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Abstract: Polyamines are a potential source of γ-aminobutyric acid (GABA) in plants under abiotic
stress. However, studies on GABA enrichment in tea mostly focus on the GABA shunt, while the
correlation between polyamine degradation and GABA formation in tea is largely unknown. In this
study, tea plants responded to exogenous putrescine, resulting in a significant increase in GABA
content, while the glutamate level did not change. At the same time, five copper-containing amine
oxidase (CuAO) and eight aminoaldehyde dehydrogenase (AMADH) genes involved in the putrescine-
derived GABA pathway were identified from the Tea Plant Information Archive. Expression analysis
indicated that CsCuAO1, CsCuAO3 as well as CsAMADH1 were induced to play an important function
in response to exogenous putrescine. Thus, the three genes were cloned and the catalytic efficiency of
soluble recombinant proteins was determined. CsCuAOs and CsAMADH1 exhibited indispensable
functions in the GABA production from putrescine in vitro. Subcellular localization assays indicated
that CsAMADH1 was localized in plastid, while both CsCuAO1 and CsCuAO3 were localized in
peroxisome. In addition, the synergistic effects of CsCuAOs and CsAMADH1 were investigated by
a transient co-expression system in Nicotiana benthamiana. Our data suggest that these three genes
regulate the accumulation of GABA in tea by participating in the polyamine degradation pathway
and improve the content of GABA in tea to a certain extent. The results will greatly contribute to the
production of GABA tea.

Keywords: tea; γ-aminobutyric acid; polyamine degradation; copper-containing amine oxidase;
aminoaldehyde dehydrogenase

1. Introduction

γ-Aminobutyric acid (GABA) is a special four-carbon non-protein amino acid, which
plays an important role involving plant growth and development [1,2]. GABA acts as an
inhibitory neurotransmitter in animals, which can reduce blood pressure, relieve insomnia,
depression, epilepsy and seizures [3–5]. The anabolism of GABA in higher plants mainly
comes from the glutamate, which is catalyzed by glutamate decarboxylase (GAD), followed
by GABA transaminase and succinic semialdehyde dehydrogenase before entering the
tricarboxylic acid cycle [6,7]. In addition, polyamines are degraded by diamine oxidase
(DAO) to form 4-aminobutyraldehyde (4-ABAL) as intermediates for GABA formation [8],
which also contributes to GABA enrichment in plants besides the GABA shunt pathway.
Putrescine usually undergoes a two-step reaction, including DAO or a polyamine oxidase
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(PAO) catalytic process, and is followed by aminoaldehyde dehydrogenase (AMADH) to form
GABA in coping with external stress in plants [9–11].

In dicotyledonous plants, copper-containing amine oxidase (CuAO) could catalyze the pu-
trescine into 4-ABAL, spermidine into 1,3-diaminopropane, as well as 1,3-diaminopropane
into 3-aminopropionaldehyde (APAL) [12,13]. The oxidation of 4-ABAL and pyrroline is
generally considered to be catalyzed by the same enzyme, NAD+-dependent AMADH [7],
which leads to GABA biosynthesis. The preliminary evidence reported that plant AMADH
activity is usually determined by substrate-dependent NADH production, which is based
on crude protein extracts that convert 4-ABAL into GABA [14].

CuAO is a homodimer enzyme, not only for putrescine but also for cadaverine [15].
The molecular weight of CuAOs ranged from 70 to 90 kDa, containing a copper ion
and a 2,4,5-trihydroxyphenylalanine quinone cofactor, which passes through the active
site [15]. Although the overall primary sequence identities of CuAOs from different
sources are usually not high (<25%) [16], most of the 33 amino acid residues near the
catalytic site are completely conserved [17–19]. Arabidopsis thaliana carries ten CuAO-
encoding genes, and four of them (ATAO1 and AtCuAO1-3) have been identified. The gene
expressions were regulated differently by development, injury and hormone or elicitor
processing. The localization of CuAO protein is also different, as AtCuAO1 and TAO1 are
located in exosomes, while AtCuAO2 and AtCuAO3 are peroxisomes [20–22]. Two genes
encoding CuAO (NtMPO1 and NtMPO2) in Nicotiana Tobacum, play important roles in the
biosynthesis of pyrrolidine alkaloids [23,24].

Plant AMADHs exhibited the biosynthesis function of betaine aldehyde dehydroge-
nase, which was localized in the chloroplast [25]. Basmati or jasmine rice lacks functional
4-ABAL dehydrogenase protein and acetylates ABAL (or its cyclic pyrroline) to accumulate
2-acetylpyrroline, which is the effective ingredient of rice flavor [26]. Moreover, there are
two putative AMADH genes (AtALDH10A8 and AtALDH10A9) in Arabidopsis, but recom-
binant AtALDH10A9 can only be produced and purified in the presence of a precursor that
causes the reduction of NAD+ [27,28].

To investigate the key enzymes of the polyamine degradation pathway of GABA
accumulation, the gene expression of CuAOs and AMADHs in the tea plant by exogenous
putrescine was determined. CsCuAOs and CsAMADH1 exhibited indispensable functions
in the GABA production from putrescine in vitro. Moreover, the synergistic effects of
CsCuAOs and CsAMADH1 were also verified by Agrobacterium-mediated co-expression
in Nicotiana benthamiana leaves. Our data suggested that the CsCuAO1, CsCuAO3 and
CsAMADH1 participate in the polyamine degradation pathway to form GABA, which is
conducive to the accumulation of GABA in tea.

2. Materials and Methods
2.1. Plant Materials and Treatments

Nicotiana benthamiana and tea plants (Camellia sinensis var. zhongcha108) were used in
this study. N. benthamiana plants were grown in an artificial climate incubator at 26 ◦C
under a 16 h light (600 µmol·m−2·s−1)/8 h dark photocycle. Tea plants were grown under a
cycle of 16 h light (25 ◦C 600 µmol·m−2·s−1)/8 h dark (20 ◦C). The tea plants were divided
into four groups, including CK, putrescine spraying and anaerobic treatment, respectively.
For the CK samples, plants were sprayed with clean water every day, and samples were
taken after 0, 1, 3 and 5 days. For putrescine spraying, 5 mM putrescine spraying was
applied to plants, and samples were taken after 1 day. For anaerobic, tea leaves were sealed
in a bag and all the air was pumped out by vacuum, and finally, samples were taken after
8 h. The collected samples were quickly dropped into liquid nitrogen and stored in a
−80 ◦C freezer until further analysis.

2.2. Determination of GABA and Glutamate Contents

A total of 0.2 g sample was ground and placed into a 10 mL centrifuge tube, 2 mL of
0.02 M HCl were then added before incubating at 4 ◦C for 8 h. The extracted solution was
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centrifuged under 4 ◦C at 14,000× g for 15 min, then 2 mL of supernatant was transferred
into a new 10 mL tube. After adding 4% sulfosalicylic acid in the same volume, the extract
solution was filtered by a 0.22 µm organic filter, and then the contents of GABA and
glutamate were determined by an amino acid composition analyzer (Hitachi L-8900, Osaka,
Japan). The contents of GABA and glutamate were obtained by calculating the peak area,
which was compared to the standard solution.

2.3. Determination of the Putrescine Content

Putrescine content was detected by high-performance liquid chromatography (HPLC)
as described by Zhu et al. [29] with a little modification. Briefly, samples were homogenized
with 5% pre-cooling perchloric acid, and the homogenates were centrifuged at 12,000× g
for 20 min under 4 ◦C. The supernatant was mixed with 2 M NaOH and benzoyl chloride
and incubated at 37 ◦C for 30 min. Samples were completely mixed with diethylether and
then centrifuged at 3000× g for 10 min at 4 ◦C for phase separation. The organic solvent
phase was evaporated and dissolved with 0.5 mL methanol, followed by HPLC detection
(C18 column, 15 cm × 0.39 cm × 4 µm).

2.4. Phylogenetic Tree Construction of Tea Plant CuAO and AMADH Gene Family

The AMADH and CuAO protein sequences of A. thaliana, Populus tomentosa and
Vitis vinifera were derived from the plant transcription factor database, PlantTFDB (http:
//planttfdb.cbi.pku.edu.cn/, accessed on 15 November 2019). The rice AMADH and
CuAO protein sequences were obtained from the Rice Genome Annotation Project (http:
//rice.plantbiology.msu.edu/index.shtml, accessed on 15 November 2019). The HMMER
software was employed for specific domain searching from the tea plant genome database
(http://tpia.teaplant.org/, accessed on 15 November 2019) with the default parameter E-
value < 1 × 10−5. Pfam and PROSITE were used to verify the AMADH and CuAO domain.
MEGA7.0 software, with default parameters, was used for constructing a neighbor-junction
(NJ) phylogenetic tree. The prediction of amino acid sequence features and the motifs of
the amino acid sequence was conducted by the ProtParam tool (https://web.expasy.org/
protparam/, accessed on 15 November 2019) and MEME (http://meme-suite.org/tools/
meme, accessed on 15 November 2019), respectively.

2.5. Gene Expression Analysis

Total RNA was isolated and then reverse transcribed using a Plant Total RNA isolation
Kit Plus (Foregene biotech Co. Ltd., Chengdu, China) and a HiScript II Q RT SuperMix
(Vazyme biotech Co. Ltd., Nanjing, China) according to the manufacturer’s instruction,
respectively. The quantitative real-time PCR assays (Bio-Rad, Houston, TX, America) were
performed in the public platform of the laboratory of the College of Horticulture, Nanjing
Agricultural University. The reagent used in the qRT-PCR experiment is ChamQ Universal
SYBR qPCR Master Mix (Vazyme biotech Co. Ltd., Nanjing, China). The relative gene
expressions were calculated using the 2−∆∆CT method, in which Csβ-actin was selected as
the internal control. The primer pairs used in this study were listed in Table S1.

2.6. Purification of CsCuAO1, CsCuAO3 and CsAMADH1 In Vitro

CsCuAO1, CsCuAO3 and CsAMADH1 from tea leaves (Camellia sinensis var. zhongcha108)
were cloned by specific primer pairs, and are listed in Table S1. The followed protocol was
used: denature for 2 min at 94 ◦C; followed 35 cycles of the sequence: 30 s at 94 ◦C, 30 s
at 56 ◦C, and 1 min at 68 ◦C for annealing. The PCR product was purified, and restriction
enzymes were cut and ligated into a pGEX-4T-1 vector (CWBio Co. Ltd., Shanghai, China).

2.7. CsCuAOs and CsAMADHs Activities Assay

CsCuAOs activities were determined as described by Tipping and McPherson [30],
with a little modification. Samples were homogenized in 0.1 M potassium phosphate
buffer (pH 6.5) and then centrifuged at 15,000× g for 15 min at 4 ◦C. The supernatant was
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transferred to a new tube for enzyme reaction, 4-aminoantipyrine/N, N-dimethylaniline
chromogenic solution, and 0.1 mL horseradish peroxidase were added. The reaction was
initiated by adding 0.02 M putrescine solution, then detected the absorbance at 555 nm by
a spectrophotometer (Hitachi UH4150, Osaka, Japan).

For CsAMADH1 activity, the crude enzymes were extracted according to the method
described by Petrivalský et al. [31]. The samples were homogenized using 0.1 M potassium
phosphate buffer (pH 8.0, including 0.005 M DTT, 0. 1 mM EDTA and 10% sucrose). The
enzyme extracts were transferred to a new tube, followed by adding 0.1 M potassium
phosphate buffer (pH 8.0), 0.001 M NAD+. The reaction was initiated by adding 0.1 mM of
4-ABAL, then the absorbance at 340 nm by a spectrophotometer was detected.

To investigate the Km value for 4-ABAL and GABA formation, a series of precursors
from 0.1 mM to 100 mM were set for the enzyme reaction solution.

2.8. Subcellular Localization Analysis of CsCuAO1, CsCuAO3 and CsAMADH1

The recombinant proteins of CsCuAO1-GFP, CsCuAO3-GFP and CsAMADH-GFP
transformed into Agrobacterium tumefaciens strain GV3101 cells, the vector pBI121-GFP was
used as a control [32]. The transient expressed N. benthamiana plants were put in a plant
incubator in the dark overnight and followed a 16 h light (600 µmol·m−2·s−1)/8 h dark
photocycle for two days. Finally, N. benthamiana leaves were detected using an LSM800 ultra
high-resolution confocal microscopy imaging system (Zeiss Co., Oberkochen, Germany).

2.9. Statistical Analysis

The data were calculated using Excel (Microsoft Office 2016, Seattle, WA, USA) from
three replicates. Both ANOVA and Duncan’s test were employed for significance analysis.

3. Results
3.1. Changes in GABA, Glutamate, Putrescine Contents under Different Treatments

The GABA levels in leaves increased significantly after putrescine spraying and anaer-
obic treatment, compared with the control tea plants (Figure 1A). Interestingly, the content
of glutamate exhibited different trends under both two treatments. The glutamate contents
had no significant change compared with the control group under putrescine spraying
treatment. However, for anaerobic treatment, the glutamate content decreased significantly.
There are two pathways in GABA synthesis: one is the GABA shunt regulated by GADs,
and the other is the polyamine degradation pathway, which is divided into two steps,
catalyzed by CuAOs and AMADHs, respectively (Figure 1B).
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Figure 1. The accumulation profiles of GABA under various different treatments. (A) The quantitative
analysis of GABA and Glu under drought, anaerobic, Put spraying and mechanical damage. Data
represent the mean value ± standard deviation; means with different letters are significantly different
from each other (p ≤ 0.05). Capital letters and lowercase letters represent Glu and GABA, respectively.
(B) A schematic drawing of the GABA biosynthesis pathway. Glu, glutamate; Put, putrescine.

3.2. Phylogenetic Analysis of Tea Plant CuAO and AMADH Gene Family and Gene Expression

Five CuAO and eight AMADH genes were strictly identified from the Tea Plant Informa-
tion Archive. Phylogenetic tree analysis showed that CsCuAOs’ family can be divided into two
groups (Figure 2A) and the CsAMADHs family also has two groups (Figure 2B). The detailed
sequences and conserved motifs of CsCuAOs and CsAMADHs were analyzed (Figure S1).
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Figure 2. The expression profiles of CsCuAO and CsAMADH family members. Phylogenetic tree
showing clustering of CsCuAO (A) and CsAMADH (B) family members from C. sinensis and other
plant species. (C) The fold change of three genes and GADs expression by putrescine spraying
treatment. The lowercase letters present over the column indicate significant differences by treatment
(p < 0.05) (D) The expression patterns of three genes in various organs. The lowercase letters present
over the column indicate significant differences among different organs (p < 0.05).
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Interestingly, the expression of CsAMADH1 and CsGADs did not increase obviously
by putrescine application, but the expression of CsCuAO1 and CsCuAO3 increased signifi-
cantly, which the fold change value of CsCuAO1 and CsCuAO3 was 2.2 and 3, respectively
(Figure 2C). Furthermore, there were no apparent changes in the expression of CsGADs
under the putrescine spaying (Figure 2C). For tissue-specific analysis, the expression of
CsAMADH1 and CsCuAO1 showed the highest expression in buds and the lowest in mature
leaves, while the expression of CsCuAO3 was highly expressed in young leaves, buds and
mature leaves, and the expression pattern showed the highest in young leaves while the
lowest in roots in the tea plant (Figure 2D).

3.3. Purification and Enzyme Kinetics of CsCuAO1, CsCuAO3 and CsAMADH1

The CsCuAO1, CsCuAO3 and CsAMADH1 proteins with the GST tag were isolated
and purified, and the sizes of these proteins were 79.6, 74.8 and 55.0 kDa, respectively
(Figure 3A). Lineweaver–Burk plots (Figure 3B–D), calculated from the linear formula (1/U
against 1/[S]), revealed the Vmax values for the converting of CsCuAO1 and CsCuAO2
to putrescine were 16.9 and 21.1 µmol·mg−1·min−1, respectively. The Vmax values for
the conversion of CsAMADH1 to 4-ABAL was 17.2 µmol·mg−1·min−1. Moreover, the
Km values of CsCuAO1, CsCuAO3 and CsAMADH1 were 21.9, 15.8 and 25.7 Mm, which
indicated that the substrate-binding affinity of the three enzymes was definitely discrepant.
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Figure 3. Properties of CsCuAO1, CsCuAO3 and CsAMADH1. (A) The sodium dodecyl sulfate
polyacrylamide gel electrophoresis analysis of the recombinant GST-fusion protein. Lane 1: empty
vector; Lane 2: CsCuAO3; Lane 3: CsCuAO1; Lane 4: CsAMADH1; Lane 5: protein molecular weight
marker. Lineweaver–Burk plot of CsCuAO1 (B), CsCuAO3 (C) and CsAMADH1 (D).

The maximum enzyme activity of CsCuAO1 and CsCuAO3 was detected at pH 5.5
(Figure 4A,B). The performance of pH stability analysis revealed that CsCuAO1 activity was
restored after a 12 h treatment under pH 4.5–7.5, while the enzyme activity disappeared
under treatment at pH 3.5. CsCuAO3 activity was gradually restored at pH 4.0–8.0 and
was eliminated at pH 3.0, and the pH stability of CsCuAO3 was more stable than CsCuAO1
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(Figure 4C,D). The most active temperature for both CsCuAO1 and CsCuAO3 was 40 ◦C
(Figure 5A,B). Additionally, the detection of thermal stability revealed that pre-incubation
temperatures of more than 40 ◦C decreased the activity of both CsCuAOs (Figure 5C,D),
especially CsCuAO1, which is almost completely inactivated when the pre-incubation
temperature reaches 50 ◦C. These results implied that the enzyme activity of CsCuAO3 was
more stable than CsCuAO1, and the temperature had a greater effect than that of pH.
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Figure 4. Activity and stability of CsCuAOs under different pH conditions. Activity of CsCuAO1 (A) and
CsCuAO3 (B) was determined between pH = 3 to pH = 8. Stability of CsCuAO1 (C) and CsCuAO3
(D) was detected by incubating with a series of pH buffers for 12 h at 4 ◦C and then assayed the enzyme
activity at pH = 5.5 and pH = 5.0, respectively. CK, the enzyme stored at −80 ◦C, was used as the control.
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Figure 5. Activity and stability of CsCuAOs under temperature. Activity of CsCuAO1 (A) and
CsCuAO3 (B) was determined between 20–60 ◦C. Stability of CsCuAO1 (C) and CsCuAO3 (D) was
detected by incubating at a series of temperatures for 30 min, and then assayed the enzyme at
40 ◦C, respectively.
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3.4. Assays of CsCuAO1, CsCuAO3 and CsAMADH1 Enzyme Activity on GABA Production
In Vitro

In order to identify whether CsCuAOs and CsAMADHs have synergistic effects, we
carried out validation experiments on the three proteins in vitro and treated them with
seven groups (CK and T1–T6) with putrescine as the substrate (Figure 6A). The GABA
content, as the reaction product, was determined by an amino acid analyzer (Figure 6B).
What can be obviously seen, was that there is no GABA production in either the CK group
or the T1, T2 and T3 groups. However, GABA was produced in the groups of T4, T5, T6,
and the GABA content of T6 was much higher than T4 and T5 (Figure 6C). These results
indicated that CsCuAOs and CsAMADH1 were indispensable for the GABA production
from putrescine in vitro.
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Figure 6. Assays of CsCuAO1, CsCuAO3 and CsAMADH1 enzyme activity on GABA production
in vitro. (A) A simplified scheme showing the enzyme reaction. (B) Representative amino acid
chromatograms for enzymatic reactions with substrate. (C) GABA accumulated in different enzyme
reactions. The lowercase letters present over the columns indicate significant differences among
different treatments (p < 0.05).

3.5. Transient Transformation Expression in Nicotiana Benthamiana

Based on the in vitro results, we further carried out the validation of three genes
in vivo—the Agrobacterium-mediated Nicotiana Benthamiana transient assay (Figure 7A), and
GABA in leaves was detected after agro-infiltration for three days. The results suggested
that the GABA level in N. Benthamiana leaves increased by agro-infiltration with a single
gene, while the content of GABA in leaves could increase more by agro-infiltration with
two-step genes simultaneously (Figure 7B). In fact, the GFP fusion subcellular localization
analysis indicated that CsAMADH1 was localized in plastid, while both CsCuAO1 and
CsCuAO3 were localized in peroxisome (Figure 7C).
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Figure 7. Transient assays of CsCuAO1, CsCuAO3 and CsAMADH1 in N. benthamiana leaves. (A) The
phenotypes of N. benthamiana leaves by Agrobacteria infiltration harbor the respective plasmids after
1 day. (B) GABA accumulated in leaves at 3 days after agro-infiltrations. The lowercase letters present
over the columns indicate significant differences among different treatments (p < 0.05). (C) The
subcellular localization of GFP fusion proteins of CsCuAO1, CsCuAO3 and CsAMADH1. The vector
pBI121-GFP was used as control, and the mcherry was used as plastid and peroxisome, respectively.
Scale bars were 10 µM.

4. Discussion

GABA is considered to be the major amino acid synthesized under anaerobic condi-
tions, which are formed by glutamate decarboxylation based on GAD function [33,34]. The
GABA level was increased significantly, and the content of glutamate decreased, indicat-
ing that the increased GABA under hypoxia is dominated by the GABA shunt pathway
(Figure 1A) [35,36]. However, GABA content increased but glutamate did not change
under the putrescine spraying treatment, which indicates that the GABA shunt did not
respond to the induction of exogenous putrescine, and the increase in the GABA content
is through polyamine degradation. For gene expression patterns, the putrescine degra-
dation pathway genes, including CsCuAO1, CsCuAO3 and CsAMADH1 could respond
to exogenous putrescine (Figure 2D). However, in the GABA shut pathway genes, the
expression of CsGADs was only induced under anaerobic stress (Figure S2). Subcellular
localization results indicated that CsAMADH1 was localized in plastid, and both CsCuAO1
and CsCuAO3 were localized in peroxisome (Figure 5C). In Arabidopsis, the localization of
CuAOs protein was different, which AtCuAO1 was localized in ectoplast, while AtCuAO2
and AtCuAO3 were found in peroxidases [16,37,38]. Taken together, CsCuAO1, CsCuAO3
and CsAMADH1 could respond to the induction of exogenous putrescine and regulated the
polyamine degradation pathway to increase the content of GABA in tea. Under anaerobic
conditions, the significant increase in GABA content is dominated by the GABA shunt and
its key genes CsGADs.

Our previous studies have revealed that 1/4 of GABA produced in tea leaves under
anoxia comes from polyamine (predominantly putrescine) degradation [35]. In order to
further study the functions and characteristics of these three genes and their enzyme
synthesis, we purified their recombinant proteins and carried out a series of function
verification experiments in vivo and in vitro. In the present study, we found that the
substrate-binding affinity of CsCuAO3 was greater than that of CsCuAO1, as the Km value
of CsCuAO3 was lower than CsCuAO1 (Figure 3). In addition, CsCuAO1, CsCuAO3 and
CsAMADH1 exhibited very high enzyme activity in vitro and in vivo played for GABA
formation (Figures 6 and 7). It is reported that polyamines are degraded by DAO to form
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4-ABAL intermediates, followed by AMADH catalyzation, which is another way for GABA
enrichment in plants [39]. DAO takes putrescine as substrate in cowpea seedlings, in which
Km and Vmax are 0.15 mM and 0.065 mol·min−1, respectively, while the oxidation activity
of spermidine and spermine is only 16% and 38% of putrescine (Petrivalský et al., 2007). In
this study, we revealed that the synergistic effects of CsCuAOs and CsAMADH1 were shown
by a transient co-expression system (Figure 7). Therefore, the present study demonstrated
that these three genes are involved in GABA production through polyamine degradation
in the tea plant.

It appears that there may exist a totally different pathway between the accumulation
of GABA levels and the response to putrescine spraying treatment or hypoxia stress. Thus,
we studied the accumulation of GABA in tea from the perspective of the polyamine degra-
dation pathway and clarified its mechanism to a certain extent. The results showed that the
CsCuAOs and CsAMADH1 were key genes in the polyamine degradation pathway. How-
ever, GADs were considered the dominant genes for regulating GABA formation under
anaerobic conditions, in which the expression levels of CsGAD2 and CsGAD3 increased
significantly, 3.5- and 2.4-fold, respectively (Mei et al., 2016; Figure S2).

5. Conclusions

The functions of three key enzymes involved in GABA production from the polyamine
degradation pathway were analyzed in this study. The three genes employed by the
putrescine-derived GABA accumulation in the tea plant were firstly reported. Our data
showed that CsCuAO1, CsCuAO3 and CsAMADH1 were the key genes involved in GABA
production in the tea polyamine degradation pathway and it was driven by the combined
synthesis of CsCuAO1, CsCuAO3 and CsAMADH1, which will have a great contribution to
the production of GABA Tea.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11091356/s1, Figure S1: Schematic drawing of CsAMADH
and CsCuAO family members; Figure S2: CsGADs were induced under hypoxia treatment, but
not CsCuAOs and CsAMADH1. The lowercase letters present over the columns indicate significant
differences among different genes (p < 0.05). Table S1: Primers used in this study.
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