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Purpose: The purpose of this study was to classify the spatial patterns of retinal nerve
fiber layer thickness (RNFLT) and assess their associations with visual field (VF) loss in
glaucoma.

Methods:We used paired reliable 24-2 VFs and optical coherence tomography scans of
691 eyes from691 patients. The RNFLTmapswere used to determine the RNFLT patterns
(RPs) by non-negative matrix factorization (NMF). The RPs were correlated with mean
deviation (MD), spherical equivalent (SE), andmajor blood vessel locations. The RPswere
further used to predict the 52 total deviation (TD) values by linear regression compared
with models using 24 15-degree sectors. Last, we associated the RPs with average TDs
of the central upper two locations (C2-TD). Stepwise regression was applied to remove
redundant features.

Results:NMFhighlighted 16 distinct RPs. Twelve RPs had arcuate-like informative zones
(iZones): six with superior iZones, five with inferior iZones, and one RP with a bi-
hemifield iZone, and four with non-arcuate-like temporal or nasal iZones. Twelve, nine,
nine, and nine RPs were significantly (P < 0.05) correlated to MD, SE, and superior and
inferior artery locations, respectively. Using RPs significantly (P < 0.05) improved the
prediction of 52 TDs compared with using 24 15-degree sectors. Using RPs significantly
(P< 0.001) improved the C2-TD prediction related to thinning in the inferior vulnerabil-
ity zone compared with using the 24 sectoral RNFLTs.

Conclusions: Using RPs improved the VF prediction compared with using sectoral
RNFLTs.

Translational Relevance: The RPs characterizing both pathological and anatomical
variations can potentially assist clinicians better assess RNFLT loss.

Introduction

The measurement of retinal nerve fiber layer
(RNFL) thickness (RNFLT) by optical coherence
tomography (OCT) is widely used to diagnose and
monitor glaucoma in clinical practice. Numerous
studies indicate that RNFLT measurements facilitate

glaucoma diagnosis, correlate with visual field (VF)
loss, and have utility in detecting glaucoma progres-
sion.1–9

In many prior studies, RNFLT measurements from
the circle scan of 3.46 mm diameter were used to
study glaucoma due to its simplicity and the reported
optimal reproducibility of these measuresments.10,11
However, the 6 mm by 6 mm RNFLT map contains
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Figure 1. (a) Twenty-four angular sectors of 15 degrees centered at the optic nerve head (ONH), and (b) a schematic of the central upper
2 locations on the 24-2 visual field (VF) per the Hood scheme.22,23

more complete information regarding peripapillary
RNFLT integrity, and has shown great potential to
improve glaucoma detection accuracy as well as inform
structure-function relationships.12–15 To quantita-
tively assess the high dimensional RNFLT map data
(e.g. 225 by 225 pixels for Cirrus OCT), various
artificial intelligence (AI) techniques14–17 have been
developed.12 For example, principal component analy-
sis (PCA), a classical unsupervised AI method for
data dimensionality reduction,18,19 has been applied to
determine 10 RNFLT patterns from the RNFLTmaps.
These PCA RNFLT patterns improved glaucoma
detection and progression prediction compared with
using circumpapillary RNFLT, with increase in the
area under the receiver operating curve from 0.55 to
0.74 for progression detection.15 However, although
the PCA technique reduced the data dimensionality
of the RNFLT map, the PCA RNFLT patterns were
not intuitive for clinical interpretation because they
contained both positive and negative regions, whereas
RNLFT maps contain solely positive data. More
recently, a deep learning model has been developed
to use the RNFLT maps to predict VF sensitivities
and the presence of VF defects with high accuracy.16
Despite the high accuracy achieved, the “black box”
nature of the model detracts from its clinical utility.

In this work, we propose to reduce the high dimen-
sional RNFLT map data into representative RNFLT
patterns determined by an unsupervised AI method
termed non-negative matrix factorization (NMF). The
NMF method is specialized to learn sparse and part-
based non-negative representation of non-negative
data,20,21 theoretically making them more clinically
useful to assess the non-negative RNFLT map data.
First, the NMF was applied to determine the RNFLT
patterns, and 10-fold cross-validation was used to
determine the optimal number of patterns. Second,
we associated the RNFLT patterns with mean devia-
tion (MD), spherical equivalent, and major blood

vessel locations on the circumpapillary circle of
3.46 mm diameter. Third, the RNFLT patterns were
used to predict the total deviation (TD) values at each
of the 52 VF locations by linear regression, which
were compared with the models using 24 sectors of
15 degrees (Fig. 1a) to illustrate the efficacy of using
NMF for data dimensionality reduction. Last, the
RNFLT patterns that correspond to superior paracen-
tral VF loss at the central upper two locations (the
most common type of glaucomatous central vision
loss) popularized by Hood and coworkers22,23 were
detailed to demonstrate the potential clinical utility of
our NMF pattern models.

Methods

The institutional review board (IRB) of
Massachusetts Eye and Ear (MEE) approved this
retrospective study. Because of the retrospective nature
of the study, the IRB waived the need for informed
consent of patients. The study complies with the
Declaration of Helsinki as well as all federal and state
laws.

Participants and Data Preprocessing

There were 2161 eyes from 2161 patients visiting the
MEEglaucoma service between 2011 and 2014meeting
the following data selection criteria that were initially
included: (1) VF reliability criteria: fixation loss≤ 33%,
false negative rates ≤ 20%, and false positive rates
≤ 20%; (2) OCT reliability criteria: Cirrus optic nerve
head (ONH) OCT scan (Optic Disc Cube protocol
with A-scan resolution 200 by 200 within an area of
6 mm by 6 mm) with signal strength ≥ 6; and (3) test
dates of OCT scans within 1 year from the closest VF
measurements. If more than one pair of OCT and VF
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measurements per eye met the criteria, the most
recent measurement was selected. If both eyes of a
patient met the selection criteria, only one eye was
included randomly to avoid potential bias of inter-eye
correlation.

Cirrus ONH OCT scans with an area of 6 mm by
6 mm were used for this analysis. The ONH center
was determined by the Cirrus machine as the centroid
of Bruch’s membrane opening. OCT scans with ONH
centers that deviated more than 0.3 mm in horizon-
tal or vertical direction from the fundus image center
were excluded. Thereafter, the RNFLT maps and the
corresponding fundus images of each eyewere centered
based on the ONH center. To ensure the availabil-
ity of data over the complete area for each centered
scan, 0.3 mm of the edges were removed, resulting in a
5.4 mm by 5.4 mm scan region for each image. All
fundus images were manually examined by a trained
observer to exclude OCT scans with missing RNFLT
measurements (black pixels on RNFLT maps within
the region of 5.4 × 5.4 mm) and motion artifacts
(defined as vessel shifts of more than one vessel diame-
ter or a visible shift within ONHon fundus image). The
region with a radius of 1.25 mm were excluded from
data analyses to ensure RNFLT values are available for
all eyes regardless of disc size as well as to avoid deter-
mining patterns only reflecting variation in disc size.

Themajor artery locations on four concentric circles
with diameters of 2.46, 3.46, 4.46, and 5.40 mm were
tracked by a trained observer on each fundus image
with a custom software we developed. We used the
coordinate system of the Cirrus device, which defines
the angular position of zero as the horizontal line
toward the temporal direction and calculates angles
clockwise and counterclockwise for the right and left
eyes, respectively, as described in our prior publica-
tions.24–26

Electronic medical records were used to ascer-
tain demographic and ophthalmic features for all
patients, including glaucoma diagnostics and spherical
equivalent.

Statistical Analyses

An unsupervised AI method, NMF, was applied
to determine the RNFLT patterns. Compared with
axis-learning (e.g. PCA and independent compo-
nent analysis),15,18,27 center-learning (e.g. k-means and
Gaussian mixture modeling),28,29 and corner learn-
ing (i.e. archetypal analysis)30,31 methods, the NMF
is a boundary learning method and specialized to
learn non-negative focal patterns that remove redun-
dant information for clearer clinical interpretation.
The optimal number of patterns was determined by

10-fold cross validation based on minimization of
mean squared error.32 The data were randomly parti-
tioned into 10 subsets. Each of the 10 subsets was
used as a test subset once with the remaining 9 subsets
serving as a training set. The RNFLT map recon-
struction errors were calculated on the test subsets
for the number of patterns (k) from 2 to 20. The
RNFLT map reconstruction errors were calculated as
the differences between the original RNFLT maps and
the reconstructed RNFLT maps. The reconstructed
RNFLT maps were calculated as the sum of the
RNFLT patterns multiplied by their pattern decom-
position coefficients. The optimal pattern number ko
was determined by the following criteria: the minimum
k with reconstruction errors that are not statistically
different (i.e. Bayes factor < 3.0)33 from the k that
produced the smallest average reconstruction error.

The properties of the RNFLT patterns were subse-
quently examined by correlating with MD, spherical
equivalent, and major retinal artery locations on the
standard scan circle of 3.46 mm diameter. To demon-
strate the clinical utility of using NMF for data dimen-
sionality reduction, multivariable linear regression was
applied to predict the 52 VF TD values from the
RNFLT patterns. These models were compared with
those using a naive dimensionality reduction scheme:
24 sectors of 15 degrees as shown in Figure 1a.34,35 The
zero angular position was defined as the horizontal line
toward the temporal direction. The angle was counted
clockwise for the left eyes and counterclockwise for the
right eyes. Furthermore, we used the RNFLT patterns
with multivariable linear regression to predict superior
paracentral VF loss at the central upper two locations
(themost common type of glaucomatous central vision
loss) according to the Hood schemes (Fig. 1b) to illus-
trate the potential clinical utility of our NMF pattern
model compared with the model using 24 sectoral
RNFLTs. The average TD value for the central upper
two locations was calculated to measure the degree
of superior paracentral VF loss. Stepwise regression
with Bayesian information criterion (BIC) was used to
select the optimal features to predict VF sensitivities
and paracentral VF loss for fair comparison purpose.
The performance of the linearmodels wasmeasured by
adjusted multiple correlation (adjusted rm), which was
the square root of R-squared that has been adjusted for
the number of predictors in themodels to avoid overfit-
ting. We applied the bootstrapping procedure36,37 to
obtain the distributions of the adjusted rm for the
optimalmodels usingRNFLTpatterns and the optimal
models using 24 sectors of 15 degrees. The t-test was
used to compare whether the RNFLT patterns were
more significantly associated with VF loss compared
with the average RNFLTs of the 24 15-degree sectors.
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Table. Demographic and Ocular Characteristics of Patients Included in this Study (n = 691 Patients)

Race Glaucoma Diagnosis Patient Statistics

European: 74.0% Open angle glaucoma: 45.7% Female: 55.3%
African: 6.6% Angle closure glaucoma: 2.2% Age: 60.9 ± 14.6 years
Asian: 10.3% Mixed mechanism glaucoma: 2.5% MD: -3.7 ± 5.1 dB
Hispanic: 4.9% Glaucoma suspect: 42.1% SE: 1.0 ± 2.8 diopters
Mixed/other: 4.2% Normal: 7.5%

We also compared the RNFLT pattern model
for predicting 52 TD values with the models using
the 4 sectors (temporal, superior, nasal, and inferior
sectors) and 6 sectors (temporal, temporal-superior,
nasal-superior, nasal, nasal-inferior, and temporal-
inferior sectors) used in OCT software as well the
model using PCA patterns. For predicting the superior
paracentral loss, we also compared the RNFLT
pattern model with the model using the average
RNFLTs in the macular vulnerability zone (295 to
322 degrees) around the ONH proposed by Hood and
coworkers.22,23

Results

Patient Characteristics

Of the initially selected 2161 eyes with OCT
signal strength ≥ 6, there were 1082 eyes that
were excluded due to motion artifacts. In addition,
221 eyes were excluded due to decentered OCT scans
and 167 eyes were excluded due to missing RNFLT
measurements, leaving 691 eyes from 691 patients for
data analyses. The Table summarizes the demographic
and ophthalmic data for patients included in the study.
Of 691 patients (age: 60.9 ± 14.6 years; MD: -3.7 ±
5.1 dB), 569 patients had spherical equivalent (SE: 1.0
± 2.8 diopters) information in the electronic medical
records.

The RNFLT Patterns, Eye Anatomy, and Visual
Field Loss

We determined 16 RNFLT patterns (RPs) by the
NMF method (Fig. 2a). The yellow and red regions
indicate where the RNFL was thicker and large
variations existed among different eyes, and were
therefore considered to be the relatively informative
zones (iZones) on the RNFLT map. By contrast, the
blue regions represent where the RNFL was thinner
and minimal variations existed among different eyes,
and were therefore considered to be the relatively
non-informative zones (non-iZones). There were

12 RPs with arcuate-like iZones: 6 RPs with superior
iZones (RPs 1, 2, 8, 9, 10, and 11), 5 RPs with inferior
iZones (RPs 3, 4, 6, 7, and 15), and 1 RP with a
bi-hemifield iZone (RP 13), and 4 RPs with non-
arcuate-like iZones: 1 RP with temporal iZone (RP
14) and 3 RPs with nasal iZones (RPs 5, 12, and 16).
The RPs were ordered by their respective average
decomposition weights over all 691 OCT scans from
691 eyes. In general, a higher RP coefficient
implied thicker RNFL in the iZone and vice versa.
Yellow/black circles denote average major artery
locations on four concentric circles with diameters
of 2.46, 3.46, 4.46, and 5.40 mm for eyes with the
highest/lowest 10% RP coefficients. Based on visual
observation, the averagemajor artery locations for eyes
with the highest 10% RP coefficients were closer to the
iZone centers of multiple RPs (e.g. RPs 1, 2, 3, 4, 6, 7,
9, and 10) compared with eyes with the lowest 10% RP
coefficients, which suggested these RPs were anatomi-
cally related to blood vessel locations. Figure 2b shows
an example of the RNFLT map decomposition into
the RNFLT patterns with at least 5% weights along
with the corresponding VF of TD and TD probability
plots. The pattern decomposition coefficients of the
RNFLT map sum to 100%.

Figure 3 shows the correlations between the decom-
position coefficients of the RNFLT patterns and
(a) MD, (b) spherical equivalent, (c) superior artery
location on the circumpapillary circle of 3.46 mm
diameter, and (d) inferior artery location on the circum-
papillary circle of 3.46 mm diameter. Various RPs
were significantly (P < 0.05) correlated with MD (12
patterns with Pearson correlations ranging from -0.53
to 0.29 [absolute range: 0.09 to 0.53]; the 3 most corre-
lated RPs: RPs 12, 14, and 16), spherical equivalent (9
patterns with Pearson correlations ranging from -0.25
to 0.19 [absolute range: 0.08 to 0.25]; the 3 most corre-
lated RPs: RPs 6, 7, and 10), superior retinal artery
location (9 patterns with Pearson correlations ranging
from -0.49 to 0.46 [absolute range: 0.11 to 0.49]; the 3
most correlated RPs: RPs 1, 9, and 10), and inferior
retinal artery location (9 patterns with Pearson corre-
lations ranging from -0.44 to 0.45 [absolute range:
0.08 to 0.45]; the 3 most correlated RPs: RPs 4,
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Figure 2. (a) The 16 RNFLT patterns determined by non-negative matrix factorization (NMF), and (b) an example of RNFLT map decompo-
sition into its respective RNFLT patterns with at least 5% weights alongside the corresponding visual field (VF) of total deviation (TD) and
TD probability plots. The yellow and red regions indicate where the RNFL was thicker and large variations existed among different eyes, and
were therefore considered relatively informative zones (iZones) on the RNFLTmap. In contrast, theblue regions representwhere the RNFLwas
thinner and minimal variations existed among different eyes, and were therefore considered relatively non-informative zones (non-iZone).
For any RNFLTmap, the decomposition coefficients sum to 100%. Yellow/black circles in a: averagemajor artery locations at 4 circumpapillary
radii for eyes with the highest/lowest 10% RP coefficients. RNFLT= retinal nerve fiber layer thickness; RP= retinal nerve fiber layer thickness
pattern.



An AI Approach to Assess RNFL Patterns in Glaucoma TVST | August 2020 | Vol. 9 | No. 9 | Article 41 | 6

Figure 3. The correlations between the decomposition coefficients of RNFLT patterns and the (a) mean deviation, (b) spherical equivalent,
(c) superior artery location on the circle of 3.46 mm diameter, and (d) inferior artery location on the circle of 3.46 mm diameter. RP= retinal
nerve fiber layer thickness pattern. *Denotes significant (P < 0.05) correlations.
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Figure 4. The adjusted multiple correlations rm of the optimal models to predict the total deviation value at each of the 52 VF locations
using (a) the average RNFLTs of the 24 sectors of 15 degrees, and (b) the RNFLT patterns. (c) The improvement in rm by the optimal models
using RNFLT patterns compared with the optimal models using the 24 sectoral average RNFLTs. The improvement at all 52 locations was
statistically significant (P < 0.05) by t-test with bootstrapping.

6, and 7). The RPs encoded not only the effect of
pathological RNFLT thinning (evidenced by their
correlations with MD) but also the anatomic RNFLT
variation (evidenced by their correlations with spheri-
cal equivalent andmajor blood vessel locations) related
to myopia and blood vessel locations.

Figure 4 shows the adjusted multiple correlations
rm of the optimal models to predict TD values at each
of the 52 VF locations, using (a) the average RNFLTs
of the 24 sectors of 15 degrees, and (b) the RNFLT
patterns. The adjusted rm for the optimal model using
the average RNFLTs of the 24 sectors ranged from
0.32 to 0.59 with a median of 0.45. The adjusted
rm for the optimal model using the RNFLT patterns
ranged from 0.42 to 0.62 with a median of 0.51. For
both models, the superior nasal VF region was more
associated with the RNFLT measurements, whereas
the inferior paracentral and temporal regions were less
associated with the RNFLT measurements. Figure 4c
shows the improvement in adjusted rm by the optimal
models using RNFLT patterns compared with the
optimal models using the 24 sectoral average RNFLTs.
The improvement in adjusted rm was statistically signif-
icant (P < 0.05, t-test with bootstrapping) at all
52 locations, ranging from 0.03 and 0.13 with a median
of 0.06. The improvement was more substantial in
the inferior paracentral and temporal VF regions,
and less substantial in the superior nasal VF regions.
Furthermore, using the RNFLT patterns (adjusted rm:
0.63) significantly (P <0.001, t-test with bootstrap-
ping) improved the prediction of MD compared with
using the average RNFLTs of the 24 sectors (adjusted
rm: 0.55). In predicting 52 TD values, the RNFLT
pattern model largely outperformed the models using
the 4 and 6 sectors used in OCT software as well as

the models using 16 PCA patterns (encoding at least
80% data variance) and 14 PCA patterns (each pattern
encoded as least 1% data variance) in terms of rm and
BIC comparisons. See more details in Supplementary
Figures.

Figure 5a shows the specific sector in the optimal
model that was associated with the average TD value
at the central upper 2 locations (C2-TD) accord-
ing to the Hood scheme (see Fig. 1b).22,23 Among
the 24 sectors, only the average RNFLT of sector
20 (285 to 300 degrees) remained in the
optimal model and was positively associated
with C2-TD, whereas RNFLT in the macular
vulnerability zone around ONH from 295 to
322 degrees was expected to best predict C2-TD
per the Hood scheme.22,23 Figure 5b shows the
6 RNFLT patterns in the optimal model that were
associated with C2-TD. Lower coefficients for four
RPs with inferior iZones (RPs 3, 4, 6, and 7) were
associated with worse C2-TD, implying that thinning
in the inferior iZones was associated with worse C2-
TD. On the other hand, higher coefficients for RPs
14 (an RP with temporal iZone) and 16 (an RP with
inferior nasal iZone) were also correlated with worse
C2-TD, suggesting that unusual thickening in the
temporal and inferior nasal iZones and lack of the
typical superior and inferior RNFLT bundles were
associated with worse C2-TD. The adjusted multiple
correlation rm to predict C2-TD for the optimal model
using the 6 RNFLT patterns was 0.52, which was
significantly (P < 0.001, t-test with bootstrapping)
higher than that of the optimal model using sector
20 (adjusted rm = 0.47) and the model using the
average RNFLT in the macular vulnerability zone
(adjusted rm = 0.37).
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Figure 5. (a) Sector 20 (marked as red) out of 24 sectors, and (b) the RNFLT patterns (RPs), in the respective optimal models that were
significantly (P < 0.05) associated with the average total deviation value at the central upper 2 locations (C2-TD) according to the Hood
scheme.

Discussion

In this work, 16 RNFLT patterns were determined
by an unsupervised AI method termed NMF. The
RNFLT patterns highlight regions that varied greatly
between eyes from different patients, which we desig-
nate as the relatively informative zone (iZone) colored
by yellow and red; in contrast, the remaining regions
had minimal variation among eyes and are considered
the relatively uninformative zone (non-iZone) colored
by blue. There were 12 RPs with arcuate-like iZones
(6 RPs with superior iZones, 5 RPs with inferior
iZones, and 1 RP with bi-hemifield iZone) and 4
RPs with non-arcuate-like iZones. Using the RNFLT
patterns significantly improved the prediction of TD
values at each of the 52 VF locations compared with
a naive dimensionality reduction scheme of 24 15-
degree sectors. The improvement was more substan-
tial in the inferior paracentral and temporal regions
of the VF, and less substantial in the superior nasal
regions. Furthermore, the correlation of the RNFLT
patterns with superior paracentral loss per the Hood
scheme22,23 was greater than that of the model using
24 sectors. We also compared the RNFLT pattern
model with the models using the four sectors (tempo-
ral, superior, nasal, and inferior sectors) and six sectors
(temporal, temporal-superior, nasal-superior, nasal,
nasal-inferior, and temporal-inferior sectors) used in
OCT software. In predicting VF loss at the 52 VF
locations, the RNFLT patternmodel outperformed the
models using 4 sectors and 6 sectors. Furthermore, the

NMF RNFLT pattern model outperformed the PCA
pattern models in predicting VF loss at most of the
52 VF locations. See Supplementary Figures for more
details.

Various RNFLT patterns were significantly corre-
lated to MD (12 patterns), spherical equivalent
(9 patterns), and superior (9 patterns) and inferior
retinal artery (9 patterns) locations on the circle of
3.46 mm diameter, respectively. The RNFLT patterns
not only encode the variance of pathological RNFLT
thinning (evidenced by the correlations between the
RNFLT patterns and MD) but also the anatomic
RNFLT variation related to myopia and blood vessel
locations. For example, RPs 6 and 10 were most
strongly correlated with myopia as the arcuate-like
iZones in these 2 RPs lie closer to the fovea and
RP 7 was most strongly correlated with hyperopia
as the arcuate-like iZone in RP 7 lies farther from
the fovea. For example, the arcuate-like iZone in
RP 6 lies closer to the temporal horizontal direc-
tion, and, therefore, RP 6 was also related to inferior
artery locations closer to the temporal horizontal direc-
tion; conversely, the arcuate-like iZone in RP 7 lies
farther from the temporal horizontal direction, and,
therefore, RP 7 was also related to inferior artery
locations farther from the temporal horizontal direc-
tion. Prior studies suggested that anatomic factors,
such as spherical equivalent and blood vessel locations,
should be considered for assessing structure-function
relationships.25,26,38,39 The RNFLT patterns deter-
mined by unsupervised AI automatically accounted
for the impact of anatomic factors in structure-
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function relationships. Furthermore, RP 3with inferior
iZone was more strongly (bootstrapping, P < 0.001)
related to MD than RP 1 with superior iZone,
which was consistent with existing knowledge that
inferior RNFLT damages are more frequent in
glaucoma.12

The RNFLT measured on the circle of 3.46 mm
diameter has been predominantly used for glaucoma
diagnosis for its simplicity and documented repro-
ducibility.10 However, using the RNFLT information
only on this standard circle can often miss RNFLT
damages,40 as it disregards the abundant informa-
tion contained in the 2D RNFLT map. On the other
hand, it is challenging for clinicians to accurately
and sufficiently assess the high dimensional data in
the 2D RNFLT map by visual inspection. Our work
provides a unique tool to decompose any RNFLT
map into a linear combination of 16 RNFLT patterns
that characterize RNFLT variations among differ-
ent subjects (either due to glaucomatous damage or
anatomic factors). This tool can lessen the burden
clinicians may face in manually and visually assessing
RNFLTmaps. Furthermore, the decomposition coeffi-
cients of an RNLFT map sum to 100% and are, there-
fore, intuitive for clinical interpretation.

In addition, our RNFLT patterns showed high
correlation with VF measurements. Compared with
the model using the average RNFLTs of the 24 15-
degree sectors, a naive data dimensionality reduction
scheme, the model using 16 RNLFT patterns signif-
icantly improved the prediction of MD (adjusted rm
0.63 vs. 0.55) as well as TD values at all 52 VF locations.
The improvement was greater in the inferior paracen-
tral and temporal regions of the VF, and less in the
superior nasal regions of the VF.

Hood and co-workers proposed the macular vulner-
ability zone from 295 to 322 degrees around the ONH
for central vision loss (the central upper 2 locations, see
Fig. 1b).22,23 Our results found that thinner RNFLT
in sector 20 (285 to 300 degrees) was specifically
associated with worse TD values at the central upper
two locations (see Fig. 5a), consistent with the Hood
scheme. Furthermore, Figure 5b shows that lower
coefficients for 4 RPs with inferior iZones (RPs 3, 4,
6, and 7) were associated with worse C2-TD, indicat-
ing that thinning in the inferior iZones was associated
with worse C2-TD. These inferior iZones overlap with
the Hood vulnerability zone for central vision as well.
More recently, Hood and colleagues further proposed
a model describing the superior (45 to 90 degrees) and
inferior (270 to 315 degrees) vulnerability zones, which
are more susceptible to RNFLT damages.7 Among the
12 RNFLT patterns with arcuate-like iZones, there
were 9 patterns involving iZones in the superior and

inferior vulnerability zones: 4 patterns with superior
iZones (RPs 1, 2, 9, and 10), 4 patterns with inferior
iZones (RPs 3, 4, 6, and 7), and 1 bi-hemifield iZone
(RP 13). Our AI-based RNLFT patterns highlighted
similar regions related to pathological changes and
anatomic variations as the superior and inferior vulner-
ability zones proposed by Hood and colleagues.7

Several studies have used deep learning techniques
(i.e. deep neural network)14,16,17 and a classical
unsupervised AI method termed PCA15 to quanti-
tatively assess the high dimensional RNFLT map
data. Compared with the “black box” deep learning
approaches, the unsupervised AI methods typically
aim to determine representative patterns from the data
with reduced dimensionality to facilitate clinical assess-
ment. In a recent study, PCA was applied to deter-
mine the RNLFT patterns,15 which were associated
with MD. However, the RNFLT patterns determined
by PCA contained both positive and negative values,
which were not amenable for meaningful clinical inter-
pretations. Compared with the RNFLT patterns by
PCA, the RNFLT patterns by NMF are more intuitive
for clinical assessment due to the properties of non-
negativity and feature sparsity. The data dimensional-
ity reduction in our analysis leaves 16 patterns, which
admittedly can still be difficult for clinicians to track,
but this is likely because our model also accounts for
variable retinal vessel positions.

This study has limitations. First, it was observed
in Figure 3a that higher coefficients for the 4 RPs (RP
5, 12, 14, and 16) with non-arcuate-like temporal/nasal
iZones were associated with worse MD. This finding
would indicate that thicker RNFL in non-arcuate-
like temporal/nasal iZones were related to worse visual
function, which is not intuitive to understand. An
alternative interpretation is that the lack of arcuate-
like iZones was related to more severe glaucoma.
Nevertheless, more data with longitudinal measure-
ments are needed to improve our understanding of
these non-arcuate-like patterns. Second, given the high
dimensionality of the RNFLT map data, a larger
sample size would help to better quantify the RNFLT
patterns, particularly for stratifying RNFLT patterns
by glaucoma severity stage. Third, because we use the
full dataset to both determine the RNFLT patterns
and assess structure-function relationships by multi-
variable linear regression, the prediction performance
of the linear model can be inflated due to potential
model overfitting. However, as we applied the cross-
validation procedure for determining RNFLT patterns
and the BIC model selection for assessing structure-
function relationship to alleviate the potential model
overfitting, we expect the prediction performance infla-
tion issue has been mitigated. Furthermore, even if
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there ismodel overfitting due to variousmodel compar-
isons, the prediction performance of the models using
sectoral RNFLTs and PCA patterns should also be
inflated. Our results have shown that the RNFLT
pattern model is better associated with visual function
even subject to the common issue of performance infla-
tion. Fourth, our analysis was based only on the Cirrus
OCTmeasurements. In future studies, we would like to
determine the RNFLT patterns with OCT scans from
other devices, such as Spectralis and Topcon as well,
to make our findings more generalizable. Last, further
work is needed to demonstrate the utility of NMF in
decomposing RNFL loss in glaucoma through more
extensive prediction of functional loss and assess-
ment of glaucoma progression with change in RNFL
patterns over time.

In summary, 16 representative RNFLT patterns
were determined by an unsupervised AI method
termed NMF. These patterns highlighted the relatively
informative zones (iZones) of the RNFLT map, and
characterized both pathological changes and anatomic
variation in glaucoma. Furthermore, using theRNFLT
patterns significantly improved the prediction of VF
sensitivities. The AI-based RNFLT patterns have
potential to assist clinicians in better assessing and
interpreting the RNFLT maps. Compared with the
traditional way to quantify regional RNFLTs by circu-
lar sectors34,35 and superpixels12,41 that are manually
specified, our unsupervised AImodel provides an alter-
native objective way to quantify regional RNFLTs
to potentially improve the assessment of structure-
function relationship and structural progression.
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