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Abstract: The active layer of metal oxide semiconductor thin film transistor (MOS-TFT) prepared by
solution method, with the advantages of being a low cost and simple preparation process, usually
needs heat treatment to improve its performance. Laser treatment has the advantages of high energy,
fast speed, less damage to the substrate and controllable treatment area, which is more suitable for
flexible and large-scale roll-to-roll preparation than thermal treatment. This paper mainly introduces
the basic principle of active layer thin films prepared by laser treatment solution, including laser
photochemical cracking of metastable bonds, laser thermal effect, photoactivation effect and laser
sintering of nanoparticles. In addition, the application of laser treatment in the regulation of MOS-TFT
performance is also described, including the effects of laser energy density, treatment atmosphere,
laser wavelength and other factors on the performance of active layer thin films and MOS-TFT
devices. Finally, the problems and future development trends of laser treatment technology in the
application of metal oxide semiconductor thin films prepared by solution method and MOS-TFT
are summarized.

Keywords: solution method; laser treatment; active layer; metal oxide semiconductor thin film transistor

1. Introduction

At present, new display technology products are endlessly emerging. People con-
tinue to have higher requirements for the characteristics of display devices, such as high
resolution, thin, flexible, transparent, rich color and so on. Metal oxide semiconductor
thin film transistor (MOS-TFT) has the advantages of high mobility (1–100 cm2/Vs) and
good film uniformity [1–5]. It has become a strong competitor in the display backplane
industry represented by active matrix liquid crystal display and active matrix organic light
emitting diode.

Thin film transistor is a kind of field effect transistor. TFT devices are usually com-
posed of active layers, insulating layers, gate electrodes, source electrodes and drain
electrodes, the common TFT device structure is shown in Figure 1. In TFT, the material
that plays the most important role is the semiconductor active layer. According to the
difference of semiconductor active layer materials, TFT can be divided into the following
four categories: a-Si TFT, p-Si TFT, OTFT and MOS-TFT [6–9]. Among them, MOS-TFT has
the advantages of high field effect mobility, high uniformity, good electrical stability and
high transparency, which is suitable for the future display preparation requirements, such
as large size and flexibility [1,4,10].
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Solution-processed deposition offers the advantages of a simple process, high-
throughput, high material utilization rate, and easy control of chemical components, 
which provides the possibility for large-area preparation of metal oxide semiconductor 
[10–14]. In the study of solution preparation of MOS-TFT, the active layer is mainly made 
of precursor prepared by sol–gel [15,16] or nanoparticles (NPs) dispersed in carrier sol-
vent [17–19], which are deposited on the substrate by spin coating method, inkjet printing 
method and so on. Whether the thin films are prepared by sol–gel method or nano-particle 
method, the precursors or nanostructures usually need postprocessing to improve their 
properties [20]. The typical process of preparing metal oxide semiconductor thin films and 
corresponding TFT devices by solution method is shown in Figure 2. 

 
Figure 2. Schematic diagram indicating a typical solution process synthesis of metal oxide semicon-
ductor thin films and the corresponding TFT devices. 

The traditional thermal treatment process has some disadvantages, such as high en-
ergy consumption, long treatment time, high process temperature and incompatibility of 
flexible substrates [21]. In order to solve this problem, various studies have tried to reduce 
the treatment temperature by compensating for other energy sources (for example, opti-
cal, chemical and physical methods), rather than reducing the activation energy. Many 
researchers reduce the treatment temperature of the active layer and MOS-TFT prepared 
by solution method by microwave treatment [22–24], plasma treatment [23,25], ozone ul-
traviolet treatment (UV) [26–30], high pressure treatment [22,23,31,32], water based/hy-
drolysis [28,33], low temperature steam treatment [34] and so on. The common process 
parameters of low temperature treatment are shown in Table 1. However, these methods 
are not suitable for large-scale roll-to-roll (R2R) processes. On the R2R production line, 
the treatment time is limited by the length of the on-line curing furnace. For example, for 
the speed of 1 m min−1 and the oven length of 5 m, the curing time of each treatment layer 
is limited to 5 min [27,35–37], while these methods require a longer treatment time. 

  

Figure 1. Schematic diagram of TFT device structure.

Solution-processed deposition offers the advantages of a simple process, high-throughput,
high material utilization rate, and easy control of chemical components, which provides the
possibility for large-area preparation of metal oxide semiconductor [10–14]. In the study of
solution preparation of MOS-TFT, the active layer is mainly made of precursor prepared by
sol–gel [15,16] or nanoparticles (NPs) dispersed in carrier solvent [17–19], which are deposited
on the substrate by spin coating method, inkjet printing method and so on. Whether the thin
films are prepared by sol–gel method or nano-particle method, the precursors or nanostruc-
tures usually need postprocessing to improve their properties [20]. The typical process of
preparing metal oxide semiconductor thin films and corresponding TFT devices by solution
method is shown in Figure 2.
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Figure 2. Schematic diagram indicating a typical solution process synthesis of metal oxide semicon-
ductor thin films and the corresponding TFT devices.

The traditional thermal treatment process has some disadvantages, such as high en-
ergy consumption, long treatment time, high process temperature and incompatibility
of flexible substrates [21]. In order to solve this problem, various studies have tried to
reduce the treatment temperature by compensating for other energy sources (for exam-
ple, optical, chemical and physical methods), rather than reducing the activation energy.
Many researchers reduce the treatment temperature of the active layer and MOS-TFT
prepared by solution method by microwave treatment [22–24], plasma treatment [23,25],
ozone ultraviolet treatment (UV) [26–30], high pressure treatment [22,23,31,32], water
based/hydrolysis [28,33], low temperature steam treatment [34] and so on. The common
process parameters of low temperature treatment are shown in Table 1. However, these
methods are not suitable for large-scale roll-to-roll (R2R) processes. On the R2R production
line, the treatment time is limited by the length of the on-line curing furnace. For example,
for the speed of 1 m min−1 and the oven length of 5 m, the curing time of each treatment
layer is limited to 5 min [27,35–37], while these methods require a longer treatment time.

As a new treatment technology in the field of flexible, printing and wearable devices,
laser treatment effectively avoids the shortcomings of other treatment methods, such as
high energy consumption, long processing time, high process temperature, incompatibility
with flexible substrate, only the whole device being treatable without the active layer being
treated accurately. Laser treatment can effectively treat precursor films or nanoparticles
through high-energy radiation and absorption of high-energy photons. By adjusting the
laser processing parameters, such as laser intensity, pulse width and scanning speed, the
energy input into the film can be accurately controlled to achieve the desired thermal
effect [38–43]. In addition, the heating and cooling rate of laser treatment (>106 ◦C s−1)
is several orders of magnitude higher than that of conventional heat treatment and rapid
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thermal treatment, so that the thin films can be processed quickly with minimal energy
loss [44]. Laser treatment is a top-down treatment technology and the treatment position
can be accurately controlled, so the treatment area can be limited to a specific range of
in-plane and thickness direction, and the thin films and nanostructures can be selectively
treated to improve the properties of thin films and MOS-TFT without affecting the sub-
strate and adjacent materials [43,45–47]. Common laser treatment equipment is shown in
Figure 3 [48].

Table 1. Low temperature treatment process parameters.

Treatment Method Treatment Temperature Treatment Time Refs.

Microwave treatment >180 ◦C >30 min [22–24]
Plasma treatment >300 ◦C >20 min [23,25]

Ozone ultraviolet treatment >120 ◦C >5 min [26–30]
High pressure treatment >220 ◦C >1 h [22,23,31,32]
Water based/hydrolysis >230 ◦C >2 h [28,33]
Low temperature steam

treatment >220 ◦C >1 h [34]

Laser treatment >95 ◦C <5 min [38–43]
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Laser treatment technology has many advantages and has made remarkable achieve-
ments in the application of active layer thin films and MOS-TFT devices prepared by
solution method. However, there remains some shortcomings in the related research, such
as less application on flexible substrates, less research on the influence of laser frequency
and pulse number, and so on, which need to be further studied and improved.

2. Mechanism of Laser Treatment

Laser is a kind of high-energy beam with monochromaticity, coherence and collimation
produced by stimulated emission process. In the process of laser treatment, the thin films
are treated effectively through the thermal effect and photochemical reaction caused by the
absorption of high-energy photons.

Lasers can be divided into solid-state lasers and excimer lasers according to working
substances. The output beam of solid-state laser is usually Gaussian beam, and its energy
curve is similar to Gaussian function curve. In contrast to solid-state lasers, the output
beam of excimer lasers is usually flat-topped beam, and its energy density distribution is
almost the same in a certain region.

According to the pulse width, laser can usually be divided into nanosecond laser,
femtosecond laser and picosecond laser. Compared with nanosecond laser, femtosecond
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laser and picosecond laser can provide ultrashort pulse and low-energy high transient
intensity, avoid damage to surrounding materials, and minimize thermal diffusion zone
and light diffraction in ablated materials in high-resolution pattern making [49–51].

The laser wavelength and the band gap width of the material together determine
the laser absorption mechanism of the material. The shorter the laser wavelength, the
higher the laser photon energy. When the laser photon energy is higher than the material
band gap, single photon absorption is the main mechanism of exciting valence electrons to
the conduction band [51]. When the photon energy is lower than the material band gap
or the single-photon absorption is suppressed by band filling, it is mainly multiphoton
absorption [51].

2.1. Active Layer Thin Films Prepared by Sol-Gel Method

Unlike metal oxide films and MOS-TFT prepared by vacuum method (such as mag-
netron sputtering), there are impurities such as dissolved metal ligands (e.g., alkoxides,
nitrates, chlorides), condensation by-products (e.g., water, alcohol), solvents and stabilizers
in the precursor films prepared by solution method [29]. These impurities act as traps
and hinder the effective formation of metal oxide framework, which plays the role of
carrier channel. Therefore, in order to prepare high quality thin films, the removal of
impurities is crucial. In order to prepare high quality metal oxide thin films, it is neces-
sary not only to remove the impurities contained in the precursors, but also to provide
enough energy to promote the Polycondensation and the densification of the thin films
to form the metal-oxygen-metal (M-O-M) lattice structure [52–55]. The improvement of
the lattice structure and the densification of the thin film help to reduce the traps and the
potential barrier, increase the carrier mobility, and then improve the device performance of
MOS-TFT [43,47,53,54,56–60].

Laser treatment can effectively remove the impurities in the precursor film and pro-
mote the formation of lattice network [29,54,55,61–65]. There are usually three mechanisms
for the interaction between laser and precursor film: (1) thermal effect of laser; (2) pho-
tochemical cleavage of metastable bonds; and (3) photochemical effect. The process of
thermal effect of laser usually includes: (1) carrier excitation; (2) carrier–carrier scattering,
carrier–phonon scattering, and energy transfer to the lattice due to spontaneous phonon
emission; (3) when the carrier and lattice reach equilibrium, the film is heated, as shown
in Figure 4 [51,66]. High energy photons can induce the photochemical cleavage of chem-
ical bonds related to metal alkoxy and carbon impurities and promote the subsequent
reorganization of metal oxide frames [27,55,63]. These mechanisms are also observed in
other light-assisted methods. However, the difference between laser processing and other
photo-assisted methods that take a longer time is that laser combines these photochemi-
cal effects with laser-induced high temperature heating to provide additional local heat
energy. Therefore, the laser treatment can effectively decompose the impurities related
to the precursor, remove the metal oxide defects, and reorder the metal oxide structure
instantly (<100 ns) at a lower substrate temperature (RT). Laser acting on thin films can not
only produce thermal effect through instantaneous high energy radiation, but also produce
photoactivation effect by high energy photons [43,53,67,68]. The photoactivation effect
is that the residual metal ligands in the precursor films are photolyzed by high energy
photons to produce free radicals. The free radicals mediate the reaction to form the M-O-M
lattice structure and decompose the chemical impurities into small gas molecules [29], as
shown in Figure 5.

Juan et al. used KrF excimer laser with wavelength of 248 nm to treat IZO-TFT and
found that excimer laser treatment effectively removed carbon impurities related to the
precursor and improved the lattice structure [43]. Chen et al. used a femtosecond laser
with a wavelength of 800 nm to treat IZO-TFT. The high-energy photons generated by
the laser induced the photo assisted condensation reaction, resulting in the formation of
metal oxide bonds by metal hydroxides, and dehydroxylation reaction at the same time
to remove residual impurities [62]. Dellis et al. treated In2O3 thin films with KrF excimer
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laser and characterized them by X-ray photoelectron spectroscopy (XPS). The degree of
conversion of initial precursors to metal oxides was evaluated by the ratio of In-O to In-OH
bonds. After laser treatment, the proportion of In-O bond increased significantly, while the
proportion of In-OH bond decreased. The results show that laser treatment can effectively
promote the transformation of precursors to metal oxides [69]. Fei et al. used femtosecond
laser treatment to treat IZO-TFT. They proposed that laser treatment can break In-O and
Zn-O bonds and form metal oxygen lattice structures such as In-O-Zn-O or Zn-O-In-O
under thermal effect [52].
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2.2. Active Layer Thin Films Prepared by Nano-Particle Method

In addition to sol–gel method, nano-particle method is another common solution
method to prepare MOS-TFT active layer. Nanoparticles are prepared by coprecipitation
or hydrothermal method and deposited by inkjet printing or rotary coating [44,70]. Laser
treatment can provide high temperature up to the melting point of nanoparticles, sinter
nanoparticles and form semiconductor films [71,72]. Qion et al. prepared AZO thin films by
rotary coating method, and studied the laser sintering process of nano-particles. According
to their simulation study, they proposed that in the process of interaction between laser
and nanoparticles, the contact zone between nanoparticles is first heated to form hot spots,
and then the heat spreads to the interior of the particles and adjacent particles. The hot
spots in the contact zone promote the surface melting and merging of the nanoparticles,
increase the grain size, change the grain shape and compress the internal gap, and finally
form a continuous dense film [71]. Lee et al. prepared ZnO-TFT by nano-particle method
and treated with yttrium vanadate (Nd:YVO4) picosecond (ps) ultraviolet laser. Their
study found that before laser treatment, particles and nano-pores were observed, and the
thickness of the film was 175 nm. After laser treatment, the grains are melted, the voids
are reduced, and the thickness of the film is reduced to 95 nm, indicating that the film is
densified by laser treatment, as shown in Figure 6 [73].
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3. Application of Laser Treatment in MOS-TFT Performance Control

Combined with the properties of the thin film (film thickness, composition, absorption
spectrum, etc.), the physical, optical, electrical and chemical properties of the thin film and
MOS-TFT can be adjusted by changing the laser processing parameters (energy density,
frequency, treatment atmosphere, etc.). Table 2 summarizes the examples of laser processing
of metal oxide semiconductor thin film transistors.

Table 2. Examples of laser treatment of MOS-TFT.

Channel
Material Solution Type Laser Wavelength (nm) µ (cm2 V−1

s−1)
SS (V dec−1) On/Off Ratio Ref.

IGZO Sol-gel 355 7.65 [74]
IGZO Sol-gel 800 4.24 0.91 7.2 × 105 [75]
ZnO NPs 355 0.5 1.7 × 106 [53]

IGZO NPs 355 7.65 2.71 × 106 [53]
IGZO Sol-gel 1064 1.5 1.29 × 106 [76]
In2O3 Sol-gel 700 10.03 ± 0.64 1.44 ± 0.37 3.4 × 105 [63]
In2O3 Sol-gel 248 13 106 [69]
IZO Sol-gel 800 3.75 1.21 1.77 × 105 [52]
IZO Sol-gel 248 0.58 [47]
ZnO NPs 355 3.01 1.8 105 [73]

3.1. Laser Energy Density

Laser energy density is an important factor affecting the lattice structure of metal oxide
films. When the laser energy density is too low, the film may not be treated effectively, and
when the energy density is too high, it may also have an adverse impact on the performance
of the device [77]. Chen et al. prepared IGZO-TFT and treated it with femtosecond laser
with wavelength of 800 nm and energy density of 20, 35, 80, 112 and 130 mJ/cm2. Their
research found that the films treated at 20 mJ/cm2 energy density will produce serious
defects and trap states due to the incomplete transformation of precursors to metal oxide
lattice, and the devices do not have TFT characteristics. With the increase of laser energy
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density, the performance of TFT devices is improved, and the best device performance
is obtained at 112 mJ/cm2. When the laser energy density increases to 130 mJ/cm2, the
performance of the device decreases, as shown in Figure 7 [75].
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There is usually a certain energy threshold in metal oxide thin films, and the laser
energy exceeding the threshold will induce the recrystallization or grain growth of the
thin films [68,78,79]. The grain size usually increases with the increase of laser energy
density [80,81]. For polycrystalline thin films, the bottleneck of field effect mobility usually
occurs at grain boundaries, so reducing the number of grain boundaries and increasing
grain size by laser treatment can improve the device performance [60,82–85]. Nagase et al.
studied the effects of laser energy density and film thickness on the properties of ZnO films.
Their research found that two kinds of crystal ZnO films were obtained under different
laser energy density and different film thickness. Low energy density produces low
crystallinity with weak orientation, while high energy density produces high crystallinity
with strong orientation, and the threshold of energy density increases with the increase of
film thickness [86]. Yang et al. prepared ZnO-TFT and treated it with a Nd:YAG laser with
a wavelength of 355 nm. It is found that laser treatment can improve the crystallinity of
ZnO materials, and the mobility of TFT devices is increased by more than 2.5 times (0.19 to
0.49 cm2/Vs) as shown in Figure 8 [58].
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3.2. Treatment Atmosphere

Laser treatment in air has the advantages of low cost, simple process and more suitable
for large-area manufacturing, but the moisture and oxygen in air will affect the properties
of the film [40,87]. During laser treatment, the film surface will be heated to a temperature
sufficient to destroy the M-O bond and form an oxygen vacancy [88–90]. If treated in an air
atmosphere, the oxygen in the air will oxidize the metal elements in the film again to form
an M-O bond. The destruction rate of M-O bond and the oxidation rate of metal elements
together determine the concentration of oxygen vacancies in the thin films. Usually, the
formation of oxygen vacancies is often accompanied by the generation of electrons, which
increases the carrier concentration of metal oxide films [68,91]. The increase of oxygen
vacancy concentration causes high carrier concentration to form an electron transport path
near the conduction band, thus increasing the mobility of TFT devices and reducing the
threshold voltage [76,92–95]. However, too high oxygen vacancy concentration may lead
to high leakage current of TFT devices due to high carrier concentration, which reduces the
device performance [52]. Therefore, by adjusting the gas atmosphere during laser treatment,
the concentration of oxygen vacancies in the thin films can be effectively controlled and the
electrical properties of MOS-TFT devices can be improved. Lee et al. studied the effects
of ambient atmosphere and argon atmosphere on the laser-treated ZnO thin films. Their
study found that the oxygen vacancy content of the films treated in argon atmosphere
was significantly higher than that in the ambient atmosphere [73]. Juan et al. treated
IZO-TFT with KrF excimer laser in air atmosphere and vacuum. Their study found that
laser treatment in vacuum can inhibit the absorption of extra water and excess oxygen
from the atmosphere, and the device mobility is higher than that of laser treatment in air,
as shown in Figure 9 [43].
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3.3. Laser Wavelength

Due to laser processing is a top-down process, according to Beer-Lambert law, the
radiation intensity of laser attenuates in the film [96,97]. The shorter the laser wavelength
is, the shallower the penetration depth is. Therefore, in the process of laser treatment,
temperature gradients are easy to exist in the film, resulting in differences in the properties
of regions with different depths of the film. This effect is particularly significant in the films
treated by ultraviolet wavelength lasers [55,98,99]. Kwon et al. prepared ZTO thin films by
sol–gel method and treated them with KrF excimer laser. They performed high-resolution
chemical and microstructure analysis of the films. Their study found that during the UV
laser treatment, the top temperature of the ZTO film is much higher than that in the deep
region. This temperature gradient makes the Zn element enriched in the surface region
and the Sn element enriched in the bottom region [55]. Sandu et al. found that due to the
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different penetration thickness of SnO2 thin films by 193 nm and 248 nm laser (66 nm and
148 nm, respectively), the crystallization effect is different, and the crystal gradient of the
thin film irradiated by 193 nm laser is more obvious [80,81]. In contrast to the UV laser, the
infrared laser has a long wavelength and a large penetration depth in the film, which can
heat the film more evenly. However, due to its deep penetration depth, when applied to
flexible MOS-TFT, the flexible substrate may be damaged by a large number of high-energy
photons, which will affect the performance of MOS-TFT [9,51,75,100]. Chen et al. fabricated
MOS-TFT devices and embedded dielectric mirrors (DMs) in them. Their research shows
that the DMs can effectively prevent the penetration of high energy photons into the
PEN substrate, thus avoiding the damage to the substrate and significantly improving the
performance of the device, as shown in Figure 10 [75].
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4. Conclusions and Prospects

The excellent compatibility between laser processing technology and solution method
has been widely recognized. In the sol–gel method, laser treatment can effectively remove
impurities in the precursor films and promote the formation of lattice networks. In the
nano-particle method, the nano-particles are sintered effectively by laser treatment to
form a continuous and dense film. The performance parameters of thin film and MOS-
TFT can be effectively improved by adjusting various parameters in the process of laser
processing. Although laser processing technology has made remarkable achievements
in the application of active layer thin films and MOS-TFT devices prepared by solution
method, there are still some deficiencies in the production of flexible, large-size, low-cost
MOS-TFT and further improving the performance of MOS-TFT devices, which need to be
further studied and improved. These include (1) less research on flexible devices; (2) less
research combined with other low temperature treatment processes. (3) present research
only focused on the effect of different laser energy density on thin films; there are few
studies on other parameters of laser treatment, such as pulse number, frequency and so on;
(4) the research on the mechanism and physical model of the interaction between laser and
thin film is not deep enough. In the future, by using different flexible substrates, adjusting
the process parameters of laser processing, and combining laser processing with other low
temperature treatment processes, study of the application of laser processing technology
in active layer thin films and MOS-TFT devices prepared by solution method, so as to
promote the development of flexible large size display technology should continue.
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