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Abstract
Gene set analysis aims to identify predefined sets of functionally related genes that are dif-

ferentially expressed between two conditions. Although gene set analysis has been very

successful, by incorporating biological knowledge about the gene sets and enhancing sta-

tistical power over gene-by-gene analyses, it does not take into account the correlation

(association) structure among the genes. In this work, we present CoGA (Co-expression

Graph Analyzer), an R package for the identification of groups of differentially associated
genes between two phenotypes. The analysis is based on concepts of Information Theory

applied to the spectral distributions of the gene co-expression graphs, such as the spectral

entropy to measure the randomness of a graph structure and the Jensen-Shannon diver-

gence to discriminate classes of graphs. The package also includes common measures to

compare gene co-expression networks in terms of their structural properties, such as cen-

trality, degree distribution, shortest path length, and clustering coefficient. Besides the struc-

tural analyses, CoGA also includes graphical interfaces for visual inspection of the

networks, ranking of genes according to their “importance” in the network, and the standard

differential expression analysis. We show by both simulation experiments and analyses of

real data that the statistical tests performed by CoGA indeed control the rate of false posi-

tives and is able to identify differentially co-expressed genes that other methods failed.

Introduction
Many biomedical studies aim to understand the differential regulation of genes (e.g. between
diseased and healthy people) by analyzing gene expression data. An often used approach is the
test of equality in the average expression of single genes between two populations with different
phenotypes.

Alternatively, gene set analysis methods such as the well-known GSEA [1], test the differen-
tial expression of sets of related genes (pathways). The main advantage is that they enhance sta-
tistical power and aggregate prior biological knowledge. A motivation to test pathways is based
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on the idea that complex diseases are rarely consequence of an abnormality in a single gene,
but a result of changes in a set of related ones. Despite their success, the GSEA and similar
approaches do not identify important classes of differentially regulated pathways, such as
groups of differentially co-expressed genes.

The co-expression of two genes is the correlation between their expression levels. If the cor-
relation structure (also known as co-expression graph) among the genes of a group in one phe-
notype is different from that in another, this group is called differentially co-expressed.
Differential co-expression of genes may provide information about changes in the gene regula-
tory networks of different phenotypes.

It is important to clarify that differentially co-expressed genes are not necessarily differen-
tially expressed [2–6]. For instance, mutations on the activation domain of transcription factors
(TFs) can change the TF behavior without altering their expression levels [7]. Furthermore, the
regulatory activities of a gene product can be affected by post-translational modifications with-
out changing the gene expression levels [6]. Thus, the differential co-expression analysis com-
plements the differential expression analysis.

Several approaches were developed to measure and test the differential co-expression of
genes. Examples include methods that address the problem for each gene pair [8, 9], methods
that find gene modules that are differentially co-expressed [7, 10–13], and methods that test
the differential co-expression for a predefined collection of gene sets [14, 15]. Those methods
vary in how they quantify co-expression between genes, how they measure changes in the co-
expression of a group of genes, and how they cluster the genes. In this work, we address the
problem of measuring the differential co-expression of a given gene set, which is also addressed
by the GSCA [14] and GSNCA methods [15].

One of the main challenges of measuring differential co-expression of a given gene set is the
fact that searching for an exact common structure between two co-expression graphs is not
effective to compare the behavior of biological pathways, as their structure may vary across
time and across systems from the same biological class. The GSCA method compares the co-
expression of a gene set between two phenotypes by summing the changes in the correlation of
each gene pair of the set. The main limitation of that approach is that it does not take into
account the structure of the gene co-expression graph. To address that limitation, Rahmatallah
et al proposed the GSNCAmethod [15], which is based on the idea that biological systems
tend to be more affected by changes in the activities of “important” genes than isolate alter-
ations in the gene interactions [16]. The GSNCA considers that the “importance” of a gene is
proportional to the sum of the “importance” of the other genes weighted by the cross-correla-
tions. To find dysfunctional pathways, the GSNCA tests the changes in the gene “importance”
(centrality) between two biological conditions, identifying classes of differentially co-expressed
gene sets that were not detected by the GSCA.

The GSNCA measure of centrality (also known as eigenvector centrality) is one among sev-
eral measures of graph structural features, such as the clustering coefficient, the shortest path
length, and the betweenness, closeness and degree centralities. Some of those features are
explored by tools such as the WGCNA [13] and the Cytoscape [17]. However, those tools do
not carry out statistical tests for the identification of changes in the structural features. Further-
more, many structural properties of gene co-expression graphs remain underexplored.

To identify dysfunctional pathways, we want to compare structural features that are shared
by networks belonging to the same biological class but that are distinct between different clas-
ses. The spectrum of a graph, defined as the set of eigenvalues of its adjacency matrix, describes
several features of the graph, such as its diameter, number of walks, and cliques. Takahashi
et al [18] proposed that the graph spectrum distribution is a better characterization of a graph
class when compared to other commonly used measures (e.g. number of edges, average path
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length and clustering coefficient). Based on the spectral characterization of a graph, Takahashi
et al [18] introduced concepts of Information Theory for graphs, such as the spectral entropy
and the Jensen-Shannon divergence between spectral densities. The former measures the
amount of uncertainty associated with a graph, while the latter is used to discriminate classes
of graphs. The measures proposed by Takahashi et al have successfully identified structural
changes in brain networks [18]. In this work, we present a tool that adapts the spectral entropy
and Jensen-Shannon divergence statistical tests for gene co-expression graphs.

Our proposed tool is CoGA (Co-expression Graph Analyzer), an R package that constructs
co-expression graphs and identifies differentially co-expressed gene sets by statistically testing
the equality in the spectral distribution [18] of the co-expression (sub-)graphs. It also includes
tests for other features of the graphs, such as the graph spectral entropy [18], a variety of cen-
tralities, clustering coefficients, and degree distribution. CoGA differs from other differential
co-expression analysis tools in two ways: (i) it statistically tests the significance of network
alterations for a large variety of structural features; and (ii) it includes further analysis, such as
network visualization, gene scores, and single gene differential expression analysis. By perform-
ing Monte Carlo experiments and applying the proposed method in biological data from gli-
oma tissues, we show that the CoGA test effectively controls the rate of false positives and also
identifies dysfunctional pathways that other tools did not detect. In other words, CoGA com-
plements both GSCA and GSNCA.

Materials and Methods
The CoGA R package compares gene co-expression networks in terms of their structural prop-
erties. In the following subsections we explain the construction of co-expression networks
(graphs), the graph spectral analysis, and the package main features.

Construction of gene co-expression networks
An undirected graph is an ordered pair G = (V, E) that contains a set of vertices (V), and a set
of edges (E), which connect the elements of V. Each edge e 2 E is an unordered pair e = {vi, vj},
such that vi and vj are two distinct nodes that belong to V.

A gene co-expression network is an undirected graph, where each vertex corresponds to a
gene and an edge connecting a pair of vertices indicates a relationship between the expression
levels of the corresponding genes. In this context, the association represented by an edge corre-
sponds to the statistical dependence among the gene expression levels. To measure and detect
monotonic dependence, the CoGA package includes the correlations and dependence tests of
Pearson [19], Spearman [20], and Kendall [21].

Given a measure of statistical dependence (Pearson’s, Spearman’s or Kendall’s correlation
coefficients), CoGA provides three scales for measuring the association degree between the
activities of two genes: the absolute correlation coefficient, one minus the p-value of the depen-
dence test, and one minus the adjusted p-value by the False Discovery Rate method [22] for
multiple testing. Each association degree is a real number varying from 0 to 1.

The user can choose between unweighted and weighted network. The former is a graph with
edges selected according to an association degree threshold defined by the user. Alternatively,
the software generates a full graph with edges weighted by the association degrees between the
gene expression levels.

In both simulations and application to actual biological data, we consider co-expression
graphs in which the edges are weighted by one minus the Spearman’s p-value adjusted for mul-
tiple testing. We describe each graph by its spectral distribution, as detailed in the next section.
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Graph spectral analysis
Let G = (V, E) be an undirected graph with nV vertices. We represent the weight of the edge
that connects the vertices vi, vj 2 V by wij. Consider that if G is unweighted, then wij = 1 for all
edge e = {vi, vj} that belongs to E. We define the adjacency matrix of G to be a nV × nV matrix
A, such that:

Aij ¼ wij; if vi and vj are connected by an edge:

Aij ¼ 0; if there is no edge connecting vi and vj:

The spectrum of G is the set of eigenvalues of its adjacency matrix A [18]. It describes many
structural properties of a graph, such as the number of walks, diameter, and cliques [23]. Based
on the graph spectrum distribution, Takahashi et al. [18] introduced the concepts of spectral
entropy to measure the amount of uncertainty associated with a graph, and the Jensen-Shan-
non divergence between spectral densities as a distance between graphs. We explain such con-
cepts in the next sections.

Spectral density. A graph model is an algorithm that generates graphs according to a
probability law. Given a graph model, let g denote the family of all graphs generated by the
model, each one containing nV vertices. The spectral density of g is the probability density func-
tion of the spectra of the graphs that belong to g.

Let δ and “hi” denote the Dirac’s delta, and the expectation according to the probability law
of g, respectively. Formally, the spectral density of the family of graphs g is defined as [18]:

rðlÞ ¼ lim
nV!1

h 1
nV

Xn

j¼1

dððl� ljÞ=
ffiffiffiffiffi
nV

p Þi:

In real systems, the spectral density is unknown. To estimate the probability density func-
tion from the observed spectrum of a given graph, CoGA uses the Gaussian Kernel estimate
implemented by the function density from the R base package. The user can choose
between the Sturges’ [24] and the Silverman’s criteria [25] to define the Kernel bandwidth for
the Gaussian Kernel estimate. For both simulation and actual data analysis, we used the
Sturges’ criterion.

Spectral entropy. In information theory, the entropy of a random variable Xmeasures the
amount of uncertainty associated with the value of X. For a graph, the entropy quantifies the
randomness of its structure.

Formally, the spectral entropy is defined as follows. Let g be a family of graphs generated
according to a probability law, and ρ denote the spectral density of g. The spectral entropy [18]
of G is:

HðrÞ ¼ �
Z þ1

�1
rðlÞ logrðlÞdl;

where 0 log 0 = 0.
Kullback-Leibler divergence. While the entropy quantifies the uncertainty associated

with a random variable, the Kullback-Leibler (KL) divergence measures the information lost
when a probability distribution is used to approximate another. For graphs, we can use the KL
divergence to discriminate spectral distributions and also to select the graph model that best
describes the observed graph. Formally, we define the KL divergence between graphs as
follows.
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Let g1 and g2 be two graph families with spectral densities ρ1 and ρ2, respectively. If the sup-
port of ρ2 contains the support of ρ1, then the KL divergence between ρ1 and ρ2 is [18]:

KLðr1jr2Þ ¼
Z þ1

�1
r1ðlÞ log

r1ðlÞ
r2ðlÞ

dl;

where 0 log 0 = 0 and ρ2 is called the reference measure.
If the support of ρ2 does not contain the support of ρ1, then KL(ρ1jρ2) = +1.
The KL divergence is non-negative, and it is zero if and only if ρ1 and ρ2 are equal. For

many cases, KL(ρ1jρ2) and KL(ρ2jρ1) are different when ρ1 and ρ2 are not equal, i.e. KL is an
asymmetric measure.

Jensen-Shannon divergence. The Jensen-Shannon (JS) divergence is a symmetric alterna-
tive to the KL divergence. Let rM ¼ 1

2
ðr1 þ r2Þ, then the JS divergence between two spectral

densities ρ1 and ρ2 is defined as [18]:

JSðr1; r2Þ ¼
1

2
KLðr1jrMÞ þ

1

2
KLðr2jrMÞ:

We can interpret the JS divergence as a distance between two graphs. The square root of the
measure has all mathematical properties of a metric: (i) is zero if and only if ρ1 and ρ2 are
equal, (ii) is symmetric, (iii) is non-negative, and (iv) satisfies the triangle inequality.

Description of the CoGA package
The CoGA package is a tool with a graphical interface to analyze gene co-expression networks.
It receives gene expression data and a predefined collection of gene sets from which it performs
the differential network analysis. The software also includes further analyses of a gene set, such
as network visualization, the centralities of the genes that belong to the set and the standard
single gene differential expression analysis, as shown in Fig 1. In the next paragraphs we
describe briefly the input, output and main features of the package. For a detailed tutorial and
manual we refer the user to the page www.ime.usp.br/˜suzana/coga.

Input. CoGA receives three files as input: one with the pre-processed gene expression
data, one with labels indicating the association between the sample and its phenotype, and
another one containing the pre-defined collection of gene sets (e.g. sets of genes belonging to
same pathways or sharing the same Gene Ontology terms). If the dataset has not been collapsed
to gene symbols yet, it is necessary to upload a fourth file with the annotation data (i.e. a table
that indicates the correspondence between probe sets and genes).

For examples of gene set collections and microarray annotation data, we suggest to use files
from the Molecular Signature Database (MSigDB) (http://www.broadinstitute.org/gsea/
msigdb/index.jsp) and the Broad ftp site (ftp://gseaftp.broadinstitute.org/pub/gsea/annota-
tions), respectively. Both databases are freely available for download.

Differential network analysis. The differential network analysis is divided in two parts.
First, given a gene set, CoGA constructs one network for each phenotype by calculating the
pairwise correlations between the expressions of the genes in the set. Then, it computes a statis-
tic to compare the structural properties of the inferred graphs between the two phenotypes. To
obtain a p-value for the statistic, both steps are repeated several times using random permuta-
tions of the sample labels. Finally, CoGA computes the p-value for each gene set.

Let Θ be a measure of the difference (“distance”) between the structural properties of two
graphs. CoGA tests H0 :Θ = 0 againstH1 :Θ> 0. For estimating Θ, CoGA implements an
adaptation of the Jensen-Shannon divergence between the graph spectrum distributions pro-
posed by Takahashi et al, [18]. Other measures of the differences between graph structural
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Fig 1. CoGAOverview: (A) input data, (B) CoGA differential network analysis, and (C) CoGA further
analysis. The CoGA package receives as input data a gene expression matrix, the sample labels, and a
collection of gene sets. Then, it constructs a gene co-expression sub-graph for each gene set, and tests the
equality in the network structural features between two biological conditions (B). The software allows the user
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features implemented by CoGA are the Jensen-Shannon divergence between the degree distri-
butions, the Euclidian distance (adjusted for the gene set size) between the node centralities
and between the clustering coefficients, and the absolute difference between the average short-
est path lengths and between the spectral entropies.

Output. CoGA returns a table containing the name and size of each gene set, the statistics
used in the test, permutation-based p-values, and adjusted p-values by False Discovery Rate
method [22] for multiple tests.

Other features. CoGA features include an interface to visually inspect alterations in the
co-expression networks, a list of the differences in the pairwise correlations, a table of gene set
properties (e.g. spectral entropy, average node centrality, average clustering coefficient, and
average shortest path length) in each phenotype, a ranking of the gene centralities and local
clustering coefficients, and single gene differential expression analysis.

Implementation
CoGA was implemented in R (http://cran.r-project.org/) and requires the following packages
to run: (i) shiny, shinyBS, yaml, whisker and RJSONIO for browser user interface; (ii)
igraph to compute graph topological properties; (iii) WGCNA to collapse probe sets to gene
symbols; (iv) ggplot2, pheatmap, and RColorBrewer for plotting; and (v) Hmisc and
psych for graph inference. For some graphical interface features, we used code from:
rCharts (https://github.com/ramnathv/rCharts) and shinyIncubator (https://github.
com/rstudio/shiny-incubator).

Example dataset
To illustrate a CoGA input dataset, we downloaded an Affymetrix Human Genome U133 plus
2.0 microarray dataset from two subtypes of brain cancer: 65 astrocytomas grade II (AII) and
30 oligodentrogliomas grade II (ODII) microarrays available at the REMBRANDT database
(https://caintegrator.nci.nih.gov/rembrandt). Our choice was motivated by the fact that the dif-
ferential diagnosis between AII and ODII is a difficult task due to their very similar
phenotypes.

We pre-processed the raw data (CEL files) with the RMA (Robust Multichip Average) [26]
method for adjustment of background, normalization, and summarization. To arrange probes
into probe sets based on updated genome and transcriptome information, we used the Brainar-
ray [27] custom CDF file (version 18.0.0, ENTREZG), which collapsed our dataset to 19,674
gene symbols.

Results and Discussion
In this section we show both simulation experiments and analyses of biological data to evaluate
the performance of CoGA.

Control of the false positive rate
To validate the effective control of the rate of false positives, we applied the spectral distribution
test in 1,000 artificially generated biological datasets. To generate those datasets, we put
together the data from 65 astrocytoma grade II and 30 oligodentroglioma grade II microarrays

to further analyze each gene set (C) by visualizing the gene co-expression graphs, ranking the genes
according to their “importance” in the gene set network, and performing standard single gene differential
expression analysis.

doi:10.1371/journal.pone.0135831.g001
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into one dataset. Then, for simulating the null hypothesis (the networks come from the same
population), a resample of 65 microarrays and another one of 30 microarrays were taken at
random, with replacement, from this pooled dataset to make new realizations of each pheno-
type group. Finally, we applied the proposed test to different gene set sizes, ranging from 20 to
100. Small sets (e.g. smaller than 20 genes) may interfere the estimation of the network features,
while large sets (e.g. larger than 1,000 genes) may lead to a very high computational cost
(depending on the specification of the user’s machine). Furthermore, the sample size must be
large enough (our empirical studies suggest at least 20 samples, but this number also depends
on the data variance, noise, and how many tests will be performed) to infer the co-expression
among genes.

Each permutation test used 1,000 random resamplings for this experiment. Under the null
hypothesis, we expect that the proportion of false positives will be less than or equal to the sig-
nificance level of the test (p-value threshold for rejecting H0). In our simulation experiments,
for a p-value threshold (α) of 1, 5, and 10% (Table 1), about 1, 5, and 10% of the tests, respec-
tively, incorrectly rejected the null hypothesis. Therefore, the rate of false positives is indeed
controlled as expected.

Comparisons with other methods
To compare with CoGA, we selected both GSCA [14] and GSNCA [15] because they address
the same problem: to identify differentially co-expressed gene sets between two biological con-
ditions. To evaluate the performance of the three methods, we adapted GSCA and GSNCA to
be in accordance with CoGA co-expression graph construction (i.e. to measure the association
between the expression levels, we replaced the Pearson’s correlation used in both GSCA and
GSNCA by one minus Spearman’s p-value adjusted for multiple testing). Then we carried out
Monte Carlo simulations, and analyzed a real dataset.

Simulation experiments. To evaluate the statistical power of CoGA, GSCA, and GSNCA
methods, we generated data as follows. First we took at random 80 microarrays from the
pooled dataset containing data from astrocytoma grade II (AII) and oligodendroglioma grade
II (ODII) microarrays. Then we split that resample of 80 microarrays into two parts of size 40,
each one representing a phenotype group that will be compared. For each phenotype group, we
measured the co-expression among 50 genes that were taken at random. To change the co-
expression of some of the 50 selected genes, we permuted the expression levels of a proportion
γ of genes in only one group of microarrays. Thus, the resulting co-expression graphs gener-
ated by this process will be different. We repeated this procedure 1,000 times for different pro-
portions of altered genes (γ), varying from 0.05 to 0.5 in steps of 0.05.

To summarize the empirical power of the tests (proportion of rejected null hypotheses) for
different significance levels (α), we measured the areas under the ROC curves. The ROC curve
is drawn over a two-dimensional plot, where the x-axis corresponds to the significance levels of
the tests and the y-axis corresponds to the proportion of rejected null hypotheses (empirical

Table 1. Observed false positive rate. Proportion of incorrectly rejected null hypotheses for different signifi-
cance levels (α = 0.01, 0.05, 0.1) and different gene set sizes (nV = 20, 40, 100).

α nV

20 40 100

0.01 0.008 0.010 0.010

0.05 0.042 0.041 0.057

0.10 0.089 0.101 0.118

doi:10.1371/journal.pone.0135831.t001
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statistical power). Then the area under the ROC curve (AUC) is a summary of the empirical
power of the tests for different significance levels. Under the alternative hypothesis, we want
the AUC to be larger than 0.5 and as close as possible to 1. In Table 2, we show the AUC for γ
= 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5. As expected, for all methods, the statistical power increases
with the increasing of γ (proportion of altered genes). Thus, all methods were able to discrimi-
nate different graphs.

It is important to highlight that the performance of the methods in a specific dataset will
depend on the structural changes occurring in the co-expression networks. We show in Table 3
the number of resamples for which the differential co-expression was detected only by one of
the methods considering different significance levels (α = 0.01, 0.05, 0.1). Each method
uniquely identified resamples with differentially co-expressed genes for all scenarios, except
when γ = 0.5 (because almost all null hypotheses were rejected in that scenario). Thus our
results suggest that the GSCA, GSNCA, and CoGA methods complement each other.

Biological data analysis. To compare the CoGA, GSCA, and GSNCA performances in a
real dataset, we analyzed the original dataset containing 65 microarrays from astrocytoma
grade II (AII) and 30 microarrays from oligodendroglioma grade II (ODII) using each method.
Those methods require a collection of gene sets, which corresponds to the sub-networks for the
differential co-expression analysis. In this comparative analysis, the collection corresponds to
the canonical pathways from the MSigDB v4.0. After setting the minimum gene set size to 20,
only 850 of 1,320 gene sets remained for the analyses.

For each permutation test, we set the number of random resamples to 10,000. We show the
resulting p-values for all gene sets in S1 Table. In Fig 2, we show Venn diagrams of the gene

Table 2. Evaluation of the statistical power of the tests. Areas below the ROC curves for different proportions of altered genes (γ), varying from 0.05 to
0.5. The ROC curves were constructed for the CoGA, GSCA, and GSNCAmethods.

Method γ

0.05 0.1 0.15 0.2 0.25 0.3 0.5

CoGA 0.505 0.663 0.746 0.869 0.934 0.968 0.999

GSCA 0.587 0.786 0.848 0.941 0.981 0.995 0.999

GSNCA 0.588 0.784 0.831 0.910 0.956 0.974 0.994

doi:10.1371/journal.pone.0135831.t002

Table 3. Comparison of the method findings in simulation experiments. Number of generated datasets for which only one of the three methods (CoGA,
GSCA, and GSNCA) detected differential co-expression. The proportion γ of genes whose expression levels were permuted in only one of the two conditions
being tested varies from 0.05 to 0.5. We generated 1,000 datasets and considered different significance levels (α = 0.01, 0.05, 0.1) for rejecting the null
hypothesis.

Method α γ

0.05 0.1 0.15 0.2 0.25 0.3 0.5

CoGA 0.01 6 32 36 54 20 8 0

0.05 32 74 83 40 19 5 0

0.1 59 87 80 36 15 3 0

GSCA 0.01 14 63 80 146 145 130 2

0.05 47 96 107 84 48 22 0

0.1 63 93 87 48 27 8 0

GSNCA 0.01 13 37 53 76 50 20 0

0.05 50 113 106 58 25 7 0

0.1 77 124 94 50 17 4 0

doi:10.1371/journal.pone.0135831.t003
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sets co-identified by the methods for different significance levels (α = 0.01, 0.05, 0.10). When
the significance level (α) is 0.01, the CoGA package identified four sets that were not detected
by the other methods. For α = 0.05 and α = 0.1, the number of sets identified only by CoGA is
25 and 40, respectively. Then, the CoGA method can identify sets that were not detected by the
GSCA and the GSNCA tests.

In Table 4, we show the gene sets that were identified only by one of the three methods for a
significance level (α) of 0.01. We expect to find pathways associated with tumor aggressiveness,
since the astrocytoma grade II is more aggressive than the oligodendroglioma grade II. In fact,
for α = 0.01, all sets identified only by the spectral distribution test are associated with tumor
aggressiveness in different types of cancer. In particular, the REACTOMEACTIVATED
NOTCH1 TRANSMITS SIGNAL TO THE NUCLEUS pathway plays an important role in the
development of the central nervous system and influences the differentiation of astrocytes. It is
also related to cell proliferation and apoptosis in gliomas [28], can promote glioma cell migration
and invasion [29], and has already been described as a potential target to glioma therapy [30].
Besides the glioma, many other tumors are associated with the dysregulation of the Notch signal-
ing, such as hepatocellular carcinoma, and lung, breast, pancreatic, and cervical cancer [30]. That
pathway presented a large p-value for the GSEA test (p-value = 0.9765), which suggests that this
set does not present significant changes in average expression but only in co-expression.

Other sets identified only by CoGA for α = 0.01 are also associated with tumor aggres-
siveness. The REACTOME GROWTH HORMONE RECEPTOR SIGNALING, REACTOME
ION CHANNEL TRANSPORT, REACTOME INNATE IMMUNE SYSTEM pathways are
related to, respectively, cellular proliferation, energetic metabolism, and inflammation. Again,
the GSEA p-values for those sets were larger than 0.1, indicating that they do not present signif-
icant changes in the average expression.

For α = 0.05, other sets related to tumor aggressiveness were detected only by CoGA. Exam-
ples include gene sets associated with cell proliferation (REACTOME FGFR LIGAND BIND-
ING AND ACTIVATION, REACTOME SMAD2 SMAD3 SMAD4 HETEROTRIMER
REGULATES TRANSCRIPTION, PIDWNT SIGNALING PATHWAY, and KEGG OOCYTE
MEIOSIS pathways), energetic metabolism (REACTOME AMINE COMPOUND SLC
TRANSPORTERS pathway), and inflammation (PID CD8TCRPATHWAY, PID IL1PATH-
WAY, PID IL2 1PATHWAY, PID IL12 2PATHWAY, REACTOME SIGNALING BY ILS,
KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY, and REACTOME CYTO-
KINE SIGNALING IN IMMUNE SYSTEM pathways). Those results suggest that CoGA is able
to identify gene sets associated with cancer that both GSCA and GSNCA failed to detect.

CoGA features to analyze a single gene set
In this section we illustrate features available in the CoGA package to explore the properties of
a given gene set. The dataset used for this example is the same described in the previous para-
graphs and in the Materials and Methods Section, which contains expression data from astro-
cytoma grade II (AII) and oligondendroglioma grade II (ODII).

The gene set illustrated in this section is the REACTOME ACTIVATED NOTCH1 TRANS-
MITS SIGNAL TO THE NUCLEUS from the MSigDB (we abbreviate it by RANTSN), which
presented the lowest p-value (p = 0.0019) by the CoGA (spectral distribution test), and has
already been described as associated with glioma aggressiveness. We explain each of the CoGA
features (network visualization, gene set properties, gene scores, and gene expression analysis)
for the analysis of a single gene set in the paragraphs below.

Network visualization. The network visualization tool shows a matrix of the association
degrees between the gene expression levels for each biological condition (AII and ODII, in this
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Fig 2. Venn diagrams of the gene sets co-identified by the methods. Each diagram shows the number of gene sets co-identified by the Spectral
distribution test from the CoGA package, and the GSCA and GSNCAmethods. In (A), (B), and (C) the significance level of the tests is set to 0.01, 0.05, and
0.1, respectively.

doi:10.1371/journal.pone.0135831.g002
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example) and a matrix of the differences between them, as illustrated in Fig 3. Those matrices
suggest that there are high differences between the edge weights in AII and ODII.

Gene set properties. The gene set properties available for weighted networks are average
degree centrality, average eigenvector centrality, average clustering coefficient, and spectral
entropy. In this example, the RANTSN network has an average degree of 16.90 in astrocytoma
grade II and an average degree of 8.19 in oligodendroglioma grade II. The high differences
between the gene degrees are in accordance with our differential network analysis.

Gene scores. CoGA gene score tool ranks the genes according to their importance in the
network. The available measures of “importance” for weighted networks are the degree and
eigenvector centralities, and the clustering coefficient (for unweighted networks the between-
ness and the closeness centralities are also available).

In this example, the gene with highest degree centrality in the RANTSN astrocytoma grade
II network is DTX1 (degree = 19.76), which is a regulator of the Notch signaling pathway. That
gene also presented the highest difference in the degree centrality between AII and ODII (dif-
ference of 12.70). However it did not show significant difference in the average expression (t-
test p-value = 0.06) nor in the median expression (Wilcoxon-Mann-Whitney p-value = 0.057)
at a p-value threshold of 0.05. Interestingly, the expression of the gene DTX1 is correlated with
patients survival in gliomas, and its over-expression can increase cell migration and invasion in
glioblastoma multiforme [31]. This regulator gene can also induce pathways to protect tumor
cells from apoptosis and to stimulate the cell proliferation [31]. Therefore, DTX1 is highly asso-
ciated with tumor cell aggressiveness.

In the RANTSN oligodendroglioma grade II network, the gene with highest degree central-
ity is DLL1 (degree = 10.86), which acts as a ligand for Notch receptors.

Table 4. Comparison of the method findings in a real dataset.Gene sets identified by only one of the three methods (CoGA, GSCA, and GSNCA) and the
corresponding p-values. For each group of gene sets, the column in bold indicates the method that identified those sets. The last column shows the p-value
obtained by a differential expression analysis tool (GSEA).

Gene set CoGA GSCA GSNCA GSEA

REACTOME_GROWTH_HORMONE_RECEPTOR_SIGNALING 0.0097 0.0900 0.5978 0.1292

REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL_TO_THE_NUCLEUS 0.0019 0.0144 0.4015 0.9765

REACTOME_ION_CHANNEL_TRANSPORT 0.0085 0.0420 0.4852 0.6802

REACTOME_INNATE_IMMUNE_SYSTEM 0.0082 0.0124 0.6088 0.1265

BIOCARTA_ERK_PATHWAY 0.0967 0.0038 0.0654 0.8653

BIOCARTA_NO1_PATHWAY 0.0592 0.0074 0.0439 0.4720

REACTOME_TRANSPORT_TO_THE_GOLGI_AND_SUBSEQUENT_MODIFICATION 0.0146 0.0087 0.1536 0.1815

PID_AMB2_NEUTROPHILS_PATHWAY 0.0154 0.0068 0.3257 0.0198

REACTOME_O_LINKED_GLYCOSYLATION_OF_MUCINS 0.0173 0.0094 0.1542 0.0384

PID_TAP63PATHWAY 0.0967 0.0079 0.0836 0.5938

KEGG_LEISHMANIA_INFECTION 0.0149 0.0041 0.0946 0.0484

PID_RETINOIC_ACID_PATHWAY 0.4005 0.0676 0.0096 0.4325

REACTOME_GLUCONEOGENESIS 0.2123 0.1030 0.0056 0.6104

REACTOME_INWARDLY_RECTIFYING_K_CHANNELS 0.1972 0.0124 0.0092 0.3969

KEGG_PRIMARY_IMMUNODEFICIENCY 0.1557 0.0564 0.0043 0.0331

KEGG_RNA_DEGRADATION 0.4907 0.2708 0.0051 0.0644

REACTOME_SIGNALING_BY_NOTCH1 0.5179 0.1438 0.0031 0.7173

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS 0.0492 0.0267 0.0045 0.1435

REACTOME_INSULIN_RECEPTOR_SIGNALLING_CASCADE 0.2134 0.2027 0.0057 0.6336

doi:10.1371/journal.pone.0135831.t004
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Fig 3. REACTOME ACTIVATED NOTCH1 TRANSMITS SIGNAL TO THE NUCLEUS (RANTSN) gene co-expression graphs visualization: (A)
astrocytoma grade II network, which we abbreviate by AII network; (B) oligodendroglioma grade II network, which we abbreviate by ODII network;
and (C) differences between AII and ODII networks. In (A) and (B) the red color indicates a high association degree between the row and column genes,
while the black color indicates a low association. Matrices (A) and (B) correspond to astrocytoma grade II and oligodendroglioma grade II, respectively. In (C)
red, green, and black colors represent, respectively, high, low and intermediate differences between the AII and ODII association degrees.

doi:10.1371/journal.pone.0135831.g003
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Gene expression analysis. CoGA also includes the standard single gene differential
expression analysis. The tool shows the gene expression heatmap (Fig 4), the result of the t-test
(difference in means) and the Wilcoxon-Mann-Whitney test (difference in medians). The
expression heatmap of the RANTSN set did not reveal visual differences between AII and
ODII. Only the ARRB2 gene had t-test nominal p-value less than 5%, and only ARRB2 and
DNER had Wilcoxon-Mann-Whitney nominal p-values less than 5%.

Final considerations about the further analysis. As discussed previously, the RANTSN
was detected by the spectral distribution test, but was not detect by the GSEA tool, which per-
forms differential expression analysis. In accordance with those results, this example of CoGA
single gene set analysis revealed “important” genes from the RANTSN set that are differentially
co-expressed but are not differentially expressed between AII and ODII. Therefore CoGA sin-
gle gene set analysis might be helpful in the identification of key genes in a disease, by comple-
menting the standard differential expression analysis.

Conclusion
We present CoGA, an R package, which (i) performs differential co-expression network analy-
ses; (ii) compares underexplored network features and also several standard structural

Fig 4. REACTOME ACTIVATED NOTCH1 TRANSMITS SIGNAL TO THE NUCLEUS (RANTSN) gene expression heatmap.Heatmap showing the
expression levels of genes belonging to the REACTOME ACTIVATED NOTCH1 TRANSMITS SIGNAL TO THE NUCLEUS pathway in astrocytoma grade II
(green label) and oligodendroglioma grade II (blue label) microarrays. The red, black, and green colors on the expression matrix represent, respectively, the
highest, intermediate, and lowest expression levels.

doi:10.1371/journal.pone.0135831.g004
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properties; and (iii) carries out statistical tests to estimate the significance of the results. We
have shown that all the statistical tests performed by CoGA effectively control the rate of false
positives. Our simulation experiments and applications in real dataset suggest that CoGA com-
plements previous tools for differential co-expression analysis (GSCA and GSNCA). Numeri-
cal results combined with visual inspection in the graphical user interface might be helpful in
the identification of key sets of genes.

Availability and Requirements

• CoGA home page: www.ime.usp.br/˜suzana/coga.

• Download page: https://sourceforge.net/projects/coga/.

• Operating system(s): Platform Independent.

• Other requirements: R� 3.0.0, R packages (shiny� 0.8.0, WGCNA, igraph, shinyBS,
RColorBrewer, Hmisc, psych, RJSONIO, whisker, yaml, pheatmap, ggplot2)

Supporting Information
S1 Table. MSigDB canonical pathways differential network analysis.
(XLS)
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