statement
The newly sequenced H. oryzae mitogenome was deposited
in the GenBank database under the following Accession
No.: MH732752.

2http://www.dnastar.com/

RESULTS

Protein-Coding Genes, RNA Genes, and
Codon Analysis in the H. oryzae
Mitogenome
The complete mitochondrial genome of H. oryzae was assembled
into a circular DNA molecule with a total size of 26,444 bp
(Figure 1). The GC content of the H. oryzae mitogenome
was 38.98% (Supplementary Table 1). Both the GC skew and
the AT skew of the H. oryzae mitochondrial genome were
positive. Fifteen conserved PCGs were detected in the H. oryzae
mitogenome, including 14 core PCGs for energy metabolism
and one rps3 gene (Supplementary Table 2). Eight introns were
detected in the mitogenome of H. oryzae distributed in seven
host genes, including cox1, atp6, rnl, atp9, nad3, nad1, and nad5.
The cox1 gene contained two introns, while the other six genes
each contained one intron. All these introns belonged to group
I, which could catalyze their own splicing. One intronic ORF
(orf195) was found in the H. oryzae mitochondrial genome,
which encoded LAGLIDADG homing endonuclease. Of the 42
genes detected in the H. oryzae mitogenome, 19 were on the
direct strand and the other 23 were on the reverse strand.

The mitogenome of H. oryzae contained two rRNA genes,
namely the small subunit ribosomal RNA (rns) and the
large subunit ribosomal RNA (rnl) (Supplementary Table 2).
Twenty-three tRNA genes were detected in the H. oryzae
mitogenome, encoding for 19 standard amino acids. The
H. oryzae mitogenome lacked a tRNA gene that encoded for
amino acid cysteine. Interestingly, we found that all four species
from the order Tremellales lacked the tRNA gene to transfer
cysteine. We detected about 40 bases of homology to Cys-tRNAs
in the four mitogenomes. In addition, the H. oryzae mitogenome
contained two tRNAs with the same anticodons coding for
methionine and proline (Supplementary Figure 1). However,
these two tRNAs varied in length and base composition,
indicating frequent gene mutations in tRNA genes. The H. oryzae
mitogenome also contained two tRNAs with different anticodons
that coded for leucine and serine. The mitogenome of H. oryzae
lost a tRNA gene with different anticodons that coded for
arginine. The length of individual tRNAs ranged from 71 to 85 bp,
which was mainly due to the variations in length of the extra arm.
A ribonuclease P RNA gene (rnpB) was found in the H. oryzae
mitogenome with a length of 211 bp.

The sizes of the five mitogenomes varied greatly, ranging
from 24,874 to 35,058 bp. Correlation analysis showed that the
intronic regions had the greatest impact on the size variations of
Tremellales and Trichosporonales mitogenomes, with Pearson’s
correlation coefficient of 0.907 (P < 0.05; Supplementary
Figure 2). The results suggested that the intronic region was the
main factor promoting the size variations of mitogenomes in
Tremellales and Trichosporonales.

Intron Evolution of H. oryzae
Mitogenome
Introns were considered as the main factors leading to variations
of the mitogenome size in Tremellales, Trichosporonales, and
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FIGURE 1 | Circular map of the mitochondrial genome of Hannaella oryzae. Genes are represented by different colored blocks. Colored blocks outside each ring
indicate that the genes are on the direct strand, while colored blocks within the ring indicate that the genes are located on the reverse strand. The inner grayscale bar
graph shows the GC content of the mitochondrial sequences. The circle inside the GC content graph marks the 50% threshold. The graphical map of the complete
mitogenome was drawn with OGDraw v1.2 (Lohse et al., 2013).

other basidiomycetes. So the dynamic changes of the introns in
H. oryzae and other basidiomycetes were analyzed in depth in
the present study. The cox1 gene was found to be the largest host
gene of introns in basidiomycetes (Ferandon et al., 2010). Introns
in the cox1 gene could be divided into different Pcls according
to the insertion sites in the coding region. The introns from
the same Pcls were considered homologous introns with high
sequence similarities (Ferandon et al., 2010). Introns belonging
to different Pcls were considered to be non-homologous and
contained low sequence similarities. In the present study, a
total of 246 introns of the cox1 gene were detected in the 33
basidiomycete species we tested, seven of which belonged to
group II and the others belonged to group I (Figure 2). The
239 group I introns could be classified into 31 Pcls, 26 of which

were reported in previous studies (Ferandon et al., 2010), while
the other five were novel Pcls found in the 33 basidiomycetes.
Among these Pcls, Pcl P386 was the most widely distributed,
distributed in 21 of 33 basidiomycete species. Pcls P615 and
P709 were also common Pcls in basidiomycetes, both of which
existed in 16 of the 33 basidiomycete species. Pcls P196, P221,
and P941 were found only in one of the 33 basidiomycete species,
which were considered as rare introns in basidiomycetes. Eight
introns were detected in the cox1 gene of five species from
Tremellales and Trichosporonales. Cryptococcus neoformans and
Tremella fuciformis lost introns in the cox1 gene, while the
cox1 gene of Cryptococcus gattii contained the most introns
among Tremellales and Trichosporonales, indicating that species
in Tremellales and Trichosporonales had experienced intron
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FIGURE 2 | Position class (Pcl) information of cox1 introns in 33 basidiomycete species. The phylogenetic tree on the left was constructed using the Bayesian
inference (BI) and maximum likelihood (ML) methods based on a combined mitochondrial gene set (Bayesian posterior probabilities and bootstrap support values are
shown in Figure 5). Pcls are named according to previously described methods (Zhang and Zhang, 2019). Species IDs for the mitogenomes used in the intron
analysis are provided in Supplementary Table 4. Asterisk indicates the presence of the Pcl in the species and an en dash indicates the absence of any Pcl in the
species. The number at the bottom indicates the frequency of occurrence of the Pcl in the 33 basidiomycete species.

loss/gain events during evolution. In addition, H. oryzae was
found to contain two novel intron Pcls at sites 103 and 425 aa
(Supplementary Table 3). No homologous introns were found in
the four closely related species and other basidiomycete species,
indicating that H. oryzae had undergone a unique intron origin.

Variations, Genetic Distance, and
Evolution Rate of Core Genes
Of the 15 core PCGs detected in the four Tremellales
mitogenomes, 12 PCGs were found to vary in length among the
four species, except for atp8, atp9, and nad4L (Supplementary
Figure 3). Nine genes of the H. oryzae mitogenome had unique
lengths among the four Tremellales mitogenomes, including the
cob, cox1, cox3, nad2, nad3, nad4, nad5, nad6, and rps3 genes.
The GC contents of the core PCGs in the four Tremellales
mitogenomes also varied, indicating frequent base variations in
the core PCGs of the Tremellales mitogenomes. Among the 15
core PCGs detected, atp9 contained the highest GC content in all
four Tremellales mitogenomes. The AT and GC skews of most
of the core PCGs were negative in the four mitogenomes. The
GC skews of the 15 core PCGs in the H. oryzae mitogenome
were negative. The rps3 gene contained a positive AT skew in the
H. oryzae mitogenome.

Of the 15 core PCGs detected, the rps3 gene had the
highest mean K2P genetic distance among the four Tremellales
mitogenomes, followed by nad3 (Supplementary Figure 4). The
mean genetic distance of atp9 in the four mitogenomes was the

smallest among the 15 core PCGs, indicating that this gene was
highly conserved across the mitogenomes. nad4L contained the
highest mean Ks among the 15 core PCGs detected, while atp9
had the lowest rate. The highest Ka was observed in the rps3
gene, while nad4L exhibited the lowest Ka value among the 15
PCGs detected. The Ka/Ks values for all 15 PCGs were less than
1, indicating that these genes were subject to purifying selection.

Comparative Genome Analysis
The mitogenome size of H. oryzae was the second smallest
among all published Basidiomycota mitochondrial genomes (see
text footnote 1), only higher than that of the basidiomycete
yeast C. neoformans (Yan et al., 2018; Supplementary Table 1).
The mitogenome size of H. oryzae was smaller than that of
mushroom-forming species, such as Pleurotus spp. (Li et al.,
2018a), Ganoderma spp. (Li et al., 2018d, 2019c), Coprinopsis
cinereal (Stajich et al., 2010), and Agaricus bisporus (Ferandon
et al., 2013), and its closely related species, T. fuciformis
(MF422647); smaller than that of the ectomycorrhizal fungi
Tricholoma matsutake (Yoon et al., 2016), Lactarius spp. (Li et al.,
2019b), Russula spp.(Li et al., 2018c), and Cantharellus spp. (Li
et al., 2018b); and also smaller than that of the basidiomycete
yeast C. gattii (Yadav et al., 2018). The GC content of the H. oryzae
mitogenome was relatively high (38.98%), which was only lower
than that of Rhodotorula mucilaginosa (40.43%) (Gan et al.,
2017), among all the published Basidiomycota mitochondrial
genomes detected. There were seven, seven, two, and four
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FIGURE 3 | Comparison of the conserved gene order among the mitochondrial genomes of the five closely related species in Tremellales and Trichosporonales,
including Cryptococcus gattii, Cryptococcus neoformans, Hannaella oryzae, Tremella fuciformis, and Trichosporon asahii. Fifteen core protein-coding genes (PCGs)
and two rRNA genes were included in this analysis. Genes are represented by different colored blocks.

introns detected in the mitogenomes of T. fuciformis, C. gattii,
C. neoformans, and Trichosporon asahii, which contained five, six,
one, and four introns, respectively. However, eight introns were
detected in the mitogenome of H. oryzae, but only one of them
contained intronic ORF, suggesting that the mitogenome introns
of H. oryzae were undergoing constriction.

Gene Rearrangement Analysis
The gene arrangement in the mitogenomes of five closely related
species in Tremellales and Trichosporonales was highly variable
(Figure 3). Of the 18 genes detected in the five closely related
species, including the 15 core PCGs, two rRNA genes, and
one rnpB gene, the relative positions of the 16 genes varied
among the five mitogenomes. The gene arrangements of C. gattii
and C. neoformans were highly conserved between the two
species. However, at the class level, the arrangement of the
mitochondrial genes was highly variable. H. oryzae contained a

unique gene arrangement in the order Tremellales, indicating
that gene rearrangements have occurred during the evolution of
H. oryzae, involving protein-encoded genes, rRNA genes, and the
rnpB gene.

The genome collinearity analysis showed that the five
mitogenomes of Tremellales and Trichosporonales could be
divided into 18 homologous regions (Figure 4). The relative
positions of these homologous regions were highly variable
among the five Tremellales mitogenomes. Out of the 18
homologous regions, the relative positions of 17 homologous
regions varied among the five mitogenomes. The relative
positions of the homologous regions were identical between
C. gattii and C. neoformans.

Phylogenetic Analysis
We obtained identical and well-supported tree topologies using
both BI and ML methods based on the combined mitochondrial
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FIGURE 4 | Collinearity analysis of the mitochondrial genomes of the five closely related species in Tremellales and Trichosporonales, including Cryptococcus gattii,
Cryptococcus neoformans, Hannaella oryzae, Tremella fuciformis, and Trichosporon asahii. Eighteen homologous regions were detected among the five
mitogenomes. The sizes and the relative positions of the homologous regions varied among the mitogenomes. The genome synteny of the closely related
mitogenomes was analyzed using Mauve v2.4.0 (Darling et al., 2004).

gene set (15 core PCGs + two rRNA genes) (Figure 5). All
major clades of the trees were well supported [Bayesian posterior
probability (BPP) = 1.00, bootstrap (BS) = 100]. Based on the
phylogenetic analyses, the 33 Basidiomycota species could be
divided into seven major clades corresponding to the orders
Ustilaginales, Agaricales, Polyporales, Russulales, Cantharellales,
Tremellales, and Trichosporonales (Supplementary Table 4).
The four species from Tremellales could be divided into
two groups: one group was composed of two species in the
Cryptococcus genus and the second group was composed of
H. oryzae and T. fuciformis. H. oryzae was identified as a sister
species to T. fuciformis. The results showed that the combined
mitochondrial gene set was suitable as a reliable molecular
marker for the analysis of the phylogenetic relationships among
Basidiomycota species.

DISCUSSION

As the “second genome” of eukaryotes, the mitochondrial
genome plays an important role in regulating the growth and
development, energy metabolism, aging, and stress resistance
of eukaryotes (Bhargava and Schnellmann, 2017; Scheede-
Bergdahl and Bergdahl, 2017). With the development of
the next-generation sequencing technology, more and more
mitochondrial genomes have been obtained, which has promoted
our understanding of the origin, evolution, and taxonomy
of eukaryotes (du Toit et al., 2017; Yang et al., 2018;
Zhang et al., 2018). However, compared with animals, the
mitochondrial genomes of fungi were less studied, especially that
of Basidiomycota. It is estimated that there are more than 30,000
species of Basidiomycota in nature. However, up to now, less
than 100 complete mitochondrial genomes of Basidiomycota are
available in the public database (see text footnote 1). Only four
mitochondrial genomes of basidiomycete yeasts were reported.
This report of the mitochondrial genome of the important
phylloplane yeast H. oryzae will broaden our understanding
of basidiomycete mitochondrial genomes. The mitochondrial

genome size of H. oryzae is the second smallest among all
published Basidiomycota mitochondrial genomes, smaller than
those of many mushroom-forming fungi (Stajich et al., 2010;
Yadav et al., 2018), ectomycorrhizal fungi (Li et al., 2018b, 2020c),
and that of its related species, T. fuciformis. However, the GC
content of the H. oryzae mitogenome is the second highest
among all published Basidiomycota mitochondrial genomes,
indicating its unique mitogenome characteristics. Comparative
mitogenomic analysis showed that the intron region had the
greatest effect on the variations of the mitochondrial genome size
of Tremellales, followed by the intergenic region and the protein-
coding region, which was consistent with previous studies (Li
et al., 2018b). Introns of the Tremellales cox1 gene were found
to have undergone intron loss/gain events, which resulted in the
size and organization variations of the Tremellales mitogenomes.
In addition, the cox1 gene of H. oryzae contained two novel
introns, which showed different origins from the known introns
in basidiomycetes. Interestingly, we did not find any intron
homologous to the introns of the H. oryzae cox1 gene in the NCBI
database by BlastN search. More mitochondrial genomes need to
be obtained to reveal the origin of the introns in H. oryzae or
other basidiomycete species. Mitochondrial genes of H. oryzae
were found on both strands as compared with the ascomycete
mitochondrial genes, which are usually on the same strand
(Aguileta et al., 2014).

It was reported that the mitochondrial genome of eukaryotes
was obtained from a common alpha-proteobacterium ancestor
(Lang et al., 1999). As evolution progresses, most mitochondrial
genes were transferred to the nuclear genome, which was
considered to have many advantages (Adams et al., 2002; Adams
and Palmer, 2003). However, most fungi retain 14 conserved
protein-coding genes for energy metabolism and one rps3 gene,
which were called the core PCGs of the fungal mitogenome (Ye
et al., 2020). In this study, these core PCGs were found to have
high variation rates in the length and base composition even
among the closely related species. Nine genes of H. oryzae were
found to have unique lengths in the five closely related species,
indicating the unique evolutionary characteristics of H. oryzae.
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FIGURE 5 | Molecular phylogeny of 33 Basidiomycota species based on both Bayesian inference (BI) and maximum likelihood (ML) analyses of 15 core
protein-coding genes and two rRNA genes. Support values are Bayesian posterior probabilities (BPP; before the slash) and bootstrap (BS; after the slash). The
species and the NCBI accession numbers for the genomes used in the phylogenetic analysis are provided in Supplementary Table 4.

Of all core PCGs, atp9 was found the most conserved among the
five closely related species we studied. The genetic distance of the
rps3 gene was the largest among the five closely related species we
examined, which was consistent with the report in other literature
(Li et al., 2018b, 2020c). Interestingly, we found that the atp8 gene
in Tremellomycetes and Ustilaginomycetes had 12 nucleotides
missing compared with that in Agaricomycetes species; the effect
of the base variation of PCGs on the energy metabolism of
species needs to be examined. In addition, we found that the
core PCGs of the five closely related species in Tremellales and
Trichosporonales were subject to purifying selection.

The arrangement of mitochondrial genes can serve as an
important reference for revealing the evolutionary position of
species (Li et al., 2018a; Zheng et al., 2018). Mitochondrial
gene arrangement has been extensively studied in animals, and
several models have been proposed to explain the rearrangement
of mitochondrial genes in animals (Boore, 1999; Perseke
et al., 2008). Compared with animals, the arrangement of
fungal mitochondrial genes is highly variable (Hamari et al.,
2001; Aguileta et al., 2014; Li et al., 2018a), and the gene
rearrangement of the fungal mitochondrial genome has not
been fully understood. Previous studies have shown that the
accumulation of repetitive sequences in the fungal mitogenome
has caused the fungal mitogenome rearrangement (Aguileta et al.,
2014). In the present study, we found that the arrangement
of mitochondrial genes was highly variable in the five closely
related species, and the mitogenome of H. oryzae contained
a unique gene order. In addition, the gene order varied at
different taxonomic levels and is highly conserved between two
species of the Cryptococcus genus. However, large-scale gene
rearrangements have been observed at the class level, suggesting
that Tremellales species undergo large-scale rearrangement
events during evolution. Mitochondrial genes are also widely
used as important molecular markers in the study of evolution,
phylogeny, and population genetics (Bronstein and Kroh, 2018;
Dai et al., 2018; Doyle et al., 2018; Li et al., 2020a). In this study,

we divided 33 Basidiomycota species into seven clades based on a
phylogenetic tree with high support for 15 core PCGs and two
rRNA genes. Because there are few morphological features for
fungi to be identified, this leads to confusion in fungal taxonomy
and affects the phylogenetic research and utilization of fungi.
The introduction of the mitochondrial genome will promote
the understanding of fungal taxonomy and genetic evolution
and can be used as a reliable tool for the analysis of fungal
phylogeny (Li et al., 2018c, 2019a). More fungal mitochondrial
genomes need to be uncovered to reconstruct the phylogenetic
tree of fungi and to clarify the phylogenetic status of the
Basidiomycota species.
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