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There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses
can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic
GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the
ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-insulin
system and local ovarian mediators. In the past years, several hormones and neuropeptides have been emerging as important
mediators between energy balance and reproduction. The present review goes over the main sites implicated in the control of
energy balance linked to reproductive success and summarizes the most important metabolic and neuroendocrine signals that
participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides. Also, a little
overview about the effects of maternal nutrition, affecting offspring reproduction, has been presented.

1. Introduction

The relationship between energy balance and reproduction is
well known. Nutrition has a significant impact on numerous
reproductive functions including hormone production, fol-
liculogenesis, fertilization, and early embryonic development
[1–3]. This intimate association is because reproductive pro-
cesses are energetically expensive, and the brain must temper
the fertility of individuals to match nutritional availability
[4, 5]. Reproduction function in mammals can be inhibited
when food availability is low or when increased energy
demands are not met by compensatory food intake such as in
short-term and chronic withdrawal of nutrients [6–8]. This
very close alignment with the food supply is more important
in females, where pregnancy and lactation are linked to
considerable energetic expenses, needed for the nurture
of embryos and newborns [9]. In fact, her reproductive
outcome can be seriously altered and even life threatening to
both the mother and offspring when nutritional imbalance
occurs [4].

The link between nutrition and reproduction is mainly
through the energy balance [1, 4], apart from the effect of

specific nutrients that act independently of such energy
balance [10]. Energy balance is usually measured as energy
input, considered as feed intake, minus energy output that
includes milk, maintenance, activity, growth, and pregnancy
expenses [9, 11]. In order to keep constant body energy
stores, in mammals, a series of homeostatic events leading
to maintenance of energy balance are activate when a state of
energy scarcity or abundance occurs.

High yielding animal producers like high-producing
dairy cows or primiparous rabbits are often in a serious
negative energy balance (NEB) in some physiological phases,
that is, lactation, since the net nutrient requirements are
more elevated than the net nutrient intake in that stages
(cows: [12, 13]; rabbits: [14]). NEB provokes low reproduc-
tive performance. Most of the studies about the influence
of NEB have been performed on bovine species. It is well
known that the metabolic condition of cows in NEB shifts to
catabolic metabolism, which in turn causes increased plasma
growth hormone and nonesterified fatty acid concentrations
and decreased plasma insulin-like growth factor-I, insulin,
and glucose concentrations [15–17] as well as leptin serum
concentrations [18]. Also, compromised metabolic status
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decreases preovulatory follicle function [19], by means of
intrafollicular changes such as production of low estradiol
concentrations and IGFBP [20, 21]. This can be probably
because cholesterol transport into the mitochondria to
initiate steroidogenesis is affected [21]. In any case, changes
in the growth pattern of the ovarian follicle during a period
of NEB can indirectly affect oocyte quality that is ultimately
responsible for the subfertility in dairy cows [22]. In other
species with high requirements in early postpartum period
like primiparous rabbit does, they show a profound NEB
which negatively impacts on ovarian follicular and oocyte
quality, giving rise to a poor reproductive performance too
[14, 23].

In several species, long-term (chronic) and short-term
(acute) undernutrition has been observed to suppress female
reproduction through the suppression of Gonadotrophin-
Releasing Hormone (GnRH) secretion, the delay of onset
of puberty, the interference with normal estrous cycles,
and the alteration of endocrine function (gilt: [24]; heifer:
[25, 26]; ewe: [27]; rabbit: [28]). In this sense, inhibition
or delay of preovulatory surge release of LH, decrease of
oestradiol-17β discharge [1, 29] and increase of serum
progesterone concentrations [30] have been described. Also,
undernutrition affects ovarian follicle development [31],
ovulation [32], blastocyst formation [33], and fertility rates
[5, 34].

In contrast, when the nutritional requirements are less
than the food supply, the animal will store the excess of
nutrients (glycogen, triglycerides), being in a positive energy
balance status. However, reproductive abnormalities are also
common in obese individuals although mechanism behind
this effect is unclear. In the genesis of obesity-induced infer-
tility, pituitary insulin signaling seems implicated [35, 36].
Furthermore, recent advances in several species have been
demonstrated that obesity negatively impacts the develop-
mental competence of oocytes [37, 38]. Nevertheless, short-
term energy supply termed as “flushing” around conception
can improve ovulation rate and litter size [39] mainly in
small ruminants. Flushing enhances follicle recruitment and
follicle growth (for review see [4]). However, a high level of
feeding is only beneficial to oocytes from animals of low body
condition, because it is detrimental to oocytes in animals of
moderate-to-high body condition [40].

The mechanisms mediating the influence of metabolism
and nutrition on fertility are currently unclear, but there
is a strong association between metabolic disorders and
infertility [41]. It is difficult to determine the specific
functions and mechanisms by which nutrition influences
reproductive function. Circulating factors and hypothalamic
circuits coordinate these responses in a complex manner.
It is well known that the effects of nutrition are either
mediated directly through effects on hypothalamic GnRH
or pituitary gonadotropin secretion or indirectly through
the growth hormone-IGF-insulin system or local ovarian
mediators [42]. In the past years, several hormones and
neuropeptides have demonstrated their important role as
local mediators of brain to arbitrate the link between energy
balance and reproduction. Understanding the integrative
control of energy balance and reproduction can lead to

reproductive success that will have benefits to improve
clinical outcomes and farm animal production systems. The
present review goes over the main sites implicated in the
control of energy balance linked to reproductive success
and summarizes the most important metabolic signals that
participate in reproductive events with special emphasis on
the role of recent discovered neuroendocrine peptides. A
little overview about the intergenerational effects of nutrition
affecting offspring has been presented.

2. Sites Implicated in the Control of Energy
Balance Linked to Reproduction

Circulating levels of nutrients and metabolites, frequently,
are not directly related to any of the factors that determine
their concentrations but are related to a physiologically
relevant combination of factors including nutrient reserves,
nutrient intakes and nutrient demands for maintenance,
growth, or production [43]. An enormous selection of
chemical messengers and metabolic processes is involved in
maintenance of energy balance and reproductive processes
[8]. Most of these factors influence the hypothalamic-
pituitary-gonadal (HPG) axis (for review see [8]). Potential
sites of action of nutrition on ovarian function include
systemic effects at the hypothalamic level via GnRH synthesis
and release; the anterior pituitary through control of synthe-
sis and release of FSH, LH, and growth hormone (GH); at
the ovarian level through regulation of follicle growth [44]
and steroid synthesis [45]. There are also possible local sites
of action via effects on the cascade of growth factors and their
binding proteins within the ovary [42, 45]. See Figure 1.

2.1. Hypothalamic-Pituitary Axis. A multilevel regulatory
activity of autonomic centers and neuronal pathways is a
noteworthy characteristic of many hypothalamic structures.
The same groups of neurons are simultaneously involved
in the performance of many regulatory functions. They
are responsible for maintenance of energetic and osmotic
homeostasis and also involved in the central regulation of
reproductive processes, including sexual maturation and
mating behavior [46].

The brain uses adipose- and gut-derived hormones, such
as leptin, insulin, and ghrelin, to modulate the activity
of the GnRH neuronal network that drives reproduction
[5]. Recent studies had revealed that the major mechanism
whereby the metabolic status impacts reproductive function
involves modulation of the GnRH neuronal network at the
hypothalamus [5, 8, 47], mainly by the multiple hypotha-
lamic peptidergic systems responsible for the homeostatic
control of energy balance [48] (this topic is reviewed in
the following). Besides, metabolic challenges modify the
GnRH, LH, and FSH surge, independently of their effects on
pulsatile LH secretion [49].

2.2. Ovary. The ovary can respond directly to metabolic
inputs independently of gonadotropin drive [50]. One of
the more important events modulated by energy balance is
folliculogenesis. The ovarian follicle is an integral part of
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Figure 1: Schematic representation of mechanisms by which nutrition influences reproductive function.

the reproductive process. It has a major role in controlling
the oestrous cycle, determining oestrous behaviour, ensuring
oocyte competency and subsequent embryo survival rate,
and determining both postovulation corpus luteum function
and progesterone synthesis [42]. On the other side, gonadal
function is regulated by the precise and coordinated secre-
tion of the pituitary gonadotropins, luteinizing hormone
(LH) and follicle-stimulating hormone (FSH) which is also
modified by nutrition. In summary, folliculogenesis is a very
complex but finely tuned process, in which endocrine and
paracrine signals play an important role (for review, see
[51]).

Folliculogenesis is stimulated by energy; particularly
glucose is the main component of diet implied, although
energy derived from fatty acid oxidation also appears to be
important. On the other hand, proteins, vitamins, and other
micronutrients probably exert permissive rather than regula-
tory functions on folliculogenesis [52]. The metabolic mod-
ulatory systems in follicular response are insulin-glucose,
leptin and insulin-like growth factors (IGF) I and II and
their binding proteins [53–55], which interact among them
in a complex manner [4]. They are likely to be important
mediators of the effects of dietary intake and/or energy
balance [42].

Direct nutritional influence on ovary function depends
on IGF-I from liver and on IGFBP concentrations, besides
the reduction of follicular responsiveness of LH provoked
by insulin suppressing follicular estradiol production below
the threshold necessary to induce preovulatory-GnRH surge
[8, 42]. For example, in gilts, feeding increases responsiveness
of the ovary to LH through increasing insulin and IGF-I con-
centrations [56]. In ewes, nutrition changes can modulate
the ability of gonadotrophin-dependent follicles to use the
small amounts of FSH at the final stages of follicle growth,
which are the most sensitive to low FSH levels [57].

3. Metabolic Signals That Control Energy
Balance Linked to Reproduction

In general, plasma concentrations of some hormones such
as insulin [58], IGF-I [59], and leptin [60, 61] augment
when nutritional status improved by higher food intake or
increased body fat depots. Conversely, they decrease with
reduced food intake or increased tissue mobilization in
pregnancy or lactation phases.

Available metabolic fuels modulate hormone input to
GnRH neurones, leading in turn to altered GnRH release and
appropriate drive to the gonads [5]. In next section a review
of the main hormones and neuropeptides implicated in the
control of nutrition and reproduction is showed.

3.1. Somatotropic Axis Hormones, Insulin, and Glucose. So-
matotropic axis hormones consist of growth hormone (GH),
the insulin-like growth factors I and II (IGF-I and IGF-II),
GH binding protein (GHBP), IGF binding proteins (IGFBPs)
1 to 6, and the cell-surface receptors for GH. GH as well
as systemic and locally produced IGF can exert stimulatory,
synergistic, or permissive effects at each level of the HPG axis,
in the reproductive tract, external genitalia, and mammary
gland [62]. This group of hormones has major effects on
growth, lactation, and reproduction [63] and has a clear link
with the metabolic status of the animals. Indeed, actions of
GH and adequate levels of IGF-I in peripheral circulation
are required to reach puberty and full reproductive potential
[64].

GH seems to have a facilitatory rather than an obligatory
role in reproduction [65]. It has direct effects on the follicle
as well as indirect effects mediated by shifts in nutrient
metabolism, insulin sensitivity, IGF-I, and IGFBP [64].

There are multiple levels of HPG axis at which IGF-
I can act to coordinate reproduction with growth. In this
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sense, IGF-I acts as a direct regulator of GnRH neuron,
usually excitatory [66]. In addition, IGF-I can also regulate
the HPG axis via actions at the pituitary [67] and gonadal
levels [68]. For that reason, IGF-I is a potential link between
the reproductive and somatotropic neuroendocrine systems
[66]. Additionally, local production of IGF-I independently
of GH plays an important role in the intricate paracrine
control of function of different types of somatic cells in
the ovary. Insulin growth factor I and the IGF binding
proteins (IGFBPs) participate by means of various mecha-
nisms in different stages of follicular development, follicular
steroidogenesis [51, 69], and oocyte maturation [70] as in the
control of ovulation [71]. Therefore, insulin and IGF-I may
be mediators between body condition and ovarian follicle
development, ovulation and embryo development [50]. In
fact, nutritionally induced changes in the ovarian IGF system
play a key role in regulating oocyte quality [72].

Insulin is a modulator of the metabolic stimulus, rather
than a mediator between the level of internal energy and
the central effectors [8]. The common signaling pathway
IGF-I receptor and insulin receptor (IR) signal through the
insulin receptor substrate (IRS) proteins [73, 74] plays a role
in regulating fertility under normal chow-fed conditions.
Insulin has a direct effect at the ovarian level [4, 75]. Dietary
restriction and NEB reduce circulating concentrations of
insulin [76] and therefore could reduce androgen and estra-
diol production [77] which compromise the ability of folli-
cles to acquire LH receptors [42]. Concentrations of insulin
and IGF-I increase after a short-term supplementation, and
they increase responsiveness to gonadotrophins, stimulate
follicular growth, and suppress apoptosis in follicles [12, 53,
78]. It is unknown which insulin profiles are optimal for
good follicle quality and uniformity, and how these insulin
profiles can be achieved [79]. However, insulin secretion
pattern can also be modulated by diet composition and
feeding frequency. In this sense, the modulation of plasma
insulin levels by dietary carbohydrates seems possible in
sows, but IGF-I levels are less easily modified [80]. However,
supplementation of fatty acids in cow did not improved
plasma insulin concentrations [81].

Availability of locally produced IGF II in follicles is con-
trolled by locally produced IGF-binding proteins (IGFBPs)
[82]. IGF-II can modify the function of follicular cells by
changes in diet which altered IGFBP-2 and IGFBP-4 [2]. Low
blood concentrations of IGFBP occurred by undernutrition
[83] or severe NEB [84], limiting the availability of IGF
to target cells in the follicle and regulating their ability to
stimulate cell proliferation and steroidogenesis [85].

Glucose is a very important mediator of nutritional
effects on reproduction. Blood concentrations are inversely
correlated to energy intake [86]. Glucose is transported by
the family of facilitative glucose transporters (GLUTs) which
get involved in hypothalamic regulation [87] and also plays
a major role in providing metabolic substrates to oocyte
and embryo [88, 89]. Glucose availability influences LH
secretion through GnRH system [90]. Actually, numerous
studies support the idea that glucose in particular mediates
the effects of fasting to suppress GnRH-stimulated LH
release. GnRH neurons might directly sense changes in

glucose availability by a mechanism involving AMP-activated
protein kinase [91]. On the other hand, glucose is the most
important energy substrate for mammalian oocytes and
blastocysts, so glucose deficiency can compromise the ability
of the oocyte to reach the second metaphase, to extrude
the first polar body [92] and to achieve the blastocyst stage.
The changes in the role of glucose during preimplantation
embryo development indicate that a specific interplay exists
between glucose metabolism and the glucose transporters
during different stages of preimplantation embryo devel-
opment [93]. Besides, alterations in glucose transport and
metabolism at the earliest stages of development can impact
fetal development [88].

3.2. Adipokine Family: Leptin, Resistin, and Adiponectin.
Adipokine family includes leptin, resistin, and adiponectin.
Normal levels of adipokines are fundamental to maintain
integrity of HPG axis, regular ovulatory processes, successful
embryo implantation, and physiologic pregnancy [94].

Leptin is a 16 kD protein consisting of 146 amino acids
which is synthesized primarily by adipose tissue. This protein
was first identified as the gene product found to be deficient
in the obese ob/ob mouse [95]. It is considered a potent
satiety factor [96], and their concentrations in plasma reflect
the amount of body fat [97]. Leptin modulates a diverse
range of biological functions, including energy homeostasis
and reproduction [98, 99]. In fact, the impact of leptin
on feed intake, neuroendocrine-axis, and immunological
processes has been demonstrated [100]. For that reason,
leptin has been considered as the key link between nutrition
and reproduction, like the appropriate signal to inform the
reproductive system about the metabolic status [99].

Leptin is a permissive signal for puberty onset [101, 102],
since a threshold of leptin is necessary for normal puberty to
occur [103, 104]. The hypothalamus is an important site of
leptin’s action. Leptin is a potent stimulator of central GnRH
and gonadotropin secretion [105, 106]. In addition, leptin
has a direct effect on ovary being a potent inhibitor of ovarian
steroidogenesis [107, 108]. In the ovary, leptin antagonizes
the stimulatory effect of insulin on theca cell steroidogenesis,
ultimately leading to a decrease in oestradiol secretion [109].
It also affects oocyte maturation [110], follicle rupture,
corpus luteum formation [111], embryo implantation, and
pregnancy [112]. Last study of Zhang et al. [113] suggests
that role of leptin can be mediated by divergent modulation
by gonadotropins even of a direct ovary effect.

Leptin concentrations are sensitive to short-term alter-
ations in food intake and energy balance [114, 115]. Leptin
presents the ability to increase fuel oxidation [8], influences
whole-body glucose homeostasis and the action of insulin.
Insulin sensitivity is impaired by leptin [116], and leptin
production indirectly increases by insulin since insulin
stimulates the secretion of leptin by adipocytes and by
promoting lipogenesis [117].

The important role of leptin as link between nutrition
and reproduction could be evidenced since although GnRH
neurons do not express leptin receptors under physiological
conditions, leptin influences GnRH neuron activity via
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regulation of immediate downstream mediators including
the neuropeptides neuropeptide Y and the melanocortin
agonist and antagonist (alpha-MSH and agouti-related pep-
tide) [118, 119]. Besides, leptin promotes GnRH function via
an indirect action on kisspeptin neurons [120, 121].

The other two adipokines have been less studied, and the
central roles of adiponectin and resistin are less clear. Resistin
impairs insulin sensitivity as leptin, whereas adiponectin
enhances it. Adiponectin significantly reduced GnRH secre-
tion [122] and inhibits GH and LH release [123]. In the
ovary, adiponectin stimulates steroidogenesis by granulosa
cells [116]. Resistin is expressed in rat and bovine ovaries
and can modulate granulose cells functions in basal state or
in response to IGF-I in vitro [124]. Resistin preferentially
inhibits steroidogenesis of undifferentiated (small follicle)
granulosa cells and inhibits proliferation of differentiated
(large follicle) granulosa cells, indicating that the ovarian
response to resistin is altered during follicular development
[125].

3.3. Ghrelin. The peptide ghrelin was discovered by Kojima
et al. [126] and identified an acylated 28 residue peptide
released from the gut as the endogenous bioactive ligand
for the growth hormone secretagogue receptor (GHS-R)
type 1a. Ghrelin is involved in a wide spectrum of biolog-
ical functions, including GH secretion and energy balance
regulation, and exhibits diverse effects, including ones on
glucose metabolism and on secretion and motility of the
gastrointestinal tract [127]. The role of ghrelin in metabolism
is the regulation of energy homeostasis, promoting food
intake and weight gain [128]. The net orexigenic effect of
ghrelin results is functionally opposite to that produced by
leptin [129], and many data support the notion that both
hormones act in a complementary fashion in providing the
central nervous system information about the energy balance
for the maintenance of homeostasis [130–132].

Serum ghrelin levels are influenced by both short- and
long-term changes in energy homeostasis (i.e., with glucose,
insulin, and somatostatin levels) [133]. Ghrelin is considered
as a signal of starvation or energy insufficiency with a
negative correlation observed between body mass index
(BMI) and ghrelin levels. In this sense, normal timing of
puberty can be delayed if ghrelin levels are persistently
elevated as putative signal for energy insufficiency [118]. In
the control of the reproductive function, ghrelin shows a
complex mode of action upon the gonadotropic axis, with
predominant inhibitory effects at central (hypothalamic)
levels and upon GnRH-induced gonadotropin secretion, but
direct stimulatory actions on basal LH and FSH secretion
[134]. Gonadal physiology is also regulated by grhelin [118,
127, 135] and even in preimplantation period [133] although
the mechanism remains unclear to date.

3.4. Neuropeptides and Modulators. Neuropeptides including
neuropeptide Y (NPY), products of the proopiomelano-
cortin (the proopiomelanocortin-(POMC-) derived peptide
and alpha-melanocyte-stimulating hormone (alpha-MSH)),
galanin-like peptide (GALP), and kisspeptins are thought

to be implicated in the control of metabolism and repro-
duction. The involvement is supposed because neurons
that express these neuropeptides all reside in the hypotha-
lamic arcuate nucleus, a critical site for the regulation
of both metabolism and reproduction. In addition, these
neuropeptides are all targets for regulation by metabolic
hormones, such as leptin and insulin. And finally, these
neuropeptides have either direct or indirect effects on feeding
and metabolism, as well as on the secretion of GnRH and
LH [136]. The discovery of kisspeptins and gonadotropin-
inhibitory hormone (GnIH) sheds a new light on mech-
anisms by which reproductive activity is regulated. Other
molecules such as the GnRH II, orexins, and nesfatin-1
have revealed also a role in the control of metabolism and
reproduction.

3.4.1. Neuropeptide Y (NPY). Neuropeptide Y, the most
potent orexigenic peptide known [99], is a 36-amino acid
peptide neurotransmitter. It has a dual function in relation
to reproduction and appetite [137]. It stimulates food intake
and negatively regulates reproduction [138, 139] because it
inhibits LH secretion [140, 141]. NPY seems to be implicated
in the generation of the preovulatory surge of LH [142].

3.4.2. Melanocortin System. The melanocortin system,
involving melanocyte stimulating hormone, adrenocor-
ticotropic hormone, agouti-related peptide and the central
melanocortin 3 and 4 receptors, plays a major role in the
hypothalamic regulation of energy balance [143]. Conversely
to NPY, melanocortin signaling controls ingestive behavior,
energy balance, and substrate utilization [99] by means
of reducing food intake and stimulating reproduction
[144, 145]. Melanocortin has recently demonstrated to be
an important component in the leptin-mediated regulation
of GnRH neuron activity, initiation of puberty and fertility
[119, 146].

3.4.3. Galanin-Like Peptide (GALP). Galanin-like peptide
(GALP) is a 60-amino acid neuropeptide which belongs to
the G protein-coupled receptors (GPCRs) family. GALP is
mainly produced in neurons in the hypothalamic arcuate
nucleus. The effects of GALP on food intake and body weight
are complex. In rats, the central effect of GALP is to first
stimulate and then reduce food intake, whereas in mice,
GALP has an anorectic function. Furthermore, GALP shows
direct stimulatory action on gonadotropin secretion [147,
148], regulates plasma LH levels through activation of GnRH
producing neurons, suggesting that it is also involved in
the reproductive system [148, 149]. The presence of galanin
within kisspeptin axons innervating GnRH neurones and
the oestrogen-dependent regulation of that presence add a
new dimension to the roles played by galanin in the central
regulation of reproduction [150].

3.4.4. Kisspeptin. The Kiss1 gene encodes a family of peptides
called kisspeptins, which bind to the G protein-coupled
receptor GPR54. Humans and mice with loss-of-function
mutations of the genes encoding kisspeptins (Kiss1) or
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kisspeptin receptor (Kiss1r) are infertile due to hypogo-
nadotropic hypogonadism [151, 152]. The results from a
wide variety of studies indicate that kisspeptin stimulates
gonadotropin secretion via a hypothalamic pathway that
activates GnRH neurons. Kisspeptins have emerged as
important gatekeepers of key aspects of reproductive mat-
uration and function, from sexual differentiation of the
brain and puberty onset to adult regulation of gonadotropin
secretion and the metabolic control of fertility (for review see
[153]).

Hypothalamic Kiss1 neurons are highly sensitive to body
energy status and metabolic cues, as evidenced by sup-
pressed Kiss1/kisspeptin expression in conditions of negative
energy balance, which are also linked to inhibition of the
reproductive axis [154]. Kisspeptin neurons are downstream
mediators of leptin’s positive effect on the secretion of
gonadotropins [154], and it is affected by leptin status
[155]. Besides, network between Kisspeptin cells commu-
nicating with NPY and POMC cells seems to coordinate
brain control of reproduction and metabolic homeostatic
systems [155, 156]. Agonists and antagonists of kisspeptin
have emerged as valuable new tools for manipulating the
HPG axis and are promising drugs for future treatment
[157].

3.4.5. Gonadotropin Inhibitory Hormone (GnIH). The gona-
dotropin inhibitory hormone (GnIH) acts via the novel G
protein-coupled receptor 147 (GPR147) to inhibit gonado-
tropin release and synthesis. It has also a dual role with a
function in the regulation of reproduction and food intake
[158]. It stimulates food intake in rats [159], and recent data
indicate a direct action of GnIH on the pituitary gonadotrope
to reduce both synthesis and secretion of LH (160), so it
could be considered as a blocker of reproductive function in
mammals [160]. Recent evidence further indicates that GnIH
operates at the level of the gonads as an autocrine/paracrine
regulator of steroidogenesis and gametogenesis (for review
see [161]).

3.4.6. GnRH II. One form of gonadotropin releasing hor-
mone (GnRH) now called GnRH II acts as a permissive
regulator of female reproductive behaviour based on energy
status, as well as a modifier of short-term food intake [162].
GnRH II plays a critical role by orchestrating the coordi-
nation of reproduction with the availability of nutritional
support [163].

3.4.7. Orexins. Orexins A and B are neuropeptides which
are synthesized mainly in the lateral hypothalamus and
are associated with a variety of physiological functions
such as energy homeostasis and reproduction. The orexins
activate two G-protein-coupled receptors termed orexin
receptor 1 (OX1R) and orexin receptor 2 (OX2R). They
are implicated in the regulation of GnRH cells [164] as
a mechanism whereby leptin can influence reproductive
neuroendocrine function. Also, orexin A is implicated in
pulsatile LH secretion [165] which is potentiated by estrogen
[166].

3.4.8. Nesfatin-1. Nesfatin-1 (NEFA/NUCB2-encoded sati-
ety and fat-influencing protein) is a recently discovered
and still relatively unknown hypothalamic peptide which
can be considered as one of the regulatory factors of the
hypothalamic-pituitary-axis. Nesfatin-1 is a potent anorexi-
genic factor inducing satiety and strongly inhibiting food and
water intake [167, 168]. It is implicated in the gonadotropin
secretion during puberty [169], and these processes can be
greatly disturbed by negative energy balance, caused by a
short-term starvation or nutritional deficiency [170]. Fur-
ther studies are required to involve Nesfatin-1 in regulation
of gonadotropin secretion in adulthood [46].

4. Effect of Maternal Nutrition on
Fetal and Neonatal Reproductive
Development and Function

Maternal nutrition, mainly in periconceptional period, can
have long-term consequences on health and well-being of
the offspring. That has been termed developmental pro-
gramming. In livestock, developmental programming affects
production traits, including growth, body composition
[171], and reproduction [172, 173]. Latest studies are indi-
cating the very important role of maternal nutrition on
offspring development given that reproductive performance
is clearly influenced by prenatal factors. Mechanisms by
which environmental factors affect the reproductive organs
of developing offspring are not well known to date neither
the future consequences of maternal nutrition.

Maternal nutrition can influence development of the fetal
reproductive system at all stages of development, during the
processes of differentiation and development [174–176] and
between birth and puberty [177, 178]; effects are exerted
before neuroendocrine organs (like the hypothalamus and
pituitary gland), and reproductive organs have been differen-
tiated [179]. It involves many different physiological systems.
Therefore, a wide range of mechanisms are involved (for
review see [43]). For example, a recent study has elucidated
that the sensitivity of Kiss1r mRNA, which is expressed
in GnRH neuron, to nutritional status has been already
established during the early neonatal period [180].

Scarce literature about effects of maternal nutrition
on reproductive outcome of offspring has been reported.
Nevertheless, maternal undernutrition and overnutrition
or supplementation seems to impact on components of
the HPG system of offspring [43]. For example, maternal
undernutrition during the first month of pregnancy resulted
in increased pituitary sensitivity to GnRH and increased
number of small follicles in the ovary, while during mid
to late gestation resulted in a reduction of large corpora
lutea in female sheep offspring [181]. On the other hand,
transgenerational supplementation with fish oil significantly
decreased ovulation rate and litter size in female mice
[182].

Further studies are required to better understand the
impact of maternal nutrition on offspring future reproduc-
tive success.
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5. Conclusion

The finding of the protein leptin opened up a new time in
the understanding of the neuroendocrine control of energy
homeostasis and its close relationship with the reproductive
axis [118]. In recent years, thanks to a dynamic development
of molecular biology, a number of new regulatory neuropep-
tides have been identified and described. Recent discoveries
have elucidated the important role of periphery factors, such
as leptin, ghrelin, and insulin. However, they are integrated
with a complex network of neuropeptides, whose actions are
located upstream of the GnRH cell population in brain. For
example, compelling evidence indicates that kisspeptins and
their receptor represent key elements in the neuroendocrine
control of reproduction. Besides, GnIH has fundamentally
changed our understanding of hypothalamic control of
reproduction. In addition, some local factors related to
metabolic status are extremely important in ovarian regu-
lation. In conclusion, integrative control of energy balance
and reproduction is carried out by multiple metabolic and
neuroendocrine signals that control reproduction in an
intricate manner, even affecting next generations.
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[14] M. Arias-Álvarez, R. M. Garcı́a-Garcı́a, P. G. Rebollar, L.
Revuelta, P. Millán, and P. L. Lorenzo, “Influence of meta-
bolic status on oocyte quality and follicular characteristics
at different postpartum periods in primiparous rabbit does,”
Theriogenology, vol. 72, no. 5, pp. 612–623, 2009.

[15] R. R. Grummer, “Etiology of lipid-related metabolic disor-
ders in periparturient dairy cows,” Journal of Dairy Science,
vol. 76, no. 12, pp. 3882–3896, 1993.

[16] J. K. Drackley, “ADSA foundation scholar award: biology of
dairy cows during the transition period: the final frontier?”
Journal of Dairy Science, vol. 82, no. 11, pp. 2259–2273, 1999.

[17] C. Kawashima, M. Matsui, T. Shimizu et al., “Nutritional
factors that regulate ovulation of the dominant follicle during
the first follicular wave postpartum in high-producing dairy
cows,” Journal of Reproduction and Development, vol. 58, no.
1, pp. 10–16.

[18] S. C. Liefers, R. F. Veerkamp, M. F. W. Te Pas, Y. Chilliard,
and T. Van Der Lende, “Genetics and physiology of leptin in
periparturient dairy cows,” Domestic Animal Endocrinology,
vol. 29, no. 1, pp. 227–238, 2005.

[19] W. R. Butler and R. D. Smith, “Interrelationships between
energy balance and postpartum reproductive function in
dairy cattle,” Journal of Dairy Science, vol. 72, no. 3, pp. 767–
783, 1989.

[20] E. J. Austin, M. Mihm, A. C. O. Evans et al., “Alterations
in intrafollicular regulatory factors and apoptosis during
selection of follicles in the first follicular wave of the bovine
estrous cycle,” Biology of Reproduction, vol. 64, no. 3, pp. 839–
848, 2001.

[21] S. W. Walsh, J. P. Mehta, P. A. McGettigan et al., “Effects of
nutrition and metabolic status on circulating hormones
and ovarian follicle development in cattle,” Physiological
Genomics, vol. 44, no. 9, pp. 504–517, 2012.

[22] J. L. M. R. Leroy, D. Rizos, R. Sturmey et al., “Intrafollicular
conditions as a major link between maternal metabolism and
oocyte quality: a focus on dairy cow fertility,” Reproduction
Fertility and Development, vol. 24, no. 1, pp. 1–12, 2012.

[23] C. Castellini, A. Dal Bosco, M. Arias-Álvarez, P. L. Lorenzo, R.
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