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Background.As one of themost frequently diagnosed cancer diseases globally, colorectal cancer (CRC) remains an important cause
of cancer-related death. Although the traditional Chinese herb Hedyotis diffusaWilld. (HDW) has been proven to be effective for
treating CRC in clinical practice, its definite mechanisms have not been completely deciphered. Objective.The aim of our research
is to systematically explore the multiple mechanisms of HDW on CRC. Methods. This study adopted the network pharmacology
approach, which was mainly composed of active component gathering, target prediction, CRC gene collection, network analysis,
and gene enrichment analysis. Results. The network analysis showed that 10 targets might be the therapeutic targets of HDW on
CRC, namely, HRAS, PIK3CA, KRAS, TP53, APC, BRAF, GSK3B, CDK2, AKT1, and RAF1. The gene enrichment analysis implied
that HDW probably benefits patients with CRC by modulating pathways related to cancers, infectious diseases, endocrine system,
immune system, nervous system, signal transduction, cellular community, and cellmotility.Conclusions.This study partially verified
and predicted the pharmacological and molecular mechanism of HDW against CRC from a holistic perspective, which will also
lay a foundation for the further experimental research and clinical rational application of HDW.

1. Introduction

Colorectal cancer (CRC) is a multifactorial disease concern-
ing environmental, lifestyle, genetic, or other risk factors
[1], and it has posed a formidable potential threat to pub-
lic health owing to its high morbidity and mortality [2].
Treatment strategies for CRC include surgery, chemotherapy,
radiotherapy, targeted therapies, and immunotherapy [3–5].
The therapies for CRC have been well developed in recent
decades [6]; nevertheless, its mortality remains relatively
high as a result of frequent recurrence and metastasis [4].
The main therapeutic option for CRC is chemotherapy, and
appropriate chemotherapy approaches effectively prolong
the life expectancy and improve the performance status
of patients with CRC [7, 8]. However, the application of
chemotherapy for CRC is largely limited by its fearful side
effects and drug resistance [4]. Take FOLFOX (oxaliplatin,
5-fluorouracil, and leucovorin) as an example. FOLFOX is
one of the most prevalent chemotherapy regimens and is
also a standard first-line treatment strategy for CRC [9, 10].

Even so, when patients with CRC are treated with FOLFOX,
a variety of side effects often occur, such as bone marrow
suppression, gastrointestinal reaction, and abnormal liver
function [11]. Given this, more effective and less toxic ther-
apies are desperately needed for treating CRC [12].

As a well renowned traditional Chinese folk medicine,
Hedyotis diffusa Willd. (HDW) belongs to the Rubiaceae
family and is a natural herbal remedy usually found in the
orient and tropical Asia in countries such asChina, Japan, and
Indonesia [13, 14]. In terms of traditional Chinese medicine
(TCM) theory, HDW possesses heat-clearing, detoxification,
promotion of blood circulation, and removal of blood stasis
effects [15]. HDWhas long been extensively utilized in several
Chinese medicine formulae to clinically treat inflammatory
and infectious diseases like sore throat, bronchitis, hepatitis,
urethritis, and appendicitis [16–20]. Moreover, HDW has
also been used as an adjuvant therapy for the treatment
of certain malignancies, including colorectal, liver, stomach,
lung, and breast cancers, with relatively fewer andmilder side
effects [18, 21–30]. It has been reported that HDWdisplays an
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array of pharmacological effects, including antioxidant, anti-
inflammatory, antibacterial, antiangiogenic, proapoptotic,
and immunomodulatory activities [14, 31–35]. And, more
importantly, a growing number of preclinical cancer studies
demonstrate that HDW exhibits striking anticancer activity
[32, 36–38]. However, the potential mechanisms of its antitu-
mor effect have not been completely elucidated.

TCM is a multicomponent, multitarget, and multipath-
way treatment that realizes its particular therapeutic efficacy
by modulating the biological network of body systems [39],
and thereby it is relatively difficult to detect the accurate
mechanisms of TCM solely by conventional experimen-
tal method [40]. Consequently, the new and appropriate
approaches are urgently needed to systematically and com-
prehensively dissect the mechanisms of herbal medicines
[41]. Owing to the rapid advancement of bioinformatics, the
network pharmacology has become an emerging approach to
efficiently and systemically disclose the molecular and phar-
macological mechanisms of TCM [42, 43]. Unlike earlier
reductionist “one drug, one target” means, network pharma-
cology focuses on the fact that numerous active ingredients
interact with multiple diverse genes or proteins, highlighting
a holistic thought also shared by TCM [44, 45]. Network
pharmacology can reflect and clarify the interactive relation-
ship between multiple drugs, multiple targets, and multiple
diseases. Meanwhile, it abstracts the relationship into a
network model and illustrates the action of drugs on human
biological network from a systematic perspective [43]. Thus,
we select the network pharmacology approach to explore the
impact of HDW on CRC to clarify its medical value.

2. Materials and Methods

2.1. Chemical Compounds in HDW. To collect the com-
pounds of HDW, we used the Traditional Chinese Medicine
Integrated Database [46] (TCMID, http://www.megabionet
.org/tcmid/), which records a large amount of information
regarding formulas and their herbal ingredients; the TCM
Database@Taiwan [47] (http://tcm.cmu.edu.tw/), which is
the most comprehensive TCM database on the global scale;
and theTraditional ChineseMedicine SystemsPharmacology
Database [48] (TCMSP, http://lsp.nwu.edu.cn/), a unique
system pharmacology platform devised for Chinese herbal
medicines. Eventually, 69 herbal compounds were retrieved
after deleting the duplicate data (Table S1).

2.2. Compound Targets for HDW. PubChem [49] (https://
pubchem.ncbi.nlm.nih.gov/), as a public repository, pro-
vides information on chemical substances and their bio-
logical activities. We input all the active ingredients into
PubChem and TCM Database@Taiwan and got the 3D
molecular structure files of all active compounds in HDW.
Because the targets of the compounds without precise
structural information cannot be successfully predicted, we
decided to remove these chemicals after deleting the repli-
cate data. Eventually, 43 herbal compounds with structural
information were reserved for further study. We imported
these 3D molecular structure files into PharmMapper [50]
(http://lilab.ecust.edu.cn/pharmmapper/), which is an online

server that exploits pharmacophore mapping approach for
potential drug target identification. The compounds without
relevant 3D molecular structures information were removed.
The top thirty targets of each compound acquired from
PharmMapper were selected as potential targets in the
present study.Thus, we collected distinct targets related to the
compounds in HDW after discarding duplicate data (Table
S2).

2.3. CRC Targets. The different genes associated with CRC
were gathered fromDisGeNET [51] (http://www.disgenet.org/),
a comprehensive discovery platform developed for address-
ing diverse questions concerning the genetic underpinning
of human diseases. We searched the platform with keywords
“colorectal cancer” and selected 14 genes with the Gene-
Disease Score >0.1. The details about the selected genes are
described in Table S3.

2.4. Protein-Protein Interaction Data. The data of pro-
tein-protein interaction (PPI) came from String [52] (https://
string-db.org/, ver. 10.5), with the species limited to “Homo
sapiens.” String is a database of known and forecasted
protein-protein interactions, and it defines PPI with confi-
dence ranges for data scores (low confidence: scores <0.4;
medium: 0.4 to 0.7; high: >0.7). Based on these scores, PPIs
with comprehensive scores >0.7 were reserved in this study.

2.5. Network Construction. Network construction was per-
formed as follows: (1) compound-compound target network
was built by connecting chemical compounds and corre-
sponding targets; (2) CRC targets’ PPI network was estab-
lished by linking 14 CRC targets retrieved from DisGeNET
and other human proteins that directly or indirectly inter-
acted with the 14 CRC targets; (3) compound-compound
target-CRC target-other human proteins’ PPI network was
constructed by connecting compounds, intersection targets
between compound targets and CRC targets’ PPI network,
and other human proteins that directly or indirectly inter-
acted with the intersection targets.

Thenetwork visualization softwareCytoscape [53] (http://
cytoscape.org/, ver. 3.5.1) was adopted to present all of the
above networks. The software is perfectly suitable for visu-
alizing networks of intermolecular interactions, biological
pathways, and manymore. Besides, it provides a powerful set
of data integration, analysis, and visualization functions to
analyze complicated networks. For each node in the inter-
action network, three indices were calculated to evaluate its
topological features. “Degree” is defined as the number of
edges to node 𝑖; “Node betweenness” represents the number
of shortest paths between pairs of nodes that run through
node 𝑖; “Closeness” is the inverse of the sum of the distance
from node 𝑖 to other nodes.

2.6. Gene Ontology and Pathway Enrichment. The Database
for Annotation, Visualization and Integrated Discovery [54]
(DAVID, https://david.ncifcrf.gov/, ver. 6.8), which refers to a
comprehensive set of functional annotation tools for under-
standing the biological meanings behind large gene datasets,
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Figure 1: Compound-compound target network (green diamonds represent compounds contained in HDW. Red hexagons represent
compound targets).

was applied to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis. Enriched GO terms and pathways
were defined as those with False Discovery Rate (FDR)
<0.01. In KEGG enrichment analysis, the bubble chart was
plotted by using the OmicShare tools (http://www.omicshare
.com/tools), a free online platform for data analysis.

3. Results and Discussion

3.1. Compound-Compound Target Network Analysis. The
compound-compound target network was depicted in Fig-
ure 1, including 309 nodes (43 active compound nodes and
266 compound target nodes) and 1260 edges. In this network,
targets in the interior circle showed more interactions with
compounds than those in the exterior. We found out that
many targets were hit by multiple compounds. For instance,

CA2 and GSTP1 were modulated by multiple ingredients
including asperuloside, geniposide, and sitogluside. Also,
CDK2, AR, and PDPK1 can also be regulated by more than
one ingredient. This fact implied that the active chemicals of
HDWmight affect these targets synergistically and therefore
have therapeutic effects on other diseases in addition to CRC,
which virtually showed the properties of multicomponent,
multitarget, and multidisease of the herbal medicine. Conse-
quently, we could not only obtain an approximate observation
of the relationship between bioactive compounds and com-
pound targets but also discover the potential pharmacological
effects of HDW from this network.

3.2. CRC Targets’ PPI Network Analysis. The CRC targets’
PPI network was shown in Figure 2, including 110 nodes
(14 CRC target nodes and 96 other human protein nodes)
and 428 edges. Three topological features of each node
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Figure 2: CRC targets’ PPI network (orange hexagons represent targets related to colorectal cancer acquired from DisGeNET. Red hexagons
represent other human proteins that are directly or indirectly interacting with the CRC targets).

in the network were calculated to find the major nodes.
Finally, 17 nodes with an average value of degree ≥9.63, node
betweenness ≥0.037326, and closeness ≥0.6114 were selected
as major nodes (Table S4), namely, PCNA, MSH2, MLH1,
MSH6, PMS2, PMS1, PIK3CA, KRAS, HRAS, APC,
CTNNB1, AXIN1, TYMS, MT-CO2, MT-CO3, MT-CO1,
and MUTYH. Thus, these genes were likely to be the key or
central genes in the development of CRC.

3.3. Compound-Compound Target-CRC Target-Other Human
Proteins’ PPI Network Analysis. To analyze the significance
of compound targets, a compound-compound target-CRC
target-other human proteins’ PPI network was constructed
with 84 nodes (14 compounds, 17 intersection targets
between compound targets and CRC targets’ PPI network,
and 53 other human proteins interacting with the inter-
section targets) and 306 edges (Figure 3). The topolog-
ical features of the nodes were exhibited in Table S5;
this provided us with a straightforward concept to distin-
guish those highly connected key nodes from the others
in the network. The results of network analysis show that
10 nodes with an average value of degree ≥7.29, node

betweenness ≥0.027360, and closeness ≥0.3208 could be con-
sidered as major nodes, including GTPase HRas (HRAS),
phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic sub-
unit alpha isoform (PIK3CA), GTPase KRas (KRAS),
cellular tumor antigen p53 (TP53), adenomatous poly-
posis coli protein (APC), serine/threonine-protein kinase
B-raf (BRAF), glycogen synthase kinase-3 beta (GSK3B),
cyclin-dependent kinase 2 (CDK2), RAC-alpha serine/threo-
nine-protein kinase (AKT1), and RAF protooncogene serine/
threonine-protein kinase (RAF1).

As we know, HDW probably exerts its therapeutic effect
on CRC by binding and regulating particular protein targets.
We speculated that the top 10 nodes might be the vital targets
in the treatment of CRC. Consider GSK3B, PIK3CA, AKT1,
RAF1, and CDK2. GSK3B was simultaneously targeted by 3
active chemicals: quercetin, p-coumaric acid, and quercetin-
3-sophoroside. Glycogen synthase kinase-3 beta (GSK3B),
a serine/threonine protein kinase encoded by GSK3B,
has been acknowledged as a potential therapeutic target
for multiple human cancers [55]. 𝛽-Catenin holds a vital
status in Wnt/𝛽-catenin pathway due to the fact that it
can facilitate the transcription of several carcinogenic genes
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Figure 3: Compound-compound target-CRC target-other human proteins’ PPI network (green diamonds represent compounds that have
effects on intersection targets between compound targets andCRC targets.Orange hexagons represent intersection targets between compound
targets and CRC targets. Red circles represent other human proteins that are directly or indirectly interacting with the intersection targets).

associated with cancer progression [56]. Previous relevant
studies have defined that 𝛽-catenin may contribute to the
development of cancer and is activated in 80% of col-
orectal cancers [57–60]. GSK3B shows the dual activity of
inhibiting or promoting tumor [61, 62]. On one hand, since
GSK3B serves as a negative regulator in the Wnt signaling
pathway, it is considered to the tumor suppressor generally.
The ubiquitin-mediated degradation of 𝛽-catenin occurs

when GSK3B phosphorylates 𝛽-catenin in the Wnt signaling
cascade. Consequently, the nuclear translocation and sub-
sequent transcription of protooncogenes controlled by 𝛽-
catenin are cleaved [63]. On the other hand, in light of recent
evidence, GSK3B can activate the NF𝜅B signaling cascade
through strengthening the transcriptional activity of NF𝜅B in
the nucleus, which thereby promotes cancer [61]. Besides, it
has been demonstrated that the suppression of the expression
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of GSK3B possibly abrogates tumor growth and induces
apoptosis of CRC cells [62, 64]. Thus, the ingredients from
HDW interacting with GSK3B may be the key factors in
the treatment of the abnormal activation of 𝛽-catenin and
NF𝜅B in patients with CRC. Meanwhile, other researchers
have confirmed that HDW can increase the phosphorylation
of 𝛽-catenin so as to inhibit the growth of CRC cells and
CRC stem cells [65]. As for PIK3CA, its mutations are present
in approximately 15 to 20% of colorectal cancers [66]. The
phosphatidylinositol-3-kinase (PI3K) encoded by PIK3CA is
a lipid kinase, and it plays a crucial role in promoting and
regulating the signaling pathways associated with cell pro-
liferation, migration, survival, apoptosis, and metabolism
[67–69]. Mutations in the PIK3CA gene can initiate the
constitutive activation of PI3K/AKT/mammalian target of
rapamycin (mTOR) pathway, resulting in carcinogenesis and
tumor progression [70–72].Meanwhile, upregulation of PI3K
enhances prostaglandin-endoperoxide synthase 2 activity
and prostaglandin E

2
synthesis, which inhibits the apoptosis

of CRC cells [73]. In the PI3K/AKT/mTOR pathway, AKT,
also known as protein kinase B (PKB), is a downstream
effector of PI3K and is directly activated by it [69]. AKT1 as
one of AKT familymembers was predicted to correlate with 3
active ingredients: quercetin-3-O-sambubioside, ferulic acid,
and quercetin-3-sophoroside. The AKT family members are
implicated in numerous cellular processes, including cell
growth, proliferation, migration, metabolism, survival, and
angiogenesis [67]. AKT overexpression has been proposed
to be an early event in colorectal carcinogenesis [74]. AKT
activates a series of downstream factors by phosphorylation
and therefore modulates cellular metabolism that is rewired
in cancer cells [75]. In general, our result suggested that
key bioactive ingredients of HDW may produce therapeutic
effects by inhibiting PIK3CA and AKT1 expression. For-
tunately, in agreement with the findings of our research,
previous findings have proven that 4-vinylphenol extracted
from HDW can significantly downregulate PI3K and AKT
expression in human endothelial cells [76]. In our study, we
discovered that p-coumaric acid and ferulic acid can affect
the activity of RAF1. RAF1 is a central member downstream
of growth factors and RAS [77]. Overexpression of RAF1
facilitated the proliferation and invasion capacity of CRC cells
[78]. Our work indicated that HDW might treat CRC by
decreasing the expression of RAF1. With regard to CDK2, it
was targeted by 4 active compounds from HDW: quercetin,
rutin, scandoside methyl ester, and scandoside. CDK2 is an
essential serine/threonine protein kinase mediating the cell
cycle transition from G1 to S phase, and it thereby plays a key
role in controlling cell proliferation [79–81]. CDK2 is often
highly expressed in multiple malignant tumors, accelerating
the cell cycle transition from G1 to S phase and thus pro-
moting the proliferation of tumor cells [82, 83]. Accordingly,
CDK2 expression levels have been reported to be higher in
colorectal adenomas [84]. Our findings observed that HDW
caused G1 cell cycle arrest by inhibiting CDK2 expression,
producing the healing efficacy for CRC. Furthermore, other
researchers have verified that HDW can significantly inhibit
the proliferation of human hepatocellular carcinoma cells
probably by restraining the activation of CDK2 [85].

3.4. GO and Pathway Enrichment Analyses. To clarify the
multiple mechanisms of HDW on CRC from a systematic
level, we performed a GO enrichment analysis for the bio-
logical process, molecular function, and cellular component
of the 10 selected targets. Figure 4 listed the top 7 significantly
enriched GO terms (FDR < 0.01) of these targets. 𝑃 value
and FDR were shown in Table S6. The results suggested
that the targets of HDW were strongly correlated with 3
biological processes: positive regulation of peptidyl-serine
phosphorylation, ErbB2 signaling pathway, and Ras protein
signal transduction; 3 molecular functions: kinase activity,
protein serine/threonine kinase activity, and ATP binding;
and 1 cellular component: cytosol. This demonstrated that
HDW probably worked by engaging in above biological
processes, molecular functions, and cellular component.

As shown in Figure 5 and Table S7, the 10 targets were
further mapped to 39 pathways with FDR <0.01. The 39
pathways belonged to four categories: human diseases (19/
39), organismal systems (10/39), environmental information
processing (6/39), and cellular processes (4/39). Thus, our
findings showed that HDW integrated multiple signaling
pathways to modulate cancers, infectious diseases, endocrine
system, immune system, nervous system, signal transduction,
cellular community, and cell motility. In addition, some path-
ways like colorectal cancer (hsa05210), pathways in cancer
(hsa05200), PI3K-AKT signaling pathway (hsa04151), and
MAPK signaling pathway (hsa04010) have been testified as
accurate target pathways for curing CRC [86, 87]. We can
also find that nearly half signaling pathways significantly
enriched by targets were associatedwithmultiple cancers, not
merelyCRC.The result indicated thatHDWhad the potential
to treat diverse cancers, like prostate cancer, acute myeloid
leukemia, pancreatic cancer, and bladder cancer, which has
been confirmed by existing studies [88–91].

Among 39 signaling pathways, colorectal cancer
(hsa05210) as the most important one regulates the process
of apoptosis, proliferation, survival, and genetic stability for
CRC cells. For instance, the decisive factors contributing to
the initiation and evolution of CRC include the inactivation
of tumor suppressor genes APC and TP53 and the activation
of the oncogeneKRAS in colorectal cancer signaling pathway
[92]. With respect to APC, 80% of colorectal cancers harbor
inactivating mutations in APC gene [93], and APC inac-
tivation is regarded as the initiating event in most colorectal
cancers [94]. One of the crucial reasons responsible for
the occurrence and development of CRC is the aberrant
activation of Wnt/𝛽-catenin signaling [95, 96]. Fortunately,
the main biological function of APC in CRC is negatively
regulating the Wnt signaling pathway by its interaction
with 𝛽-catenin [97]. APC mutations probably make the
transcription of oncogenes such as c-myc and cyclin D1
unregulated, which in turn promotes tumorigenesis [98].
Notably, our research indicated that HDW was predicted to
increase APC activity. Moreover, some evidence also shows
that HDW can inhibit the growth of CRC cells and CRC stem
cells by upregulating the expression of negative regulator
APC [65]. When it comes to TP53, it is mutated in about
50% of patients with CRC [99], and mutations in TP53 are
considered to be relatively late events in the development of
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CRC [100]. The p53 protein encoded by TP53 shows cancer-
combating properties by initiating processes of cell cycle
arrest, death, repair, or antiangiogenesis [101]. Importantly
p53 DNA mutations destroy the tumor suppressor function
of p53 and endowmutant p53 with a gain-of-function (GOF)
to make it become a protooncogene [102, 103]. The GOF of
mutant p53 subsequently brings about unfavorable events
such as tumorigenesis, tumor progression, and drug
resistance [103]. Although strenuous efforts have been
contributed to regain the activity of p53 in treatments for
cancer patients [104–108], the effectual clinical approaches
developed based on p53 have failed to be discovered owing to
the intricacy of p53 signaling [109]. Fortunately, our
result suggested that HDW probably played a vital role in
recovering p53 tumor suppressor activity. With regard to
KRAS, its mutations are found in approximately 30–40% of
colorectal cancers [110], and KRAS abnormalities can be
detected early in the development of CRC [98]. Recent trends
support that KRAS mutations have facilitated the cellular
proliferation and malignant transformation of colorectal
adenoma [111]. As for BRAF, it is a direct target of KRAS,
and BRAF mutations are present in approximately 10% of
CRC patients [112, 113].KRAS and BRAF aremajor oncogenic
drivers of CRC [113]. BRAF and KRAS both activate the
RAS/RAF/mitogen-activated protein kinase (MAPK) sig-
naling pathway [112]. Previous studies have proven that the
activation of MAPK signaling pathway shares the actions
about directly affecting different cell cycle progression to
involve the development and progression of CRC [114],
and KRAS and BRAF mutations are the most frequently
occurring alterations in the MAPK signaling cascade in

CRC [113]. Moreover, the mutation status of KRAS and
BRAF has been identified as predictive markers of resistance
to epidermal growth factor receptor (EGFR) monoclonal
antibody therapy in CRC [115, 116]. Based on the unfavorable
fact, there is an urgent need for novel therapies to treat KRAS
and BRAF-mutant colorectal cancers [112]. Interestingly,
our findings implied that HDW produced the healing
efficacy for CRC possibly by regulating KRAS and BRAF
expression.

4. Conclusion

In our present study, we obtained 43 active ingredients
from HDW and predicted 266 potential targets, suggesting
that HDW was a complex agent that consisted of multiple
components and affected numerous distinct targets. The
network analysis uncovered that HDW probably exerted
its pharmacological effects on CRC via modulating certain
targets, including HRAS, PIK3CA, KRAS, TP53, APC, BRAF,
GSK3B, CDK2, AKT1, and RAF1. The GO analysis of targets
disclosed that the ingredients of HDW possibly produced
synergistic effects for treating CRC mainly by regulating
numerous biological processes, like regulation of peptidyl-
serine phosphorylation, ErbB2 signaling pathway, and Ras
protein signal transduction.Meanwhile, the pathway analysis
in ourwork indicated thatHDWmight simultaneously act on
diverse signaling pathways associated with the pathogenesis
of CRC, including colorectal cancer (hsa05210), pathways in
cancer (hsa05200), PI3K-AKT signaling pathway (hsa04151),
and MAPK signaling pathway (hsa04010).
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In summary, the current study is the first one that com-
bines active ingredients, target prediction, network analysis,
GO enrichment analysis, and pathway analysis by a net-
work pharmacology method to illuminate the molecular and
pharmacological mechanism of HDW against CRC from a
systematic perspective. In this research, we showed here for
the first time that HDW significantly affected multiple target
genes mutated in patients with CRC, which was consistent
with the recent trends that CRC can be attributed to the

progressive accumulation of diverse genomic alterations in
neoplastic cells [100]. Meanwhile, based on the systematic
analysis for the bioactive compounds, crucial targets, and key
pathways of HDW against CRC, our present study unveiled
that the characteristics of HDW were multicomponent
botanical therapeutics andmultitarget synergetic therapeutic
effects. Nonetheless, more experiments are warranted to ver-
ify the validity of our findings in further pharmacological and
molecular research. Moreover, we hope that our study will be
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helpful for fostering novel research of other Chinese herbs
against cancers and the application of network pharmacology
for anticancer drug discovery context.
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a discovery platform for the dynamical exploration of human
diseases and their genes,”Database, vol. 2015, Article ID bav028,
2015.

[52] D. Szklarczyk, J. H. Morris, H. Cook et al., “The STRING
database in 2017: quality-controlled protein-protein association
networks, made broadly accessible,”Nucleic Acids Research, vol.
45, no. 1, pp. D362–D368, 2017.



Evidence-Based Complementary and Alternative Medicine 11

[53] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
Environment for integratedmodels of biomolecular interaction
networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504,
2003.

[54] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic
and integrative analysis of large gene lists using DAVID bioin-
formatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57,
2009.

[55] H. Li, K. Huang, X. Liu et al., “Lithium chloride suppresses
colorectal cancer cell survival and proliferation through ROS/
GSK-3𝛽/NF-𝜅B signaling pathway,” Oxidative Medicine and
Cellular Longevity, vol. 2014, Article ID 241864, pp. 1–8, 2014.

[56] F. T. Kolligs, G. Bommer, and B. Göke, “Wnt/beta-catenin/Tcf
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