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Abstract: Background: Acinetobacter baumannii’s (A. baumannii) growing resistance to all available
antibiotics is of concern. The study describes a colistin-resistant A. baumannii isolated at a clinical
facility from a tracheal aspirate sample. Furthermore, it determines the isolates’ niche establishment
ability within the tertiary health facility. Methods: An antimicrobial susceptibility test, conventional
PCR, quantitative real-time PCR, phenotypic evaluation of the efflux pump, and whole-genome
sequencing and analysis were performed on the isolate. Results: The antimicrobial susceptibility pat-
tern revealed a resistance to piperacillin/tazobactam, ceftazidime, cefepime, cefotaxime/ceftriaxone,
imipenem, meropenem, gentamycin, ciprofloxacin, trimethoprim/sulfamethoxazole, tigecycline,
and colistin. A broth microdilution test confirmed the colistin resistance. Conventional PCR and
quantitative real-time PCR investigations revealed the presence of adeB, adeR, and adeS, while mcr-1
was not detected. A MIC of 0.38 µg/mL and 0.25 µg/mL was recorded before and after exposure to
an AdeABC efflux pump inhibitor. The whole-genome sequence analysis of antimicrobial resistance-
associated genes detected beta-lactam: blaOXA-66; blaOXA-23; blaADC-25; blaADC-73; blaA1; blaA2, and
blaMBL; aminoglycoside: aph(6)-Id; aph(3”)-Ib; ant(3”)-IIa and armA) and a colistin resistance-associated
gene lpsB. The whole-genome sequence virulence analysis revealed a biofilm formation system and
cell–cell adhesion-associated genes: bap, bfmR, bfmS, csuA, csuA/B, csuB, csuC, csuD, csuE, pgaA, pgaB,
pgaC, and pgaD; and quorum sensing-associated genes: abaI and abaR and iron acquisition system
associated genes: barA, barB, basA, basB, basC, basD, basF, basG, basH, basI, basJ, bauA, bauB, bauC, bauD,
bauE, bauF, and entE. A sequence type classification based on the Pasteur scheme revealed that the
isolate belongs to sequence type ST2. Conclusions: The mosaic of the virulence factors coupled with
the resistance-associated genes and the phenotypic resistance profile highlights the risk that this
strain is at this South African tertiary health facility.

Keywords: Acinetobacter baumannii; colistin resistance; resistance mechanism; virulence factors;
South Africa

1. Background

Acinetobacter baumannii (A. baumannii) is an opportunistic nosocomial Gram- negative
nonmotile organism [1]. The bacteria can cause serious healthcare-associated infections,
such as bacteremia, ventilator-associated pneumonia, urinary tract infection, meningitis,
and skin and soft tissue infections associated with high mortality, mainly among intensive
care unit hospitalized patients [2,3]. A. baumannii has emerged as an important clinical
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pathogen due to its ability to acquire and spread resistance-associated genes [4,5]. Globally,
there is an increased report of colistin-resistant A. baumannii [6]. In South Africa, this raises
public health concerns regarding the treatment of A. baumannii infections [7,8]. The precise
mechanism of the action of colistin is not completely understood [9]. However, genomic
investigations revealed that colistin induces rapid, complex perturbations of multiple key
metabolic pathways in A. baumannii, leading to the disruption of the bacteria cell mem-
brane [10–12]. Various molecular interactions, including mutation, structural modification,
and enzyme overexpression that are chromosomally mediated [7,13], result in A. bauman-
nii’s increased tolerance to colistin [14,15]. A mutation in the pmrB/pmrA/pmrC operon leads
to a structural modification of the lipid A component of the LPS, which induces an increased
tolerance to colistin [16]. Another described mutation in lpxA, lpxC, and lpxD genes encod-
ing lipid A biosynthesis results in resistance to colistin due to the complete loss of LPS [17].
The presence of the insertion sequence, ISAba11, in lpxA or lpxC leads to the inactivation
of LPS production, which results in decreased susceptibility to colistin [14]. Lastly, the
overexpression of the phosphoethanolamine transferase enzyme drives the integration of
the insertion element, ISAbaI, upstream of a pmrC homolog, eptA, which leads to colistin
resistance [15]. Furthermore, plasmid-borne mcr-1_9 genes confer resistance to colistin [7];
however, these genes have not yet been described in A. baumannii [18] In South Africa, the
mcr-1 variant gene has been reported in Klebsiella pneumoniae and Escherichia coli [19,20].
These bacteria are highly prevalent in hospital environments [21,22], subsequently offering
a source for mcr gene uptake in the vicinity of A. baumannii [23,24]. Finally, the use of an
active overexpressed adverse effect ATP-binding cassette (adeABC) efflux pump confers
indiscriminate resistance to a wider class of antibiotics [25–27], including polymyxins such
as colistin. The overexpression of the adeABC efflux pump can be triggered by genetic
mutation occurring in AdeR, the regulatory gene, and AdeS, the sensor histidine kinase
gene [28,29]. These two genes form the two-component system control of the adeABC
efflux pump [28,29]. The system avoids the accumulation of drugs at the targeted site
within the cells, leading to decreased susceptibility to antibiotics [24,30].

The success of A. baumannii as a nosocomial pathogen is also attributed to fundamental
virulence mechanisms due to Acinetobacter chlorhexidine (AceI) efflux, RecA, and A.
baumannii biofilm-associated proteins’ (BapAb) production [4,31,32]. Chlorhexidine is used
as an antiseptic or disinfectant in hospitals to disrupt cell membranes and is active against
Gram-positive and Gram-negative bacteria [33]. However, A. baumannii has been shown to
actively pump chlorhexidine out of the cell using the AceI efflux protein [31], resulting in
resistance of the bacteria to chlorhexidine action. In order to repair DNA lesions induced by
disinfectants [34], A. baumannii uses the RecA protein for homologous recombination and
recombination repair [4]. This strategy ensures bacterial survival as a nosocomial pathogen.
A. baumannii also forms biofilm communities on most abiotic surfaces [35]. BapAb has a
role in cell–cell adhesion and is required for biofilm formation [32]. Biofilms increase A.
baumanni tolerance to extracellular stress [35] and the action of antimicrobial agents [32].

So far, studies conducted on colistin-resistant mechanisms have not yet explained
the mechanism of resistance associated with an increased tolerance of A. baumannii to
the colistin action among strains circulating in South Africa [7,19]. To our knowledge,
this study describes the first colistin-resistant A. baumannii isolate at the Doctor George
Mukhari Academic Hospital (DGMAH) in Pretoria, South Africa, and investigates the use
of adeABC efflux as a resistance mechanism, as well as determines the potential of the
isolate to establish its niche within this tertiary health facility by evaluating its virulence
factors.

2. Methods
2.1. Sample Collection

A tracheal aspirate was collected from a newborn male who was presented at the
Neonate Intensive Care Unit at DGMAH and sent to the Doctor George Mukhari Tertiary
Laboratory (DGMTL) for microbiology diagnostic testing. DGMTL is a level 3 clinical
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laboratory unit of the National Health Laboratory Services of South Africa, where routine
laboratory diagnostics for patients received at DGMAH and surroundings clinics are
performed. Ethical approval to conduct this research was granted by the Sefako Makgatho
Health Sciences University Research Ethics Committee (SMUREC) with the following
reference number, SMUREC/M/219/2020: PG.

2.2. Sample Identification and Antimicrobial Susceptibility Testing

The isolate was identified using a double identification method; VITEK 2 automated
system (bioMerieux, Marcy-l’Étoile, France) and polymerase chain reaction (PCR) amplifi-
cation of blaOXA-51 gene [36–38]. Antimicrobial susceptibility testing was performed using
VITEK 2 automated system (bioMerieux, Marcy-l’Étoile, France). Piperacillin/tazobactam,
ceftazidime, cefepime, cefotaxime/ceftriaxone, imipenem, meropenem, gentamycin,
ciprofloxacin, trimethoprim/sulfamethoxazole, tigecycline, and colistin were tested. Col-
istin resistance was confirmed using broth microdilution (ComASP® Colistin 0.25–16 µg/mL,
Diagnostic Liofilchem, Inc. Zona Industriale, Roseto degli Abruzzi, Italy), and performed
and interpreted as described by the manufacturer.

2.3. Nucleic Acid Extraction

DNA and RNA extraction were performed as previously described by Nogbou et al.,
2021 [29] following the boiling extraction method and RNA isolation Kit (ISOLATE II RNA
Mini Kit, MagMAXTM Viral/Pathogen, bioline, London, UK), respectively.

2.4. Polymerase Chain Reaction for Molecular Detection of Oxacillinase (blaoxa-51), AdeABC Efflux
Pump (adeB, adeR and adeS), and Plasmid-Mediated Colistin-Resistant Genes (mcr-1)

Gene amplification by conventional PCR was performed as previously described by
Nogbou et al., 2021 [29]. The thermocycling conditions for conventional PCR and primer
sequences used for detection of drug resistance are detailed in annexure 1.

2.5. Quantitative Real-Time PCR (qRT-PCR) Amplification of AdeABC Efflux Pump (adeB, adeR
and adeS), and Plasmid-Mediated Colistin-Resistant Genes (mcr-1)

The qRT-PCR was conducted on cDNA as previously described by Nogbou et al.,
2021 [29]. The thermocycling conditions and primers used are detailed in Supplementary
Materials Tables S1 and S2, respectively.

2.6. Phenotypic Evaluation of AdeABC Efflux Pump adeB, adeS, and adeR Gene Expression

A functional AdeABC efflux system, used as a resistance mechanism, was assessed by
evaluating the difference between the minimal inhibitory concentrations (MICs) for tigecy-
cline (TGC) using the gradient diffusion method (tigecycline, MIC Test Strip, Liofilchem®

Srl, Roseto d’Abruzzi, Italy) before and after exposure to an efflux pump inhibitor, as
described by Nogbou et al., 2021 [29].

2.7. Whole-Genome Sequencing

The purified genomic DNA for WGS was prepared using a combination of the boiling
extraction method followed by DNA purification using the Quick-DNA™ Miniprep Plus
Kit (Zymo-Spin™ Technology, ZYMO RESEARCH). The WGS was performed, as previously
described by Mwangi et al., 2021 [39], at the Next-Generation Sequencing Unit at the
University of the Free State.

2.8. Sequence Analysis and Typing

For WGS analysis and typing, the JEKESA pipeline (https://github.com/stanikae/
jekesa accessed on 30 November 2021) was used. Briefly, Trim Galore v0.6.2 (https:
//github.com/FelixKrueger/TrimGalore accessed on 30 November 2021) was used to
filter the sequence reads (Q,≥ 20; length, ≥ 50), and de novo assembly was performed
using SPAdes v3.13.2 (https://github.com/ablab/spades accessed on 30 November 2021);
the assemblies were polished and/or optimized using Shovill v1.1.0 (https://github.com/

https://github.com/stanikae/jekesa
https://github.com/stanikae/jekesa
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/ablab/spades
https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
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tseemann/shovill accessed on 30 November 2021), and sequence typing was done using the
multilocus sequence typing (MLST) tool v2.16.4 (https://github.com/tseemann/mlst ac-
cessed on 30 November 2021). Assembly metrics, including the GC content and number of
contigs, were calculated using QUAST v5.0.2 (http://quast.sourceforge.net/quast accessed
on 30 November 2021). All resultant contiguous sequences were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline v4.13 [40]. The antimicrobial resistance genes’
presence was corroborated using ABRicate (https://github.com/tseemann/abricate ac-
cessed on 30 December 2021) that included ARG-ANNOT [41], CARD [42], MEGARes [43],
ResFinder [44], and AMRFinderPlus [45] databases. Virulence factor-associated genes were
detected using Victors [46] and VFDB [47] databases.

2.9. Sequences and Genbank Accession Numbers

This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank
under the accession JAKNTS000000000. The version described in this paper is version
JAKNTS010000000 (Table 1).

Table 1. Specification of investigated strain.

Organism Acinetobacter baumannii

Strain SMU.6245.Ab.ND.2021

Sequencer Illumina MiSeq

Data format Assembled

Experimental Factors Genome sequence of pure microbial culture

Experimental Features Genome sequence followed by assembly annotation

Consent N/A

Sample source tracheal aspirate
Homo sapiens

A direct link to the deposit can be found at: https://www.ncbi.nlm.nih.gov/nuccore/
JAKNTS000000000.1 (accessed on 13 March 2022).

3. Results
3.1. Isolate Identification and Antimicrobial Susceptibility Testing

The double identification method, using a VITEK2 automated system (bioMerieux,
Craponne, France) and positive conventional PCR amplification of blaOXA-51, enabled us to
identify the isolated strain as Acinetobacter baumannii. The strain taxonomic identity was
confirmed using Kraken and BactInspectorMax following the whole-genome sequence
analysis. The strain phenotypic antimicrobial susceptibility pattern showed resistance to
all antibiotics tested with confirmed colistin resistance with a MIC greater than 16 µg/mL
using broth microdilution.

3.2. Molecular Investigation of AdeABC Efflux Pump (adeB, adeR, and adeS) and
Plasmid-Mediated Colistin-Resistant Genes (mcr-1)

The adeB, adeR, and adeS genes associated with an active efflux pump were detected
using conventional PCR and qRT-PCR. The mcr-1 plasmid-mediated colistin-resistant gene
was not detected using conventional PCR and qRT-PCR.

3.3. Phenotypic Evaluation of AdeABC Efflux Pump adeB, adeS, and adeR Gene Expression

The assessment of a functional AdeABC efflux system as a resistance mechanism was
conducted using tigecycline. The results revealed an MIC of 0.38 µg/mL before exposure
to an efflux pump inhibitor and a MIC of 0.25 µg/mL after exposure to an efflux pump
inhibitor.

https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
https://github.com/tseemann/mlst
http://quast.sourceforge.net/quast
https://github.com/tseemann/abricate
https://www.ncbi.nlm.nih.gov/nuccore/JAKNTS000000000.1
https://www.ncbi.nlm.nih.gov/nuccore/JAKNTS000000000.1
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3.4. Genomic Investigation of Resistance Mechanism

The whole-genome sequence was used to detect 19 additional antimicrobial resistance-
associated genes (Table 2).

Table 2. Genome characteristics and resources.

N Name Genome Characteristics and Resources

1 NCBI BioProject PRJNA803988

2 NCBI BioSample ID SAMN25694890

3 NCBI genome accession Number JAKNTS010000000

4 Sequences type genome

5 Total number of reads 1,280,666

6 Clean reads 1,260,538

7 Overall coverage 74.0×
8 Estimate genome size 4,025,130

9 G + C content (%) 38.84

10 Genes (total) 3906

11 tRNAs 62

12 rRNAs 1, 2 (16S, 23S)

13 ncRNAs 4

14 Pseudo Genes (total) 63

The whole-genome sequence detected 48 virulence factor-associated genes. The col-
istin resistance-associated gene, mcr-1, was not detected, as well as lpxA, lpxC, and lpxD.
The pmrB/pmrA/pmrC operon-associated genes and genes associated with AceI protein
production were also not detected.

3.5. Multi-Locus Sequence Typing

Following the Pasteur scheme, the isolated strain was identified as belonging to
sequence type 2 (ST2), which is an ST belonging to clonal complex 2 (CC2).

4. Discussion

The rapid development of pan- and/or multi-drug resistance pattern among clini-
cal isolates of A. baumannii is of concern worldwide [8]. The carbapenem-hydrolysing
oxacillinase blaOXA-51 gene has been reported to be intrinsic to Acinetobacter sp. and is
recommended by several authors as a simple and reliable genomic identification feature
of A. baumannii strains [36–38,48]. However, there is mention, within the literature, of A.
baumannii strains not harbouring blaOXA-51 [49]. In this report, the positive detection of the
blaOXA-51 gene was used as genomic confirmation for strain identification. This approach
was consolidated by the whole-genome sequencing method that taxonomically confirmed
strain identity, supporting recommendations made by previous researchers to use the
blaOXA-51 gene for A. baumannii’s identification [36–38].

An increase in incidences of colistin-resistant A. baumannii strains have been observed
at South African tertiary health facilities [7,50]. The strain described in this study is of
particular concern, as it showed resistance to all available drugs, including colistin and
Tigecycline. Such strains pose a serious therapeutic challenge and the potential to cause
devastating outbreaks [50,51]. The number and the diverse range of resistance-associated
genes detected within its whole-genome analysis justified the phenotype results.

The targeted PCR and qRT-PCR amplifications of the mcr-1 gene were negative. More-
over, no known colistin-associated resistance mutations were detected in the lpx or pmr
genes. Furthermore, the whole-genome sequence analysis did not report any mcr genes.
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A similar observation was made by Snyman et al. [7] in Cape Town during their study
conducted at the Tygerberg Academic Hospital while investigating 26 confirmed colistin-
resistant A. baumannii isolates. Snyman et al. [7] supported that the absence of plasmid-
mediated mcr genes and any known chromosomal mutations in lpx or pmr suggests that
the colistin resistance in A. baumannii isolates may be due to a non-investigated mechanism.
In agreement with this observation, Lean et al. [52] demonstrated that colistin resistance
in A. baumannii is strongly associated with a change from histidine to tyrosine in position
181. However, the authors reported that six of fourteen confirmed colistin-resistant A.
baumannii strains were not harboring this specific mutation [52]. This study revealed the
presence of a mutation in the lpsB gene after whole-genome sequence analysis (Table 3 and
Figure 1). These mutations are different from the mutation reported by Lean et al. [52].
Vijayakumar et al. [53] supported that the significance of the mutations in lpsB required
more investigation to determine their implication in colistin resistance. Yet, the published
data by these researchers support that colistin resistance in A. baumannii is more associated
with molecular events within lpsB than mcr sequences [53]. Although further investigations
are required for confirmation, the gathered evidence suggests that chromosomal muta-
tions in lpsB might be responsible for colistin resistance in A. baumannii. lpsB enhances
A. baumannii’s virulence in pulmonary infections [54,55]. The tracheal aspirate sample
from which the strain described in this study was isolated supports the implication of
lpsB in colistin resistance. This report suggests that the colistin-resistant strain within the
South African tertiary hospital may be due to a mutation in the lpsB gene rather than the
plasmid-mediated mcr genes’ acquisition or traditional lpx and pmr genes.

Table 3. Additional antimicrobial resistance-associated genes investigated using whole-genome
sequencing.

Resistance Acquired Resitance Genes

Aminoglycoside aph(6)-Id; aph(3”)-Ib; ant(3)-IIa and armA

Beta-lactam blaOXA-66; blaOXA-23; blaADC-25; blaADC-73; blaA1; blaA2 and blaMBL

Fosfomycin abaF

Macrolide msrE and mphE

Polymixin lpsB

Streptogramin strA and strB

Sulphonamide sul2

Tetracycline tetB

Other studies support that the active use of an efflux pump could be responsible
for colistin resistance in A. baumannii [54,56]. This study reports a positive detection of
AdeABC, AdeFGH, and AdeIJK efflux pump genes. Moreover, the result of the phenotypic
evaluation of the AdeABC efflux pump, coupled with the mutations in the adeR and adeS
genes, demonstrate an overexpression of the AdeABC efflux pump’s use as a mechanism
of resistance to polymyxins. Studies have shown the use of an efflux pump as a resistance
mechanism in bacteria improves bacteria survival in colistin stress [56–59].

The international A. baumannii clone II is associated with the production of OXA-23
carbapenem-hydrolysing oxacillinase [60] and is the predominant cause of outbreaks of
A. baumannii infection [5]. The international clone II was identified as a high-risk clone,
as it is one of the drivers of A. baumannii’s rapid dissemination across the world [61]. The
isolated strain in this study was reported to belong to ST2, which is part of the international
clone II and producer of blaOXA-23 (Table 3). The presence of such a strain within a tertiary
hospital is of serious concern, as the risk of an escalation in resistance to colistin among the
species plausible, endangering patient life and bringing considerable risk within hospital
environments.
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The ability of A. baumannii to survive on inanimate objects and resist environmental
stress enables the bacteria to colonize new environments and promote its success as a
nosocomial pathogen [62,63]. An investigation of the virulence factors that enhance the
strain’s survival in harsh environmental conditions was conducted to evaluate the extent of
the threat that the colistin-resistant A. baumannii introduces to the health facility (Tables 1
and 4). The investigated strain has bap and recA but not the aceI gene (Tables 1 and 4).
A. baumannii biofilm-associated protein production is mediated by the bap gene [32]. The
protein enhances the development of high-order and complex A. baumannii communi-
ties’ structures on abiotic surfaces [32], such as catheters, endotracheal tubes, and other
healthcare-associated equipment [32,64]. Biofilms provide a shielding effect to bacterial
community members through the restriction of antimicrobial agents’ penetration [65]. The
recA gene codes a DNA-damaged repair and recombination protein [4]. The gene is in-
volved in SOS mutagenesis response and enhances bacteria survival against antimicrobial
agents and oxidative stresses [4]. A. baumannii communities persisting within hospital envi-
ronments become a source of infection to patients. Several other genes that are responsible
for various virulence factors have been reported. The CsuA/BABCDE chaperone-usher pili
assembly system, regulated by the BfmS/BfmR two-component system; the outer mem-
brane protein, OmpA; the autoinducer synthase, AbaI, which is part of the quorum-sensing
system and its repressor protein, AbaR; and the PgaABCD, which is responsible for the
production of poly-β-1,6-N-acetylglucosamine, are all biofilm-related virulence factors
responsible for the biofilm formation and cell–cell adhesion system [66]. Iron acquisition
system-related genes have been identified within the genome of the study strain. Iron
is a micronutrient essential for the growth of living organisms [67]. A. baumannii, like
most aerobic bacteria, produces various high-affinity iron acquisition systems through the
expression of the reported genes (Table 4). These systems will detect, trap, and present iron
in a suitable form for bacterial use [68], enhancing the virulence and pathogenicity of the
strain.
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Table 4. Virulence-associated genes investigated using whole-genome sequencing.

Virulence Factors Virulence-Associated Genes

Biofilm formation system, cell–cell adhesion bap, bfmR, bfmS, csuA, csuA/B, csuB, csuC, csuD,
csuE, pgaA, pgaB, pgaC and pgaD

Quorum sensing abaI and abaR

Resistance-nodulation-division AdeFGH and
AdeABC efflux pump

adeF, adeG, adeH and adeL;
adeB, adeS, and adeR

Resistance-nodulation-division AdeIJK adeI, adeJ, adeK, adeN

Multi-drug and toxic compound extrusion AbeM

Small multi-drug resistance transporters AbeS

Iron acquisition systems
barA, barB, basA, basB, basC, basD, basF, basG,
basH, basI, basJ, bauA, bauB, bauC, bauD, bauE,

bauF and entE

Phospholipase plc, plcD

Porin OmpA

DNA recombination recA

Regulator of the MexEF-oprN efflux pump in
Pseudomonas aeruginosa mexT

5. Conclusions

The genomic investigation of the first colistin-resistant A. baumannii isolated at this
tertiary hospital in Pretoria revealed that the emergence of colistin resistance might be
due to another resistance mechanism other than the widely reported lpx and pmr genes
or the plasmid-mediated mcr genes. The diverse and multiple drug resistance-associated
mechanisms expressed by the study strain, coupled with virulence factors that enhance its
pathogenicity, survival in environmental stress, and niche establishment, indicate that this
strain is a threat at this tertiary health facility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11050594/s1, Table S1: Primers sequences used for
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