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Abstract

Macrophages have been recognized as the primary mediators of innate immunity starting from 

embryonic/fetal development. Macrophage-mediated defenses may not be as antigen-specific 

as adaptive immunity, but increasing information suggests that these responses do strengthen 

with repeated immunological triggers. The concept of innate memory in macrophages has been 

described as “trained immunity” or “innate immune memory (IIM).” As currently understood, this 

cellular memory is rooted in epigenetic and metabolic reprogramming. The recognition of IIM 

may be particularly important in the fetus and the young neonate who are yet to develop protective 

levels of adaptive immunity, and could even be of preventive/therapeutic importance in many 

disorders. There may also be a possibility of therapeutic enhancement with targeted vaccination. 

This article presents a review of the properties, mechanisms, and possible clinical significance of 

macrophage-mediated IIM.
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Introduction

Macrophages are viewed as key sentinels in the innate immune system throughout the 

body that contribute to both homeostasis and disease.1–4 These cells identify, phagocytose, 

and eliminate invading pathogens; ensure the timeliness of defense reactions by secreting 

antimicrobial peptides, cytokines to recruit and activate leukocyte present in the vicinity, 

chemokines to recruit leukocytes from the circulation and other tissues; and promote the 

resolution of inflammation prior to the onset of illness and by eliminating the pathogens and 

severely-damaged cells.1,5–17 These cells also coordinate immune activation by presenting 

antigens to adaptive immune cells.18–20
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Macrophages play a crucial role in immune responses in neonates and young infants, who 

are yet to acquire protective levels of neutrophil function and adaptive immunity. These 

cells begin to resemble adult macrophages in many host defense functions by the late 2nd 

trimester, and are therefore likely to be important even in premature infants. However, 

macrophages have been studied mostly in the context of innate immunity, not as carriers 

of immune memory that could enhance the efficiency of elimination of pathogens.21–23 But 

now, this perception is changing.23–26 Preclinical and clinical data indicate that macrophages 

do retain some memory of previous encounters through epigenetic reprograming and show 

quicker and more robust responses in secondary infections.21,23,27–34 This progressive 

enhancement in macrophage-mediated defenses has been described as “trained immunity” or 

“innate immune memory (IIM)”.23,32,35,36 Innate immune memory can activate circulating 

macrophages and those located in the lungs, and suppress many in the intestine.23,37

This immunological memory of macrophages may constitute one of five patterns where 

immune cells learn to mount quicker and enhanced responses to “known” antigens38,39 

(Fig. 1): (1) systemic acquired resistance seen in plants;40,41 (2) transgenerational immune 

priming,42,43 which may include vertical transmission of immune experience from parents 

to the offspring; horizontal transfer between individuals, and between individuals and other 

parents’ offspring; (3) natural killer (NK)-cell immune memory;44,45 (4) classical adaptive 

memory in vertebrates;46,47 and finally, the increasingly appreciated (5) IIM in myeloid cells 

(monocytes, macrophages, and dendritic cells).23,30 In this article, we have focused on the 

IIM macrophages with a particular focus on the relevance of these cells in the fetus and 

newborn infants. The dendritic and adaptive immune cells are still evolving in the fetus 

and neonates,48 and so we did not include these details in the present article. We included 

information from some of our own preliminary studies with an extensive literature search in 

EMBASE, PubMed, and Scopus.49 To avoid bias in identification of studies, keywords were 

short-listed a priori from PubMed’s Medical Subject Heading (MeSH) thesaurus.50

Development of Macrophages in the Fetus and Neonate

All tissues contain a complement of yolk sac (YS), hepatic, and bone marrow-derived 

macrophages.2,51 The numbers are considerable in many tissues and may reach 5,000–

10,000 per cubic mL.23,52 During evolution, macrophages appeared earlier than the 

lymphocytes known for classical immune memory (details in Mezu-Ndubuisi and 

Maheshwari).1 The following graphic (Fig. 2) shows the three major pathways of 

macrophage differentiation; the terminal stages of development with noted findings of IIM 

have been highlighted in each pathway:

• Macrophage differentiation from lineage-restricted YS progenitors: 
Hemocytoblasts resembling myeloblasts are first seen in the secondary YS 

(Fig. 2A) on day 18.53 On day 19, some hemocytoblasts differentiate directly 

into embryonic macrophages.54 During the days 25–30, many erythro-myeloid 

progenitors (EMPs) also differentiate into macrophages.55 Around this time, 

some hematopoietic stem cell (HSC) clusters of differentiation (CD) 45 and 

34 (CD45+ CD34+) migrate from the peri-aortic region to the central nervous 

system (CNS) and differentiate into microglia.56
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• Macrophage differentiation in the aorta-gonad-mesonephros (AGM) zone: 
The vascular endothelium here (Fig. 2B) produces CD45+ CD34+ HSCs,57 

which can differentiate first into common myeloid progenitors (CMPs) and 

then into tissue macrophages. These macrophages migrate to all the embryonic 

organs except the CNS. These cells express characteristic markers such as the 

angiotensin-converting enzyme, T-cell acute lymphocytic leukemia 1/stem cell 

leukemia (Tal/SCL) gene, and the myeloblastosis oncogene (c-Myb).58

• Macrophage differentiation in the liver and the bone marrow: On day 32, the 

CD45+ CD34+ HSC precursors of macrophages migrate from the AGM zone to 

the liver and the bone marrow (Fig. 2C).59 Some of these cells may arise from 

EMPs. Hepatic HSCs are known to differentiate into monocytes and macrophage 

precursors between 8 and 20 weeks’ gestation and then involute during the 20–23 

weeks period. After birth, the hepatic HSCs migrate to the bone marrow for 

further definitive hematopoiesis.

Increasing information suggests that most tissue macrophages, even in adults, 

likely originate from the EMP and AGM progenitors acquired during embryonic 

development, not from circulating monocytes.2,59,60 However, the ontogeny of 

monocyte-derived macrophages (MDMs) is best lineated in marrow-derived 

monocytes. CD45+ CD34+ HSCs in the bone marrow clearly differentiate 

into CMPs, granulocyte-monocyte precursors (GMPs), common monocyte and 

DC precursors (MDPs), pre-monocytes (committed monocyte progenitors), 

monocytes, and then into macrophage precursors by the 7th week of gestation.61 

These hematopoietic lineages can be detected in other tissues such as the brain, 

heart, liver, and skeletal muscle.

In the bone marrow, more than 90% of HSCs differentiate into classical 

monocytes with strong CD14 expression (CD14++). These cells mature into 

M1 macrophages that strongly react to toll-like receptor (TLR) ligands, and 

express inflammatory cytokines and reactive oxygen species (ROS). About 

10% develop into a nonclassical, CD16++ subset. These cells produce some 

inflammatory cytokines, but not much ROS. These cells patrol and assess 

endothelial integrity and infiltrate normal tissues.62 A third, intermediate CD14+ 

CD14+ population may show both inflammatory and tissue healing properties; 

these cells may express MHC-II, show strong phagocytic activity, present 

antigens, and contribute to T-lymphocyte activation.62

In premature and young infants, macrophages show developmental changes in antigenic 

profiles. These cells express high levels of CD11b, chemokine receptors CCR1, CCR2, 

CCR5, CXCR1, CXCR2, and other molecules such as CD115, glycan structures containing 

6-sulfo N-acetyl lactosamine, and triggering receptors expressed on myeloid cells (TREM) 

are high. There might be some immaturity in movement, phagocytosis, and regulation of 

inflammation. These cells can be stimulated by many endogenous triggers such as cytokines; 

oxidized lipids; ROS and reactive nitrogen species (RNS); metabolic products, and débris 

released from dying cells such as heat-shock proteins (HSPs) and damage-associated 
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molecular patterns (DAMPs).63 There are also multiple well-known exogenous activators 

such as microbial products, microparticles, and chemicals.63

Innate Immune Memory in Neonatal Macrophages

Increasing information indicates that macrophages do retain some memory of previous 

encounters and show quicker, more robust responses in secondary infections (Fig. 3). This 

immunological memory very likely enhanced the survival of early multicellular eukaryotes 

by enhancing the defense responses.31 Innate immune memory macrophages may not fit 

in the current dualistic model of classic (M1) or alternative (M2) macrophage polarization, 

and may need to be classified in a distinct category (Fig. 4, Table 1). There is increased 

expression of CD43 and CD206, but other surface markers can differ in specific model(s). 

In mice treated with Bacillus Calmette-Guérin (BCG), peritoneal macrophages showed 

enhanced expression of CD43, CD206, CCR2, CXCR4, CD80, and TLR2.64 Low doses of 

lipopolysaccharide (LPS) induced an overlapping profile with increased CD206 and CD43, 

but less CCR2, CXCR4, and CD80. Innate immune memory macrophages also show a shift 

toward increased glycolysis and altered energy metabolism.32,65,66

Macrophages recognize most antigens through the pattern recognition receptors (PRRs) 

expressed on the cell surface. These receptors can recognize pathogen-associated molecular 

patterns (PAMPs) in structural débris or secreted products. Some PRRs can identify 

DAMPs, the endogenous danger signals expressed on or released from dying cells.67 

Pathogen-associated molecular patterns are important for microbial survival and have 

been evolutionarily conserved with minimal diversification.68 The best-known examples 

are LPS and porins of Gram-negative bacteria; peptidoglycans of Gram-positive bacteria; 

flagellins; β-glucans and mannans from fungi; and bacterial and viral nucleic acids.69–76 

The specificity for classes, not individual microbes, has helped in evaluation of molecular 

dynamics in pathogens. Damage-associated molecular patterns can be seen in intracellular 

proteins such as the HSPs and the high-mobility group box 1 (HMGB1); extracellular matrix 

components such as hyaluronan fragments; and non-protein components such as adenosine 

triphosphate (ATP), uric acid, heparin sulfate, and deoxyribonucleic acid (DNA).77

The traditional view of macrophage function as limited to the first line of defense may 

indeed be too restrictive.6 However, macrophage IIM is still less robust than the classical 

adaptive memory of T- and B-lymphocytes.31 Despite all possible differences in ontogeny 

and genetic expression (as noted in epigenomic or transcriptome profiles), there are notable 

similarities in functional responses to immunological challenges. The consistency of these 

responses, the context, the microenvironmental cytokine milieu, and the evidence supporting 

stimulus memory suggest a possibility of convergent evolution.20,78,79 These host-defense 

responses may not be as perfectly antigen specific as in lymphocytes, but these do seem to 

gain in efficiency with repeated exposures.23,35,36,79 Innate immune memory seems to alter 

inflammatory responses more than its effects on phagocytosis and other motor activities.28,80

Increasing evidence suggests that immune memory may include a full spectrum of responses 

ranging from the IMM seen in macrophages to the classical adaptive immune memory of 

lymphocytes. When re-exposed to defined stimuli, other leukocytes such as the B-1 and 

marginal zone B-cells, invariant NK, innate lymphoid cells, and γδ T-cells also show some 
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enhancement of secondary responses. However, these responses are not as consistent as in 

myeloid cells (Table 2).31,81,82 The differences between IIM and classical immune memory 

of lymphocytes are more clearly noticeable. Upon antigen exposure, naïve lymphocytes 

undergo genetic rearrangements and evolve into specific, mature clones with increased 

sensitivity to the original antigens.83,84 These mature lymphocytes, in turn, can recruit more 

naïve lymphocytes to differentiate into the needed clones and thereby establish feedforward 

loops.85 Most lymphocytes become effector cells that provide host defense, but some evolve 

into longer-living memory cells.86 If exposed to the same antigen at a later time-point, the 

memory cells proliferate to form large pools of effector and memory cells. Some memory 

T-cells can also transgress into effector cells.87

Macrophage IIM is largely mediated via epigenetic changes, and its kinetics differs from 

that of lymphocyte-mediated adaptive immunity.88 Sensitized macrophages display a rapid, 

potentiated activation following secondary exposures to the same or similar antigens.89,90 

These responses are typically last only for a few weeks to months, and may either 

be systemic or limited to just the tissue of origin.35 In contrast, the adaptive immune 

memory seen in lymphocytes may last for the lifetime of the cells or even that of 

the organism as it is rooted in genetic mutations, antigen-specific gene rearrangements, 

and recombinations.23,84,91 Some of these changes show developmental changes, and 

further work is needed to understand the functional and clinical importance of macrophage-

mediated vs. adaptive immune memory at various stages of fetal/neonatal development.1

Macrophage PRRs may be important in immune memory.89 Administration of BCG might 

be detected by intracellular PRRs such as the nucleotide-binding oligomerization domain 

2 (NOD2), which may protect these cells against secondary infections.87,92 Nucleotide-

binding oligomerization domains are germline-encoded receptors that respond to microbial 

danger signals.93,94 These belong in the broader category of conserved cytosolic PRRs, 

the so-called NOD-like receptors (NLRs). Nucleotide-binding oligomerization domains-like 

receptors sense microbe-associated molecular patterns (MAMPs) during viral and bacterial 

infections.95–97 These receptors can sense that MAMPs in the cytoplasm and occasionally in 

the extracellular space, especially if virulence factors such as muropeptides are transported 

into the cytoplasm.98,99 Upon ligand binding, NLRs oligomerize and recruit adaptor proteins 

to form the so-called inflammasomes, which can activate the production of inflammatory 

cytokines, antimicrobial peptides, and in some cases, precipitate cell death.100,101

Macrophages previously exposed to PRRs ligands, such as dectin-1 ligand, β-glucan, NOD2 

ligand muramyl dipeptide, and flagellin show memory and express more tumor necrosis 

factor (TNF) and interleukin (IL)-6 on secondary stimulation.102–108 In some conditions, 

LPS and flagellin can also induce long-term tolerance with less intense inflammatory 

responses,109–111 although such tolerance may not always be detectable in premature and 

critically ill neonates.1,14,15,112–114 The expression of IIM mediators does not change 

with cell differentiation, except perhaps for decreased production of TLR2 in specific 

subsets.23,115
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Types of IIM in Macrophages

Innate immune memory macrophages show rapid appearance at the sites of infection, 

phenotypic plasticity, and the ability to sample the inflammatory environment.28 Changes 

in surface markers such as the PAMPs and DAMPs may alter function/phenotype of these 

macrophages in complex and context-specific ways.68

Macrophage IIM seems to be comprised of multiple steps. After an initial stimulus primes 

the inflammatory response, a second one can result either in training and potentiation, or in 

tolerance (Fig. 5). The details of these training and tolerance responses are provided below:

1. Training: Low doses of bacterial LPS from Gram-negative bacteria, β-glucans 

from the Candida albicans cell wall, and certain parasites and viruses can 

sensitize macrophages to show enhanced inflammatory responses to secondary 

infections with many pathogenic bacteria and Candida spp.116–118 Such 

“training” increased expression of inflammatory cytokines such as TNF and 

IL-1, IL-6, ROS, and various other cytokines and chemokines. Macrophage 

training may enhance tissue damage in acute infections, but improves host 

defense and survival. In mice lacking T- and B-cells, Candida infections 

can prevent repeated infections with pathogenic bacteria.119 In other studies, 

administration of the BCG to simulate vaccination can expanded the pool of IIM 

macrophages with H3K4me3.119–121

2. Tolerance: Repeated exposure to high doses of LPS can dampen the 

inflammatory responses to later encounters with these bacteria, particularly 

on mucosal surfaces in the gastrointestinal tract.122–124 Prior infections with 

the influenza or respiratory syncytial viruses can promote immune tolerance 

lasting weeks to months to subsequent bacterial infections of the lungs. These 

viruses desensitize TLRs, particularly TLR5, and the lectin and mannose 

receptors. It also inhibits NF-κB signaling in alveolar macrophages (AMs), 

resulting in lower levels of inflammatory factors TNF and IL-17 following 

exposure to bacterial pathogens. Interferon (IFN)-α/β, IFN-γ, and IL-10 

produced during viral infection can further suppress antibacterial resistance by 

inhibiting the production of free oxygen radicals.125–128 This tolerance memory 

in macrophages may be related to a few epigenetically-active histone tags on the 

promoters and enhancers of antibacterial resistance genes. Interestingly, β-glucan 

can reinstate cytokine production and partially reverse macrophage immune 

tolerance by reinstatement of the histone tags.129

Epigenetic Changes that Promote Priming in Macrophages

The origin of macrophage IIM is still being investigated, but it is generally visualized 

as a pattern of consistent, progressively quicker phenotypic shifts in these cells following 

repeated exposures to specific environmental stimuli.130–132 Transgenerational memories 

might require genomic changes, whereas moderate-term memories could be generated by 

changing the number of cells available to produce a response or by epigenetic modification 

of the programing of existing cells.3,43,133 Short-term memories could be generated by 

the ephemeral changes that are transient, but show diverse concentrations or molecular 
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modifications of signaling components.109 Taken together, the medium-term duration of IIM 

of macrophages has brought the focus on epigenetics (Table 3).

Many epigenetic changes in macrophages have been identified as altering the heritable 

“memory” with specific changes in the three-dimensional structure and compaction of 

the daughter macrophages. There are at least three categories of such changes: (1) DNA 

methylation; (2) histone modifications; and (3) regulation of gene expression by non-coding 

RNAs.27 The timing of these epigenetic changes in macrophages during development is still 

unclear. Even though fusing gametes are presumed to be epigenetically reprogramed during 

fertilization with erasure of all epigenetic tags, about 1% of these tags are imprinted and 

retained across generations.134,135 Maternal epigenetic information in the oocyte could also 

directly influence the primordial germ cells.136,137

In a fetus or young infant, some HSCs in the bone marrow differentiate into monocytes 

and macrophages.1,138 These monocytes are released into the peripheral blood, where 

these cells circulate for up to 5 days3,139 and then enter various tissues other than the 

CNS, to differentiate into macrophages.140 The PRRs in these HSCs get epigenetically 

programed and display altered responses to infections. The innate inflammatory pathways 

seem generally suppressed in the HSCs, but a large repertoire of metabolic enzymes is 

active.21,140,141 Most of this genetic imprinting occurs within the first 24 hours.142 In infants 

with bacterial infections, the MDMs) may display IIM traits for a few weeks.23,27,125,131 

In comparison, adult macrophages get primed sooner and show specific memory traits for 

longer periods.27,143 However, these changes may be altered by infections or vaccination in 

all age groups.3

Macrophages have traditionally been perceived as relatively plastic cells.144 However, 

recent data combining fate-mapping, single-cell transcriptomics, and epigenetics show that 

prolonged residence in tissue-specific niches can rewire or override their transcriptional 

program in the local microenvironment.145 These cells likely also get imprinted from the 

conditions at the time of recruitment.35,146 The accessibility of the promoters/enhancers in 

the cellular DNA to transcription factors and RNA polymerases can result in chromatin 

remodeling.147,148 The remodeling may include DNA compaction, DNA methylation, 

histone modifications (methylation, acetylation, phosphorylation, and citrullination), and 

gene priming by regulators such as the upstream master long non-coding ribonucleic acid 

(lncRNA) of the inflammatory chemokine locus (UMILILO).35,149–152

Histone Modifications

Epigenetic modifications of histones plays an important role in IIM in 

macrophages.123,153,154 Histone modifications can affect histone–histone and histone–DNA 

interactions, binding to chaperones, and chromatin structure (Fig. 6).155,156 The most 

dynamic histone epigenomic mark is histone acetylation in the nucleosomes.157 This mark is 

frequently located close to gene promoters and enhancers, and therefore correlates well with 

changes in gene expression. Histone methylation in actively expressed gene promoters can 

affect both the levels and the plasticity of transcription.149,157
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The effects of histone acetylation on the promoters and enhancers of inflammatory genes 

have evoked considerable interest; H3K27ac seems to be a key determinant of the expression 

of immune response factors;123 it is often seen in the enhancers and promoters of many 

genes that are typically inactive.158–160 H3K9ac and H3K56ac are involved in nucleosome–

DNA interactions and are rapidly and reversibly reduced in response to DNA damage.161,162 

H4K91ac leads to nucleosome instability.163 Many histone modifications can be identified 

even after the primary stimulus is no longer active, and can facilitate the transcription of 

inflammatory genes upon restimulation.164 Some of the so-called “latent” enhancers are not 

pre-marked in naïve cells but acquire histone modifications upon primary stimulation.123,165 

After the removal of the stimulus, some of these latent enhancers still retain the histone 

modifications and show rapid, stronger activation upon restimulation.

The effects of histone methylation are also important. These vary with the particular types 

of histones that are methylated, the number of methyl groups added, and the presence 

of acetylation in nearby regions.149 For instance, trimethylation of lysine 4 in histone 3 

(H3K4me3) and H3K4me1 can activate promoters and enhancers, respectively.166,167 In 

unstimulated macrophages, chromatin regions containing inflammatory genes are compacted 

and largely not accessible for transcription. Primary stimulation with the antigens/pathogens 

recruits various transcription factors, such as activator protein 1 AP-1; the signal transducers 

and activators of transcription STATs; and nuclear factor-kappa B (NF-kB) to the promoters 

and enhancers, which are already pre-marked in the naïve cells by the lineage-specific PU.1 

transcription factor.168–171 When challenged again with the same or a different antigen/

pathogen, the chromatin shows increased decondensation, demethylation of DNA, and 

modifications of histone 3 (H3) such as tri-methylation of lysine 4 (K4; H3K4me3), mono-

methylation (H3K4me1), and acetylation of lysine 27 (H3K27ac).172,173 These epigenetic 

changes lead to enhanced transcription and translation of immune response factors (Fig. 

7).174

H3K27 methylation has been associated with both gene activation and repression.175–177 

Many models show concomitant methylation and acetylation, and the effects have not 

been easy to predict.123,155 The silencing effects of histone methylation might not always 

be independent and could involve additional regulators such as the polycomb group 

proteins.27,177–181 Trained macrophages show H3K4me1 and H3K27ac in the enhancers 

and promoters of many genes that are typically inactive.158–160

Bacillus Calmette-Guérin inoculation increases resistance to Staphylococcus aureus by 

upregulating H3K4me3 levels associated with inflammatory genes IL-1β and TNF.120,182 

In contrast, β-glucan training increased H3K4me3 and H3K27ac in at least 500 

gene promoters.154,183 Upon secondary stimulation, these leukocytes showed increased 

expression of transcription factors, cytokines, and phenotypic/functional changes seen 

in acute inflammation.23,183 The temporal stability of various changes is also variable. 

H3K4me1 persisted for long periods but H3K27ac was eliminated sooner after the stimulus 

was removed.184,185

Age, both of the cells and of the host, is an important determinant of the effects of LPS 

on IIM macrophages.186 The intensity of immune responses is higher in the developing 
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fetus and neonate.1,9,14,15,112–114,187–189 Ageing in macrophages impacts many processes 

including TLR signaling, polarization, phagocytosis, and wound repair.190–192 Even though 

the innate immune system is in a “quiescent” mode at birth,193,194 the mucosal surfaces in 

the lung and the gastrointestinal tract contain a large number of macrophages. Most of these 

cells show low baseline expression of MHC-II, F4/80, CD68, CD80, and CD86193,194; these 

low levels of expression may be teleologically important to minimize inflammation when 

exposed to various environmental and physical challenges soon after birth.193,195 However, 

these cells express an M1-like phenotype which can get quickly primed and display 

highly enhanced immune responses with proinflammatory cytokines, iNOS, and CD86 

following LPS stimulation at much higher levels than in adults.186,193 Arginase-1, which 

plays anti-inflammatory roles, is also decreased.193 These characteristics are consistent with 

the high protein levels of the inducible nuclear factor NF-κB and the pro-inflammatory 

characteristics seen in neonatal macrophages.171,193

The number of macrophages in various mucosal organs in neonates also differs from that 

in adults in various organs.115,193 Even though LPS is recognized as the primary pathogen-

associated molecule that triggers host innate immune responses to bacterial invasion, the 

phenotypical modulation of macrophages in response to the various components of the 

microbiome may vary.115 M1 is the predominant mucosal macrophage subtype in most such 

responses.115,193

Compared to naïve macrophages, differentiation of these cells leads to a baseline increase 

in the expression of inflammatory cytokines such as TNF and IL-6. An initial exposure 

to low doses of LPS primes neonatal macrophages, and a later secondary application 

further stimulates the expression of inflammatory mediators. Such induction of these 

mediators is not seen in adult macrophages. In contrast, the application of LPS in high 

doses suppresses the inflammatory responses in both neonatal and adult macrophages 

(Fig. 5).122,155,196 These changes have been associated with increased H3K9me2 and 

H3K27me2, which downregulated TNF and other inflammatory cytokines.155,197–199 

Lipopolysaccharide-induced tolerance was marked by increased phosphorylation of the 

transcription factor cyclic associated molecular pattern (AMP)-dependent transcription 

factor 7 (ATF7).200,201 H3K9me2 levels were decreased.200–202

In newly recruited monocytes in various tissues, there may be up to 8,000 epigenetically 

dynamic regions where histone acetylation is the most prominent change.3,154 Histone 

methylation H3K4me1 is increased in distal regulatory regions, which are relatively stable 

and might represent decommissioned regulatory elements.141 β-glucan priming can induce 

up to 3,000 distal regulatory elements, whereas LPS-tolerization may induce H3K27ac at 

500 distal regulatory regions.3,141 Gene modules that mediate LPS tolerance are more active 

in monocytes than in naïve macrophages.3,155 About 12% of known human transcription 

factors displayed variation in expression during macrophage differentiation, training, and 

tolerance.3

Several other mechanisms are also being studied. Cytokines such as IL-12 may play an 

important role.35 A reverse adaptive-to-innate directionality of memory formation is another 

possibility, as noted in a respiratory adenoviral infection model.125 In lungs, memory AMs 
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can develop and sustain independently of blood monocytes. The CD8-T cells, which are 

known adaptive effectors, can help prime, but not maintain, memory AMs by producing 

IFN-γ. Memory macrophages can also help maintain antibacterial immunity by stimulating 

the neutrophil populations.203

Effects of MicroRNAs

MicroRNAs (miRNAs) can promote prolonged epigenetic changes and LPS tolerance 

in IIM macrophages.204,205 High miR-155 levels were associated with inflammatory 

activation.206,207 Prolonged exposure to LPS increased miR-221 and miR-222 levels.208,209 

These miRNAs silenced the inflammatory genes through switch/sucrose non-fermentable 

(SWI/SNF) and signal transducer and activator of transcription (STAT)-mediated chromatin 

remodeling.210–212

As currently understood, miRNAs silence gene expression by repressing cap-dependent 

translation.213 These also destabilize the target mRNAs through deadenylation, decapping, 

and then degradation from the 5´ to the 3´ ends.214 The miRNA-induced silencing 

complexes (miRISCs) involve interactions of the conserved GW182 proteins (named 

after the glycine and tryptophan repeats and the molecular weight) with the argonaute 

proteins (discovered in Arabidopsis thaliana) and downstream deadenylases.215 These 

protein–protein interactions, in turn, increase (a) biogenesis of small RNAs216; (b) insertion 

of tryptophan residues into hydrophobic pockets on the surface of argonaute proteins217; 

(c) displacement of the translation initiation factors 4A218; and/or (d) recruitment of the 

translational repressor and decapping of the activator DEAD box protein 6.219

Effects of Metabolic Changes

Classically activated M1 macrophages produce energy largely through glycolysis, whereas 

M2 macrophages utilize oxidative phosphorylation and the tricarboxylic acid cycle (TCA; 

citric acid cycle).220,221 Treatment with β-glucan or BCG augment aerobic glycolysis via 

the Akt/mechanistic target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) 

pathway.222,223 In M1 macrophages, oxidative phosphorylation begins after the acute phase 

response ends.224,225

Cellular metabolism in macrophages is closely related to epigenetic changes.150,226 The 

epigenetic profile of histones is closely related to the activity of two sets of enzymes, 

the histone acetyltransferases (HATs) and the histone deacetylases (HDACs).227,228 These 

induce posttranslational modifications on histones, which in turn, can alter chromatin 

structure and function.229,230 HATs acetylate the N-terminal histone tail to induce a 

“relaxed” chromatin structure that allows transcriptional activation.227,231 In contrast, 

HDACs repress transcription by tightening the chromatin structure and rendering the 

associated DNA less accessible for transcription.232,233

Histone deacetylases 1 and 6 promote the development of the immune phenotype of 

macrophages.234–236 Trained monocytes typically show high levels of histone acetylation, 

which correlates with the acetyl-coenzyme A (acetyl-CoA) levels.65,154 Tricarboxylic acid 

cycle intermediates such as fumarate, succinic acid, and α-ketoglutaric acid (α-KG) can 

also promote IIM.66,237 These cells typically show low demethylase activity but high levels 
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of cholesterol synthesis, which promote epigenetic reprogramming by activating the mTOR 

pathway.25,154,238 Glutamine metabolism is also associated with increased succinic acid 

and α-KG, which activate epigenetic enzymes to enhance M2-related H3K27me3, which 

in turn, suppresses these genes and turns memory macrophages into an anti-inflammatory 

phenotype.66,123,224 In cells with LPS-induced endotoxin tolerance, α-KG promotes M1 

activation of macrophages.224,239 These results suggest that cellular metabolism can alter 

immune memory.

Role of IIM Macrophage in Diseases in Adult Patients/Animal Models

Innate immune memory in macrophages can alter the responses to many pathogenic 

stimuli.23,240 Most work has been done in diseases of adulthood, but these data 

could provide useful insights into the susceptibility and pathogenesis of many neonatal 

conditions.241–243

Acute Inflammation—Inflammatory macrophages can both express and promote the 

expression of TNF, IL-1β, and IL-8 in neighboring cells.10 Interestingly, mice treated 

with IL-1β prior to a second bacterial infection showed increased IIM macrophages and 

improved survival.244 In this model, IIM macrophages express higher H3K4me3 levels 

(unpublished data from our laboratory). β-glucan is another inducer of IIM macrophages; 

it can reprogram macrophages by curtailing the activation of inflammasomes containing the 

NOD-like receptor family pyrin domain-containing-3 (NLRP3).245,246 NLRP3 can detect 

markers of cellular damage such as extracellular ATP and crystalline uric acid.4,247

Infectious Diseases—Macrophages provide innate immunity against bacterial and 

viral infections, and IIM macrophages can enhance the defenses against S. aureus skin 

infections.4,28,248 In murine models, these macrophages showed increased monocyte 

recruitment, bacterial killing, healing, and resistance to secondary infections.248,249 In 

the lungs, AMs can be activated by a primary respiratory syncytial virus infection with 

improved host defense against pneumococcal superinfections.250 Memory AMs express 

major histocompatibility complex (MHC)-II and chemokines at higher levels, and show 

more glycolysis and bacterial killing.4,203,249–251

Infection-induced IIM has been associated with molecules such as NOD2; possibly 

viral RNA; and proteins containing a leucine-rich repeats (LRR)-containing domain are 

evolutionarily conserved in many proteins associated with innate immunity.252 Similarly, 

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), which is an intracellular 

sensor that detects many microbial molecules may also be associated.253,254 The BCG 

vaccine can activate NOD2-dependent pathways to protect against secondary infections 

through epigenetic reprogramming of monocytes/macrophages.121,255 In the resulting 

memory macrophages, the promoters of IL-6 and TNF genes can increase H3 trimethylation 

(H3K4me3) and induce the expression of these cytokines.121,256

Allergic Disorders—Infectious agents can induce IIM in macrophages, but similar 

changes are frequently seen in allergic and other type 2 inflammatory conditions.257 

M2-polarized macrophages may play a role in asthma258; AMs in these patients express 
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chemoattractants such as CCL17,259–261 and eicosanoids, particularly leukotrienes, which 

can stimulate T helper-2 cells.262,263 Pathogen molecules, sterile inflammatory stimuli, and 

respiratory viruses can induce epigenetic and metabolic reprogramming in macrophages, 

and thereby alter responsiveness and effector functions similar to those seen in allergic 

disorders.257 These IIM changes can be seen both in tissue macrophages and myeloid 

progenitors.4,257,264,265 Evaluation of epigenetic/histone-profiles such as H3K27me3 and 

H3K9me3 may help develop focused therapies.4,266

Transplant Rejection—Innate immune memory macrophages may increase the risk 

of transplant rejection by activating innate and adaptive immunological responses and 

consequent inflammation.267,268 Macrophages may recognize MHC-I molecules and 

generate memory.269 In murine kidney and heart transplantation, deletion of recipient [type 

A paired immunoglobulin-like receptors (PIR-A)] or blocking the binding of PIR-A to donor 

MHC-I molecules can block the memory response and alleviate the rejection reaction.270,271 

Such IIM has also been seen in human transplant cases.27 Macrophages can acquire IIM 

for recognizing alloantigens, and blocking this memory may improve the outcomes of 

transplantation.272,273

Atherosclerosis—Innate immune memory macrophages can protect against 

atherosclerosis.274 In addition to the classical inducers of innate immunity such as β-glucan, 

BCG, and LPS, endogenous non-microbial atherogenic stimuli such as high cholesterol 

levels, oxidized low-density lipoprotein (oxLDL), and lipoprotein(a) can also promote IIM 

in macrophages.275

Oxidized low-density lipoprotein is a recognized DAMP; it can increase macrophage 

recruitment, inflammation, and interstitial fibrosis.276,277 It recruits macrophages binds 

the CD36 receptor to, increases glycolysis, increases the production of pro-inflammatory 

factors, and induces IIM.278 Upon stimulation by TLR2 and TLR4 ligands, oxLDL-

stimulated macrophages produce inflammatory factors such as TNF, IL-6, and collagenases 

such as matrix metalloproteinase (MMP)-2 and -9. These mediators can destabilize 

atherosclerosis plaques.279 Tumor necrosis factor promoters are enriched in H3K4me3 

markers.280

Neoplasms—Innate immune memory macrophages have been detected in several 

tumors.281,282 These findings might not be clinically relevant in neonates but may still 

provide important mechanistic insights. Inflammatory M1 macrophages can provide anti-

tumor immunity; β-glucan can induce type I IFN signaling, and BCG can be useful 

for directly stimulating macrophages.4,65,120,283,284 Innate immune memory macrophages 

with M1-like properties can promote tumor progression with angiogenesis, fibrosis, and 

consequent tissue remodeling.65,140 These macrophages show histone modifications such 

as H3K4me3 and H3K9me3, and upregulated expression of inflammatory and other genes 

associated with tumor progression.285
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Conclusions

With adaptive immune responses still maturing, macrophages are a much-needed component 

of immune responses in the fetus and the newborn infant.1,9,112–114 Innate immune 

memory macrophages may be crucial for trained/acquired host immunity in the fetus/young 

infant, but we still have major gaps in our understanding of the functional maturation of 

these cells.1 These details will be of translational importance for developing therapeutic 

interventions in various inflammatory diseases.

Single-cell transcriptomics and epigenomics have helped identify IIM macrophage 

precursors.286 Studies of tumor-associated macrophages may also be useful; understanding 

the developmental regression with persistent activation of these macrophages can provide 

useful clues into the ontogeny of macrophage subpopulations, macrophage memory, and the 

involved molecular mechanisms.287,288 These findings can then be evaluated in appropriate 

fetal and genetically altered animal models.123,289–298
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Key Points

• Macrophages have so far been recognized as the primary mediators of 

innate immunity. However, emerging information suggests that macrophage 

responses may be altered, either enhanced or suppressed, based on earlier 

infectious or other immunological stimulation.

• The memory of prior stimulation in macrophages is less accurate in terms 

of antigen specificity, but is analogous to that seen in adaptive immune 

responses. It has been described as “trained immunity” or the “innate immune 

memory (IIM)”.

• The likely mechanism(s) of IIM in macrophages are rooted in epigenetic 

reprogramming and metabolic alterations.

• Understanding macrophage IIM may be particularly important in the context 

of the maturing fetus/neonates who are yet to develop protective levels of 

adaptive immunity.
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Fig. 1: 
Phylogenetic evolution of immune memory. Five categories of immune memory have 

been recognized: (1) Systemic acquired resistance, as seen in plants; (2) Transgenerational 

immune priming, which may include vertical transmission of immune experience from 

parents to the offspring; horizontal transfer between individuals, and between individuals 

and other parents’ offspring; (3) NK-cell immune memory; (4) Classical adaptive memory, 

as seen in vertebrates; and (5) IIM in myeloid cells. The broken line separates NK-cell 

immune memory, classic adaptive memory, and the IIM myeloid cells as these are seen 

in evolutionarily advanced vertebrates. The IIM myeloid cells are the focus of the current 

article and have been highlighted in a red-outlined box
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Figs 2A to C: 
Macrophage differentiation. Schematic shows macrophage development from lineage-

restricted embryonic progenitors. The terminally differentiated embryonic and hepatic 

macrophages, and bone marrow-derived monocytes and macrophages are highlighted 

in rectangular borders as these are the stages of differentiation where some cells get 

committed for innate immune memory. (A) lineage-restricted embryonic progenitors; 

(B) YS endothelium, which differentiates into EMP and then into CMPs. Some CMPs 

differentiate into macrophages and other primitive leukocytes, whereas others differentiate 

into GMPs and then in sequential steps into macrophages as shown in panel C; (C) HSC 

in sequential stages of CMPs GMPs, monocyte-dendritic precursors, pre-monocytes, M1 

or M2 (and possibly an intermediate subtype) monocytes and then into corresponding 

macrophages. The stages at which IIM appears have been highlighted by enclosing those in 

rectangular borders
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Fig. 3: 
Innate immune memory of macrophages affects both the sentinel and effector functions of 

these leukocytes. The context (altered microenvironment) and memory of prior exposures 

are important variables in the regulation of clinically evident responses
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Fig. 4: 
Differentiation of MDMs. Schematic shows differentiation of naïve macrophages into 

classically activated M1, the IIM macrophages, and the alternatively activated M2 

subclasses. The surface markers and key signaling mediators are depicted with each group. 

The IIM macrophages, including the trained (M1-like) and the tolerant (M2-like) subgroups, 

do not match the other categories and may need to be classified separately. The M2 

macrophages may be comprised of 5 subgroups with distinct inflammatory functions and 

physiological roles
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Fig. 5: 
Schematic figure showing (A) methylated (CH3) lysine (K). On histone 3, lysine (K) 

residues on positions 4 (H3K4) and 27 (H3K27) can be mono- [(6-N)-methyl lysine], di- 

[(6-N,6-N) dimethyl lysine], or trimethylated [(6-N,6-N,6-N) trimethyl lysine]. These H3K4 

sites are usually located close to the transcription start sites or enhancers of various genes; 

(B) acetyl [C(O]CH3) lysine (or acetylated lysine) is an acetyl-derivative of the amino acid 

lysine. These residues are important in epigenetics as regulators of binding of histones to 

DNA in nucleosomes and thereby controlling the expression of genes on that segment of 

DNA
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Fig. 6: 
Effect of age on the effects of LPS on macrophage IIM. Differentiation of naïve 

macrophages leads to a baseline increase in the expression of inflammatory cytokines 

such as TNF and/or IL-6. Subsequently, an initial application of LPS in low-doses primes 

neonatal macrophages for expression of inflammatory mediators. Re-application of LPS in 

these same doses trains the macrophages and can induce a hyper-inflammatory response. 

Such induction of these mediators is not seen in mature macrophages in adults. Application 

of LPS in higher doses suppresses the inflammatory responses in both neonatal and adult 

macrophages
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Figs 7A and B: 
Chromatin condensation state affects gene expression. (A) Chromatin housing the immune 

response genes in naïve (unstimulated) macrophages is highly condensed (heterochromatin 

state) due to high methylation of DNA, making these genes inaccessible to the transcription 

factors. These genes are completely silenced or transcribed at very low levels. (B) 

Stimulation with a pathogen/danger signals demethylates DNA, decondenses chromatin 

(euchromatin state), and makes these genes accessible for transcription
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