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Abstract

Automatic speech recognition (ASR) and natural language processing (NLP) are expected
to benefit from an effective, simple, and reliable method to automatically parse conversa-
tional speech. The ability to parse conversational speech depends crucially on the ability to
identify boundaries between prosodic phrases. This is done naturally by the human ear, yet
has proved surprisingly difficult to achieve reliably and simply in an automatic manner.
Efforts to date have focused on detecting phrase boundaries using a variety of linguistic and
acoustic cues. We propose a method which does not require model training and utilizes two
prosodic cues that are based on ASR output. Boundaries are identified using discontinuities
in speech rate (pre-boundary lengthening and phrase-initial acceleration) and silent pauses.
The resulting phrases preserve syntactic validity, exhibit pitch reset, and compare well with
manual tagging of prosodic boundaries. Collectively, our findings support the notion of pro-
sodic phrases that represent coherent patterns across textual and acoustic parameters.

Introduction

Information in spoken language is conveyed not only through words but concurrently through
acoustic cues—fundamental frequency (pitch), intensity (volume), speech rate and rhythm, and
timbre, collectively termed Prosody. It is also widely recognized that the distribution of pro-
sodic information throughout the flow of speech is neither uniform nor random (e.g., ques-
tion/statement boundary tones). Short, often distinctive phrases, which are bounded by
prosodic cues, (cf. [1]) convey coherent messages (e.g. [2, 3]) that conveniently avail to the
interlocutor a variety of linguistic functions: sentence mode, e.g., assertion vs. question,
saliency of information via emphasis, conversation action, discourse function, attitudes and
sentiments [4-6]. These units are often referred to as intonational phrases or intonation units
(IUs) and although a precise definition is hard to come by, the notion of a well-defined (‘sin-
gle’) pitch contour is often regarded as a necessary trait [2, 7].

There is no widespread agreement on the nature of intonation units, and even their exis-
tence has been contested by some scholars (e.g., [5]). The reasons that we converse using short
phrases are unclear. Answers posed in the literature involve the human physiology or aspects
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of cognitive processes related to the production of vocal output (e.g., [8, 9]). Several lines of
evidence support the contribution of the latter: the capacity of our working memory is esti-
mated at 4-7 words (e.g., [10],). Correspondingly, in electroencephalographic (EEG) measure-
ments, event-related potentials show a positive shift in activity at the closure of phrases; this
has been accepted as a neural measure for the perception of phrase boundaries (e.g., [11]).
Similarly, magnetoencephalographic (MEG) measurements of cortical activity during speech
processing revealed a response at an intermediate timescale lying between the syllabic and sen-
tential [12].

Linguistic literature describes a hierarchy of prosodic domains of various lengths, where
each element consists of at least one element of the next lower category [13], for example, pro-
posed a hierarchy of six categories: utterance, intonational phrase, phonological phrase, pho-
nological word, foot, and syllable. The intonational phrase-a unit one second and three- to
four-word long on average-is central to the study of prosody and interactional linguistics [14].
According to the autosegmental-metrical approach [7], the theoretical basis for the ToBI anno-
tation system, prosodic hierarchy distinguishes five levels of “break indices”. At the higher end
of this scale are the (full) intonational phrase boundary and the intermediate (intonational)
phrase boundary. IU boundaries, which are the object of our analysis, coincide with both
boundary types [5].

A number of qualitative descriptions have been put forward for IUs (see also Dataset sec-
tion) (e.g., [2, 3] pp. 17-19]). Suggested definitions can be functional (cf. Turn Construction
Unit [15]) or acoustic [3]), where the latter will typically focus on a coherent pitch contour and
a battery of boundary cues [16]. Autosegmental-metrical theory proposes a hierarchical struc-
ture of prosodic constituents, listing their pertinent acoustic patterns (e.g., rise/fall/steep rise/
fall etc.). Notably, these patterns are not directly associated with their corresponding discourse
functions (e.g., [7], and cf. [17-21] for form/function accounts). According to Fujisaki, too
[22], prosodic phrases exist as a locus for patterns extending beyond the syllabic timescale, as
well as that of the prosodic word and foot. The related PENTA model suggests that prosodic
blocks are defined by their function in discourse and range from the syllabic through the
phrasal to the sentential scale [1]. The INTSINT model suggests a system for unit annotation,
which is permissive as to specific definitions of prosodic boundaries [23].

IU boundaries are associated in most definitions with a set of typical parameters: slowing
down of speech rate at the end of a unit along with acceleration at its beginning, which we
denote as discontinuities in speech rate (DSRs); resetting of pitch and/or intensity; a register
shift of pitch or intensity; or pausing ([3] Chapter 4P, [14, 16]). Of these, final lengthening
together with initial acceleration (DSRs) were identified as particularly salient signals in into-
national phrases [16, 24]. Final lengthening is well-documented in conversational American
English, as well as in many other languages (see review in [25]). Thus, the intervals between
these consecutive DSRs could serve as an automatically measurable proxy for distinct units
that bear prosodic-semantic information. There are, of course, other linguistic factors that
determine speech rate, such as emphasis [19], syntactic valence [26] along with probability and
speech style [27, 28]. It is notable/noteworthy that DSR-based segmentation is sufficiently suc-
cessful even when these factors are not taken into account. Quantitative support of this notion
would enable efficient tagging of prosodic boundaries in recorded conversation. This, in turn,
can promote the analysis of non-verbal cues that occur naturally at this time scale of uttering a
few words.

All of the above definitions aim to capture the same humanly perceivable phenomenon, yet
prosodic units of all scales are difficult to detect automatically. An effective automatic identifi-
cation of boundaries would extend the power of speech-related applications. Among the
advantages of boundary recognition are demonstrated contributions to NLP, possibly as a
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plug-in in ASR systems. Several conceptual difficulties involved in boundary detection have
been shown to improve once a simple and effective automated boundary identification algo-
rithm is made available. The role that human speakers make of boundaries for disambiguation
was demonstrated already in [29-31]. There are several examples in the literature which show
that, once considered, boundaries reduce error rates for syllable, character, tone, and word rec-
ognition (e.g. [32, 33]). Similarly, a prosody-assisted ASR algorithm used ToBI-annotated pro-
sodic boundaries to significantly assist word boundary detection as well as word recognition in
English, Spanish and less so in Japanese [34]. Word recognition in scripted English [35], and
spontaneous Mandarin [36, 37] was similarly improved by modeling prosodic boundaries.
Natural language understanding (NLU) and the resolution of syntactic ambiguities in particu-
lar can also be improved when prosodic boundaries are known [37].

Existing automated phrase boundary detection methods often utilize lexical and syntactic
cues along with acoustic input (e.g., [38-40]. They usually involve extensive preparation steps
such as manual tagging (e.g., [41, 42]) and training a specific, designated model (e.g., [38, 39,
41, 43, 44]). Approaches to speech segmentation based on acoustic signals alone were pro-
posed in [45, 46, 40, 47]. These efforts have been commonly applied to scripted speech (e.g.
radio news corpora), where written syntactic conventions prevail and prosody differs signifi-
cantly from that of spontaneous speech ([38, 39]). Table 1 (see Discussion) lists application of
automatic boundary detection in various corpora containing spontaneous speech, e.g., the Bos-
ton Directions Corpus (BDC) and Columbia Games Corpus (CGC) that include direction-giv-
ing tasks and communications relating to specific games, respectively.

The work presented here describes a method for efficiently identifying a large portion of
prosodic boundaries in spontaneous conversation, relying on the output of an ASR system. To
verify that the resulting phrases are consistent with human tagging, intervals between consecu-
tive DSRs and/or silent pauses were compared to manually identified IUs. The time course of
pitch within these intervals was quantified, showing that this statistical description comple-
ments existing qualitative studies of pitch declination (NB, pitch was not used for boundary
detection). The data also reveal that intervals between DSRs resemble manually identified IUs
from a syntactic point of view, as evident from word frequencies. Since such units are readily
perceived and largely agreed upon by humans, these can be deemed sufficient requirements
for a good prosodic boundary detection, automatic or manual—regardless of a binding defini-
tion of IUs. In addition, the contribution of silent pauses as exclusive boundary cues was quan-
tified. Taken together, our results suggest that identifying prosodic boundaries of the
intermediate time scale can promote a better understanding of prosody, as well as significantly
enhance and improve the performance of speech processing applications.

Data set
The Santa Barbara Corpus

The data set analyzed was the Santa Barbara Corpus of Spoken American English (SBC) [48],
published by the linguistics department at UCSB. The corpus consists of a set of 60 audio files
that record spontaneous speech of various genres, from multi-party kitchen conversations and
couples’ dialogues to child tutoring, guided tours, sermons and university classes. The SBC
team recorded audio in two-channel pcm, at 22,050 Hz. The speech files total ~20 hours of
audio (7.2GB), representing some 249,000 words in transcription. A transcript (in two for-
mats) accompanies each speech file, where intonation units are time stamped with respect to
the audio recording. Here,.trn transcript files were used.

The publishers altered personal identifiers in the transcripts to preserve anonymity. The
audio files have been filtered using a digital FIR low-pass filter, with the cut-off frequency set
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Table 1. Evaluation of segmentation methods for spontaneous speech.

Source
This
work
[47]
2018
[68]
2017
[69]
2016
[70]
2016
[71]
2015
[50]
2013
[72]
2013
(73]
2012
(73]
2012
[74]
2010
[43]
2009
[75]
2007
[76]
2003
(771
1998

Dataset
SBC (~28 hrs)

C-ORAL-BRASIL (partial, ~9 min)
social media (~6 hrs)
Proprietary corpus (~5 min)

MGB challenge (BBC TV, ~15 hrs)
elicited sentences (spontaneous / scripted,

~10 min)

Valibel Speech Database (spontaneous /
scripted, ~6min)
Hungarian BEA (~35 min)

CGC (objects game, ~4 hrs)
Switchboard (partial, ~11 hrs)
Switchboard (partial, ~2 hrs)
BDC (spontaneous ~67 min)
BDC (spontaneous / scripted ~1 hrs)

Swedish (~25 min)

BDC (spontaneous / scripted ~2 hrs)

Features
Ac

Ac

S/L

Ac

S/L+Ac

Ac

S/L
S/L
S/L+Ac
Ac per
word
S/L+Ac

S/L+Ac

Ac

Training
N

Y

Y

Not
specified

Y

Language
English

Portuguese
Chinese

+ English
Spanish

+ English
English
Romanian
French
Hungarian
English
English
English
English
English
Swedish

English

Boundary Detection

FO + intensity + duration
+ pause
Syntax
FO + intensity + duration
FO + intensity + duration

+ syntax + pause

FO + intensity + duration
+ pause
FO + duration + pause
FO + intensity
syntax
syntax
FO + intensity + duration
+ syntax
FO + intensity + duration
FO + intensity + syntax

duration + pause + syntax

FO + intensity

F-score

0.66

0.55

est.

0.72

0.55

0.63

0.93

0.77

0.43

est.

0.71
0.81

0.70

Accuracy
0.86

0.82

est. 0.80
0.87

0.9

0.78
0.89
0.86
est. 0.88
0.93
0.91 (w/ syntax) 0.83 (w/
0 syntax)

0.85

0.83

A summary of previous phrase-boundary detection methods that were evaluated using spontaneous speech. Ac = acoustic. S/L = syntactic and/or lexical. Values that

were estimated rather than having been explicitly provided are preceded by the qualifier “est.”.

https://doi.org/10.1371/journal.pone.0250969.t001

at 400 Hz to make these portions of the recordings unrecognizable. Pitch information is recov-
erable from the filtered portions, but the amplitude level is reduced.

SBC conversations were transcribed and tagged by students who were trained in a ten-week

course on Discourse Transcription at the Department of linguistics of either UCSB (SBC parts

I and II, conversations 1-29) or Rice University (SBC parts III and IV, conversations 30-60).
About 5 weeks of the course were spent on transcribing intonation units based on the cues
described in [3, 14] pp.29-40 and [2]. Students who performed well were hired for the SBC
project and provided with additional training [49]. In brief, a unit was defined as “a stretch of
speech uttered under a coherent intonation contour. It tends to be marked by cues such as a
pause and a shift upward in overall pitch level at its beginning and a lengthening at the final
syllable” ([3] Ch 4 pp. 17-19 and cf. [24]). Following the identification of a boundary, the IU
was annotated as final or non-final, as defined in [3]. Every conversation was fully segmented
and annotated by one student and subsequently fully reviewed by another. Inconsistencies that
were not resolved by student reviewers were resolved by an expert (J. Du Bois at USBC for
parts I-II or R. Englebretson at Rice University for parts III-IV) [49]. Overall, some 50,000 IUs
were manually identified in multi-unit turns, with “turn” being a stretch of speech produced
by a speaker before the floor is given to the next speaker. The SBC supplies its user with a
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transcript, along with markup for boundary tones, laughter, vocalizations, elongation, trun-
cated units, and time codes for each intonation unit.

Methods
Measuring speech rate

Speech rate was estimated based on phone durations as obtained from forced alignment (see
below). Since phone durations vary within a single word, we estimated speech rate on a time
scale of average word duration, thus also improving robustness to noise or minor timing inac-
curacies. A time window of 300 ms duration was chosen to approximate the value of the aver-
age duration of a word. Varying the window duration in a range of values from 250ms to 500
ms has little or no perceptible effect on the values of the boundary detection and on the accu-
racy of our methodology.

A speech rate value was then computed for the beginning of every single word, based on the
assumption that a phrase does not start mid-word. Specifically, for a word shorter than the
window duration, the window could partially include the consecutive word, and for a word
longer than the window duration, the window would only partially cover the word. Subse-
quently, the speech rate value was computed as the mean phone duration averaged over all
phones inside this window. Any silence or speech pauses also located inside the window were
not included in this averaging.

Automatic identification of boundaries

Following the estimation of the speech rate, DSRs were detected from the difference (change)
between each two consecutive measurements within each turn. Single-unit turns (e.g., “oh
yeah” or “u-huh”) were excluded from the procedure. Because there are several prosodic pro-
cesses that affect speech rate and collude to interfere with an automated DSR-based boundary
detection, we developed the following heuristics to reduce the influence of those processes that
may falsely constitute DSRs. One example is emphasis, which is particularly difficult to handle
for being prominent with respect to its environment. The first heuristic was the use of a thresh-
old (cf. [50]) that was set to 88% of the largest difference in speech rate values of a single turn.
Differences higher than this threshold were defined as DSRs and subsequently tagged as
boundaries.

We found that the main source of noise in the data is the existence of slowing down in
speech that is unrelated to prosodic boundaries. By treating the threshold as an adjustable
parameter of the method, the value of 88% proved to be optimal in retaining signal while
rejecting noise. It is feasible to improve either one or the other by modifying the value, but an
optimum is not apparent or easily found. Thus, the value of 88% incorporates our approxima-
tion of the optimum.

The second heuristic was to iterate the DSR detection a second time on those speech
stretches between any two consecutive DSRs that were longer than 3 sec. and contained more
than 10 words. In this case, the speech rate detection threshold to constitute additional DSRs
within such a segment was set to 70% of the largest difference in speech rate values of the
stretch.

The third heuristic to specify a boundary was based on the utilization of silent pauses. Tim-
ings of silence were derived from the word timings detected by the forced alignment. A silent
pause was defined as silence with a duration longer than 300 ms. This value, which is the aver-
age duration of a word, corresponds to the optimum for coincidence of manual (i.e., SBC-
labelled) and automatic phrases (see Fig 6 below). In the statistical analysis of our detection
method, if the same boundary was identified by both a DSR and a silent pause, it was
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considered to be marked by speech rate. Our method thus defines boundaries as discontinui-
ties in speech rate or as a silent pause, and the interval between two consecutive boundaries is
taken as an intonational phrase (see review in [24]).

Forced alignment

The method we employ relies on the accessibility of the beginning and ending times of each
phone. These were obtained using the Kaldi-based forced-alignment software Montreal Forced
Aligner (MFA) Version 0.9.0 [51]. The DSR computation time is negligible compared to that
of the forced-alignment step which depends on the quality of the dataset and the desired tim-
ing accuracy. The MFA was applied by creating a separate acoustic model for each audio file.
To avoid invalid alignment originating from overlapping speech, imprecise time codes, or
long conversation turns, all turns were split into chunks according to the SBC unit time codes.
Subsequently, the MFA was applied to all those chunks originating from a single SBC docu-
ment. The output of the MFA were the timings of all words as well as phones with the excep-
tion of words missing from its dictionary, for which the MFA outputs <unk> without phone
timing information. The time resolution of the MFA was 10 ms.

Measuring pitch

For evaluating the resulting phrases, pitch was measured using Praat phonetics software ver-
sion 6.0.40, [52], freely available at http://www.praat.org/. The parameters used were
Algorithm = autocorrelation, Pitch floor = 75 Hz, Pitch ceiling = 600 Hz. The data were passed
through a median filter and the initial distribution of pitch values for each speaker was used to
manually identify and correct octave errors and to refine the floor and ceiling parameters.
Finally, gaps smaller than 25 ms were interpolated and pitch data were smoothed with a 25 ms
Hamming window. To compare contours of different durations we resample all IUs at 40
equally spaced time points, in effect stretching (or contracting) the time axis of short (long)
IUs. We refer to this process in the Results section as normalization of the time axis.

Statistical analysis

Post-processing of automatically obtained IUs was done using custom Matlab scripts [53]. The
Mathworks Inc., Natick, MA, USA). Pairwise comparisons of data represented in bar or
box plot were done using the Student’s t-test.

Results

Speech rate drops ~2-fold at the end of 1Us, enabling efficient automatic
boundary identification

Automatically identifying boundaries without the use of syntax or semantics requires defining
prosodic parameters that can be extracted robustly from recorded speech. Examining the man-
ual boundary tagging of the SBC revealed that the relative speech rate (see Methods section)
typically peaks at the initiations of IUs (e.g., Fig 1A). Furthermore, the distributions of dura-
tions of last words and phones exhibited long tails, suggesting that the slowdown of speech
rate is primarily associated with the word terminating the unit (Fig 1B and 1C).

To demonstrate this, manually identified IUs from the SBC were analyzed as follows: word-
and phone durations were averaged by position, ordered from last to first (Fig 2A and 2B).
Red bars depict the resulting mean durations for the manually identified units. At the middle
of an IU, word and phone durations exhibit narrow distributions with means + standard devi-
ations (std) of (201+7) ms and (74+2) ms, respectively. In contrast, the mean duration of the
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Fig 1. Boundaries of phrases are often signaled by discontinuities in speech rate. (a) An example of boundaries (red
lines) of phrases set at word initiations (grey diamonds) that correspond to a peak in relative speech rate. (b) The
distributions of durations of middle (i.e., neither first nor last) and of the last words in phrases containing at least 3 but
no more 20 words. (c) The distributions of durations of middle (i.e., neither first five nor last 10) and of last phones in
phrases containing 3-20 words. N = 60 audio files.

https://doi.org/10.1371/journal.pone.0250969.g001

last word of an IU was (356+28) ms. This deceleration of speech rate was evident over the last
five phones, with the closing phone lasting (118+6) ms.

The durations of the first words in IUs consisting of 3-11 words were mildly (15%) shorter
than of words in the middle of IUs. Lengthier IUs were rare and appeared more variable. Sin-
gle word units comprise approximately 20% of all within-turn IUs; their durations were similar
to those of final words and phones as opposed to initial ones. To control for averaging artifacts,
these trends were confirmed by measuring durations separately for IUs comprised of equal
numbers of words (ranging from 3-20). Together, these data suggest that the speech rate typi-
cally changes at the boundaries of manually identified IUs, predominantly due to a significant
slowdown at the last word.

For the sake of completeness, a similar analysis was performed on automatically identified
boundaries (Fig 2A and 2B, blue bars). In addition, the fractional changes in speech rate for
manual and automatic intervals are depicted in Fig 2C. Automatic detection was based on a
local measurement of speech rate, defined by the multiplicative inverse of the duration of
phones within a fixed temporal window (300 ms-comparable to the mean duration of a word).
The duration of the window did not require fine-tuning: values between 250 and 500 ms pro-
duced similar results. However, performance strongly depended upon aligning the initial time
point of each temporal window with the onset of a word, as determined by forced alignment.
This strict requirement led to the data-driven assumption of the method that a boundary can-
not occur within a word.

The automatic detection proceeds by identifying both the time points at which speech rate
increases abruptly beyond a threshold value and silent pauses of minimal duration. Boundaries
were defined as time points at which at least one of these two conditions was satisfied. For the
purpose of comparisons with manual IUs, the termination of an automatically identified
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Fig 2. Durations of final words and phones in phrases are extended. (a) Durations of words grouped by their
positions, from the last word to the first, in intonation units obtained manually (red) or automatically identified
phrases (blue). (b) Same as panel (a), but depicting durations of phones. (c) Relative speech rate is lower at the
beginning of manually segmented IUs (red bars). Blue bars confirm the expected trend for in phrases that were
automatically identified using speech rate. (d) A sketch of a ‘typical’ IU in the Santa Barbara Corpus. In panels (a, b)
phrases containing 2-20 words were considered. In panels (a-c) circles denote mean values and error bars correspond
to + s.e.m. N = 60 audio files.

https://doi.org/10.1371/journal.pone.0250969.g002

phrase was set to the termination of its last word. As expected, IUs thus found accentuated the
slowdown in speech rate towards their ends: the durations of the last and middle words
(mean + std) were (370+23) and (19946) ms, respectively. The durations of last versus middle
phones were (127+11) and (76+1) ms, respectively (Fig 2A and 2C, blue bars). Thus, Fig 2D
depicts a ‘typical’ IU by reflecting the trends observed between manually or automatically
identified boundaries.

The method achieves, with modest computing power and a single pass, a rate of analyzing
one hour of audio data in about 30 sec. Runtime is mostly dedicated to i/o0. Preparation of the
data included only a standard forced alignment step (i.e., overall runtime should include that
of an engine, roughly 1 minute per 1 minute of recorded speech). In summary, a slowdown/
acceleration at the last/initial word of units in American English spontaneous speech and a
robust measure of local speech rate enable efficient automatic identification of boundaries.

Intervals between consecutive DSRs are largely consistent with manual
tagging
To further characterize the automatically identified phrases, their durations (in time), lengths

(number of words), and boundary time-points were compared to manually segmented units.
Although, strictly speaking, there is no universally accepted definition of an IU, all available
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respectively. In both panels, the calculation was performed for each audio file individually: Error bars correspond

to = s.e.m. N = 60 audio files.
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definitions aim to capture the same humanly perceivable phenomenon (e.g., [11, 12]). Differ-
ent definitions thus typically agree on the bulk of manually identified boundaries. Similarly,
automatic phrase boundary detection applied to a large dataset should produce overall distri-
butions that are consistent with manual tagging.

The manual and automatic boundary tagging of multi-unit turns (i.e., turns containing
more than one line according to the SBC markup) yielded 50,324 and 47,640 IUs, respectively.
Of these, 31,960 boundaries (67%) coincided between the two methods; some SBC files gave
better results than others (78% vs. 55%; chance 25%). This can be compared to the typical
agreement between human taggers in ToBI studies ~90% in read, scripted speech (e.g. [54]),
and, more directly, to the 78% agreement of boundary identification in spontaneous speech
[8]. Nevertheless, DSR boundaries capture a large fraction of units as compared to the best
available approximation of a ground truth.

The average numbers of words (mean * s.e.m) in manually and automatically obtained
phrases were (4.10+0.07) and (4.26+0.08) words, respectively (Fig 3A). While 1% of the manu-
ally identified IUs contained more than 12 words, 3% of the automatically identified phrases
surpassed this length. In part, this difference may be due to isorhythmic speech, for which the
fixed threshold may be too coarse. However, these outliers have only a small effect on the mea-
sured distributions.

Fig 3B depicts the distributions of durations of IUs for each boundary detection method.
Durations (mean + standard deviation) of manually and automatically obtained units were 1.0
+0.8 sec and 1.1+0.9 sec, respectively. Both distributions exhibit a peak near zero and an expo-
nential tail, which are the characteristic structure of the Poisson distribution, i.e. one that is
formed by a random process. We conjecture that this may be because the statistics of interrup-
tions is determined by a diverse array of factors. For example, the exponential decay may
reflect the fact that longer IUs can be terminated by a battery of physiological and cognitive
factors such as breathing requirements or self-repair.

We observe that the automatic tagging yields a greater number of the overall rare long IUs
compared to the manual method. Some of these differences represent systematic (potentially
correctable) errors. Other cases may not represent errors in the automated method at all; the
differences result from the occasional tendency of the SBC’s human taggers to prefer syntax
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over prosody when encountering deviations from conventions of written syntax—a frequent
phenomenon in conversation (e.g. when a speaker retains the turn of the conversation by
using a final “and”, “so” or”that”).

Intervals between consecutive DSRs mirror pitch dynamics of manually
identified IUs

Pitch reset, i.e., the resetting of pitch following its decline over the duration of a unit, is
accepted as a common hallmark of IUs (e.g., [3, 4, 55, 56]). Therefore, although not employed
for automatic boundary detection, pitch contours between consecutive boundaries should
mirror the dynamics of pitch of manual IUs. As expected, pitch reset is readily apparent in
SBC manually identified units (Fig 4A, red curve). To test that automatically identified phrases
exhibit similar dynamics, pitch was extracted post factum using the Praat software, normalized,
and plotted as a function of normalized time (Fig 4A, blue curve). The early peaks seen in both
curves are caused by pitch resetting: the pitch declines, on average, by 10-20% throughout an
IU. In both data sets, manual and automatic boundary detection, peak pitch was reached at
normalized time t = 0.2. Given the mean duration of first words of IUs (Fig 2) and the distribu-
tion of IU durations (see below), the timing of peak pitch would typically correspond to the
second word of the IU.

In the existing literature pitch is also hypothesized to exhibit heightened variability at the
end of an IU, due for example to boundary tones ([4, 55, 57, 58]). To test this, fluctuations in
pitch as a function of normalized time were plotted for both boundary detection methods.
Indeed, the variance during the last 10% of an IU was significantly higher than during the first
half of the IU, although this measurement itself was highly variable. On average, the variance
at the end of an IU rose by 15% (manual boundary detection) or 20% (automatic boundary
detection) with p = 0.02 and 0.001, respectively (Fig 4B). The time interval that corresponded
to this change in variability was comparable to the duration of the last phone in the IU.

To summarize, although the boundary detection itself did not make use of pitch data in any
way, and although the recordings varied in speakers, genre and communicative purpose, a
consistent and clear pitch reset was observed. As expected, randomly segmenting speech into
intervals of about one second (the mean duration of a phrase) and then averaging over them
exhibited no such decline in pitch. We conclude that measurements of pitch reset and of pitch
variability at the closure of phrases support the notion of similarity between the automatic and
manual boundary detection.

Words likely to immediately follow a DSR mirror the words frequently
opening manually tagged IUs

An automatic method that ignores syntax should nevertheless preserve known relations
between syntax and prosody, similar to how they are preserved in the manual boundary detec-
tion. To characterize the syntactic structure of automatically identified phrases, the frequency
and identity of the most prevalent words were examined as a function of their positions. The
most frequent words in each position are listed in Table 2. Analyzing the manual and auto-
matic boundary detections separately allowed to validate the latter, and also highlighted some
characteristics of conversational language in the SBC.

A salient finding was the predominance of “and” in the first position. Coordination (typi-
cally “and” and less frequently “but” or “so”) is known to appear in spoken English three times
more frequently than in correspondence and nine times more frequently than in academic
writing [59]. The frequent appearance of the pronouns “I” and “you” in the first and second
positions is a further indicator of the syntax of conversational language. For instance, the
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individually: N = 60 audio files. Lines and shaded areas represent mean and = s.e.m., respectively.

https://doi.org/10.1371/journal.pone.0250969.g004

pronoun ‘T’ accounted for 6% and 8% of all phrase-initial position in automatic and manual
boundary detection, respectively. The appearance of verbs in the second and third positions is
yet another such indicator [60]. The statistics of the phrase-opening positions are known to
exhibit unique properties, with a specific group of morphological classes—pronouns,
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Table 2.
Rank Automatic
pos. 1 pos. 2 pos. 3 pos. 4
1 and I the the
2 I the I to
3 you you you a
4 the know a I
5 but it to you
6 that was that that
7 <unk> and was it
8 yeah that it of
9 S0 a and and
10 well he know in
Rank Manual
pos. 1 pos. 2 pos. 3 pos. 4
1 and I the the
2 I know a to
3 you the to a
4 but you you that
5 yeah was was it
6 S0 a I of
7 the he it you
8 well it that in
9 that they know like
10 oh don’t have was

Each column lists the most frequent words, by order, for each of the first four positions in the phrases. Blue: identical
words occupying the same position in manual and automatic boundary detection. Red: verbs.

https://doi.org/10.1371/journal.pone.0250969.t1002

subordinates and connectors—appearing more frequently than any word in any other position
[61, 62]. Fig 5 shows the frequencies of occurrence of the words most likely to occur at posi-
tions 1-4 of IUs, normalized by the total number of words used at that position. Words were
then ranked from the most to the least used and the percentage data for the five most frequent
words in each position were plotted. Errors were estimated by dividing the data into three
groups, each consisting of 20 recordings of comparable durations.

Both methods show a significantly higher peak at the initial position as compared to posi-
tions further down the IU. For instance, the most frequent word in the third or fourth position
is ‘the’, and it constitutes about 2-3% of all words appearing in in each of the positions 2, 3 and
4. In contrast, ‘and’ was found in 11% (manual) or 8% (automatic) of all phrase-initial posi-
tions, or about three times more frequently than ‘the’, as indicated by the leftmost points in the
respective curves. Words further along the IU exhibited behavior that is similar to the fourth
position. To rule out the possibility that mostly IUs of length one or two words dominate this
trend, we verified that it persisted even when only IUs longer than three words are considered.
IU lengths longer than two or four words exhibited these trends as well. Notably, these analyses
are consistent across the division into three groups of audio recordings, performed for statisti-
cal control. Taken together, consistency with manual boundary detection and reproducibility
between data sets suggest that this automatic phrase boundary detection yields phrases that
mirror the syntax of manually identified IUs.
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Boundaries identified exclusively by a silent pause are infrequent in
spontaneous speech

It has been hypothesized that pauses are infrequently used as the only marker of an IU boundary
[3], i.e. with no concurrent change in speech rate (cf. [14]). If so, ignoring pauses should have only
a limited effect on the resulting phrase boundary detection. To quantify this hypothesis, the auto-
mated boundary detector was used to count boundaries that are marked exclusively by a pause,
i.e., not by a change in speech rate. Next, the minimal duration A;, of a pause that was consid-
ered as defining a boundary was varied in the range of 100-1900 ms. For automatic boundary
detection corresponding to each value of A,;,, the fraction of IU boundaries that were also identi-
fied manually, i.e., the precision as compared to the manual tagging, was measured (Fig 6).

The peak value was reached at A,,;, = 300-400 ms, where pauses increased precision by
2.5%. Irrespective of manual boundary detection, (80+1)% of the boundaries identified with
Amin = 300 ms were also identified automatically when pauses were not used as a marker for
boundaries at all. Here, the standard error of the mean was calculated by treating each audio
file as an independent measurement (N = 60). Interestingly, 300-400 ms is approximately the
duration of a last word and is larger than the typical word durations at early or mid IUs. Com-
bined, these results suggest that silent pauses can mark IU boundaries even in the absence of
significant changes in speech rate; however, this occurs infrequently within a turn in spontane-
ous speech.

Discussion
Previously reported boundary detection methods

Computationally efficient boundary detection of spontaneous speech is a long-standing prob-
lem (e.g., [43, 63]). Often, syntactic and lexical models are combined with acoustic cues, and
machine learning is used for classification. Such methods can require extensive preparation
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such as manual tagging or model training (e.g. [38-41, 43, 64, 65]). Moreover, many previously
reported methods have been applied to scripted speech. When reading from a script, prosodic
and syntactic boundaries coincide, written conventions being more pervasive and disfluencies
rare. In addition, prosody naturally differs overall between scripted and spontaneous speech.
Boundary detection in spontaneous conversations is thus a distinct problem.

The sizes and domain specificity of reported datasets should also be considered. Some cor-
pora are small, repetitive, or focused on a specific task. For instance, the BURNC contains a
limited number of stories repeated by several speakers. The Boston Directions Corpus (BDC)
and Columbia Games Corpus (CGC) contain brief direction-giving tasks and communications
relating to specific games, respectively. In such cases, training and testing data may be corre-
lated, models may learn qualities unique to the dataset, and performance may not be preserved
more generally.

Different metrics are reported for evaluation of boundary identification, mostly derived
from the true positive (TP), false negative (FN), false positive (FP), and true negative (TN) val-
ues of the classifier vis-a-vis the reference. Precision (p), recall (r), F-score (f), and accuracy
(ac) are defined as TP/(TP+FP), TP/(TP+FN), 2*p*r/(p+r), and (TP+TN) /(TP+FP+FN+TN),
respectively [66]. While a one-to-one correspondence between r and/or p and ac does not
exist, for a well characterized dataset some missing values can be estimated. It is possible to
define the agreement between the manual and automatic boundary detection using Cohen’s
kappa [67]. Applying Cohen’s Kappa test to our results yields k = 0.79, which may be com-
pared to k¥ = 0.58 as in [8] assessed for inter-annotator agreement between non-experts.

Table 1 compiles thirteen papers that have developed boundary detection methods, and
compares their methodologies and results. Seven of these used datasets longer than one hour.
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Of those only the Switchboard and the BBC datasets are as varied and rich in prosodic compo-
nents as the SBC. The Table summarizes evaluation metrics of previous boundary identifica-
tion methods for spontaneous speech. Values that were estimated rather than having been
explicitly provided are preceded by the qualifier “est”. In addition, the table notes the type of
features used (solely acoustic and/or syntactic/lexical) and whether the method required
model training.

There is clearly a large variety in approaches, datasets and the results seem to correspond to
these. Seven of the 14 methods use text or syntax, and thus require transcription. Learning
models do well, yet require high amounts of resources, in the form of initially annotated data-
sets, presumably supplied by a human annotator. This is especially potent in dealing with short
datasets, where the data typically includes less variability in the prosodic forms that it contains.
Without learning, models preform less optimally, even on short data sets. An outlier to this
trend is [50], which performs well (F = 0.93) despite using only acoustic resources, and not
using a learning model, albeit on a short dataset. Presumably the reason for this is that the
authors manually assigned annotation for the syllables in the text, and furthermore removed
syllables that were characterized as hesitations. This reduces noise and variability in the speech
rate of the final unit, allowing for high precision.

Our results can be compared to those obtained [70] with the BBC data (F = 0.63), and the
values for the F-score with our methodology (F = 0.66) are very similar. Another comparable
result is that of [73] (F = 0.43) using the Switchboard data. The highest F-score using a varied
dataset with over one hour was obtained in [74] for the Switchboard (F = 0.71), with a method-
ology that relies on syntax coupled with acoustics, using a learning model.

Training a model of boundaries in spontaneous speech using syntactic, lexical, and acoustic
inputs can be effective (F-score 0.69) [78]. Boundaries in spontaneous speech were most suc-
cessfully identified when the training/testing dataset was domain-specific, such as the direc-
tion-giving tasks in the BDC (F-score 0.81) [43] or the positioning instructions of the Objects
game in the CGC (F-score 0.77) [73]. Provided extensive training, language models (indepen-
dent of prosody) can identify boundaries with F-scores of 0.70-0.75 [68, 79]. Finally, language
models and acoustic cues were successfully combined to identify full stops in spontaneous
speech [41, 79, 80]. However, as compared to phrases, sentences often terminate more promi-
nently and the smaller sentence to word ratio (large number of TN) bolsters the accuracy met-
ric. Thus, the method proposed here (F-score 0.65, no training, large and variable corpus of
conversations, easily adjustable parameters) compares well with previous methods for seg-
menting spontaneous speech.

Boundary detection is expected to be influenced by genre, and Table 3 shows this effect on
our data set when it is divided into two groups: 48 conversation files and 12 audience-oriented
files. A chi-square test of independence gives 2 (3, N = 37,118) = 305.31, p < .001, i.e.,

Table 3. Detection rate in conversational vs audience-oriented files.

Genre
Detection Conversational Audience-oriented Total
True Positives 16171 (16479) 4973 (4665) 21144
True Negatives 100664 (101491) 29560 (28733) 130224
False Positives 13050 (12350) 2797 (3497) 15847
False Negatives 12884 (12449) 3090 (3525) 15974
Total 142769 40420 183189

The table shows observed values and expected values (in parenthesis). Words that are followed by speaker change were left out.

https://doi.org/10.1371/journal.pone.0250969.t003
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boundary detection in audience-oriented talk is more successful. This suggests that parameter
values which were found optimal for the entire data set (see Methods section) may be further
optimized per genre, thus leading to better detection.

In summary, the main advantage of our methodology is its simplicity and its low demand
in terms of resources, while remaining efficient and universal. The focus on using a local
speech rate criterion enables accommodating the different speech styles and circumstances of
communication.

Pre-boundary lengthening/acceleration (DSRs) and pauses suffice to define
boundaries in conversational English

IUs are hypothesized to be a universal linguistic phenomenon (e.g. [81]), with links to speech
production constraints, despite the ongoing debate regarding their precise definition. They are
demonstrably identified by human perception [8], but present an ongoing challenge for quan-
titative modeling and therefore for automatic detection (cf. [24, 82]). Suggestions such as the
Fujisaki model [22], INTSINT [23] or PENTA [1] define IUs implicitly while the functionalist
and Autosegmental-metrical models are explicit [3, 7].

The prevalence of pre-boundary lengthening in conversational English is supported by our
measured coincidence of 0.66 F-score and 0.84 accuracy of manually- and automatically-
tagged boundaries, a figure which should be compared with the ~80% inter-human agreement
in spontaneous speech. Thus, although other cues may improve boundary detection, we posit
that DSRs and silent pauses provide in and of themselves a quantitative definition of a usefully
large portion of boundaries in English.

In our method, detection is expected to be affected by prosodic hierarchy, since the higher a
unit is located in the prosodic hierarchy, the more extensively marked is its prosodic boundary
(a well attested phenomenon, e.g., [5, 21]). This may introduce some bias in our results, such
that within the total count, final boundaries will be over-represented. Indeed, the recall for
detection of final units is 69.4%, whereas for non-final units it is 51.3% (IUs followed by
speaker change were not considered). A chi-square test of independence (using the Yates cor-
rection for 2x2 contingency tables) gives x2 (1, N = 37,118) = 1064.55, p < .001. That is, final/
non-final populations are significantly different. This is comparable to the results reported in
the literature and evaluated in Table 1: a study on data with duration of about 9 minutes [47],
the recall for final units was 80% while for non-final units it was limited to about 40%. Simi-
larly, [50] studied about 12 minutes and yielded a detection recall 74% for final boundaries
and of 44% for non-final unit boundaries. In their study of about 25 minutes of data from the
BDC, [76] report a recall of 49% for final and 42% for non-final boundaries.

Measurements of speech rate

Our use of speech rate as the main determinant for phrase boundaries has the advantages of
being expedient, easy to calculate and efficient in the context of automatic speech recognition
applications. Just as important is the fact that our speech rate measurement is relative to its
near vicinity and thus sensitive to contextual changes. By addressing speech rate differences to
find the largest changes, our method finds boundaries even in relatively monotonous speech
or in very rapid sequences. As noted, variety of automatic speech recognition and generation
applications analyzes speech rate to improve their performance (e.g., [32, 83]).

One limitation of our method is that the speech rate measurement requires ASR output/
forced alignment, i.e., the existence of a transcript. While speech rate can be extracted directly
from a soundwave through automatic syllable count estimation, these methods are currently
not sufficiently accurate for our purposes (e.g., [84] and cf. [85]).
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It is significant that in our hands aligning the measurement of speech rate with the onset of
words proved essential, indicating that there is an effective exclusion of boundaries from the
middle of a word. Lexical words may not be acoustically determined, but they do contribute to
a cleaner boundary signal. While looking for boundaries strictly at the onset of every word
may be an imperfect heuristic, it can be modified using pitch-templates and additional cues.

Fluctuations in speech rate which do not stem from boundary signaling (e.g. emphasis)
may cause errors in boundary detection. The existence of a cutoft threshold value (of 88%)
serves to alleviate many of these errors. In the example of emphasis, the signal produced will
be slightly lower than what a prosodic boundary will produce, and the threshold effectively
overrides many of these instances.

Pitch decline/reset

We and others have found that pitch, as compared to speech rate, provides an overall weaker
signal for boundaries of IUs [46]. A decline in pitch along the IU is a salient phenomenon that
we readily detect by averaging over phrases in our sizeable dataset. However, individual pitch
contours are too variable to be trusted as a signal [24]. Thus, our method does not include
pitch as a criterion for finding IU boundaries.

Once boundaries are detected using speech rate, we could use the phenomenon of pitch
reset at the boundary to verify our method and provide a ‘sanity check’ for the arbitrariness of
the identified boundaries. If the nearly 50,000 detected boundaries were arbitrarily placed,
then the pitch contours between them would have averaged out to produce flat mean curves.
Instead, as we have shown, the average contour has distinct features that are consistent with
what is known about pitch behavior. The observed declination in pitch therefore serves to vali-
date the automatic identification of phrase boundaries.

Phrases between consecutive boundaries exhibit a predictable syntactic
structure

In this work, automatically identifying boundaries did not make use of syntactic information.
Nevertheless, automatically obtained IUs do exhibit syntactic regularities (for positionally sen-
sitive grammars see [61, 62]). First, the statistical trends unique to the first three positions of
automatically identified phrases mirror those of manually detected IUs (Fig 5).

As shown in Table 2, frequent words in these positions are similar among the two methods
and have distinct grammatical and discursive functions. For instance, the exclusion (to a large
extent) of verbs from the first position and their frequent occupation of the second position is
consistent with English being an SVO language. The high frequency of verbs in the third posi-
tion is consistent with the prevalent practice in Spoken English to place coordinators and sub-
ordinators in unit-initial position. Coordination (typically “and” and less frequently “but” or
“s0”) is known to appear in spoken English three times more frequently than in correspon-
dence and nine times more frequently than in academic writing [59]. Correspondingly, “and”
was the most frequent word identified by either method of boundary detection. The frequency
of the pronouns “I” and “you” in the first and second positions further indicates the known
syntax of conversational language.

Conclusion

In summary, we have presented a purely prosodic boundary detection that can efficiently tag
phrase boundaries in spontaneous Spoken American English. It would seem natural, as a next
step, to apply it to languages other than American English with similar typological features.
Beyond the practical value of such boundary identification, analyzing large volumes of data in
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a timely fashion would enable to examine more elaborate models in the search for a dictionary
of prosodic unit types and their functions. If so, a better understanding of the relations
between conversational syntax and prosody may also be gained.
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