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Abstract: The evolution of the Exposome concept revolutionised the research in exposure assessment
and epidemiology by introducing the need for a more holistic approach on the exploration of the
relationship between the environment and disease. At the same time, further and more dramatic
changes have also occurred on the working environment, adding to the already existing dynamic
nature of it. Natural Language Processing (NLP) refers to a collection of methods for identifying,
reading, extracting and untimely transforming large collections of language. In this work, we aim
to give an overview of how NLP has successfully been applied thus far in Exposome research.
Methods: We conduct a literature search on PubMed, Scopus and Web of Science for scientific articles
published between 2011 and 2021. We use both quantitative and qualitative methods to screen papers
and provide insights into the inclusion and exclusion criteria. We outline our approach for article
selection and provide an overview of our findings. This is followed by a more detailed insight into
selected articles. Results: Overall, 6420 articles were screened for the suitability of this review, where
we review 37 articles in depth. Finally, we discuss future avenues of research and outline challenges in
existing work. Conclusions: Our results show that (i) there has been an increase in articles published
that focus on applying NLP to exposure and epidemiology research, (ii) most work uses existing NLP
tools and (iii) traditional machine learning is the most popular approach.

Keywords: natural language processing; exposure research; exposome; machine learning

1. Introduction

Natural Language Processing is an area of research within Artificial Intelligence (AI)
that is concerned with giving computers the ability to understand natural language (spoken
and written) in the same way a human could [1]. Knowledge of computational linguistics
(rule-based modelling of human language), statistics, machine learning and deep learning
are used either individually or combined to achieve the aforementioned goal [2]. The term
Exposome was first introduced by [3], who defined an area of research that takes systematic
measurements of exposures (e.g., occupational, physical environment or socio-economic
factors) that a person is exposed to throughout life (pre-birth until death) and affects their
health outcomes [3]. However, the term Exposome itself has not been fully integrated into
all areas of exposure research yet, where often the term ‘exposure research’ is used when
referring to the same or similar concepts [4]. At the same time, text mining and NLP
techniques are increasingly applied in a variety of exposure-related research areas. Whilst
there are a variety of surveys and literature reviews in NLP and its various subtasks [5–7],
there is no review of NLP and text mining techniques used in the field of occupational and
environmental exposure research. This review fills that gap by providing a description
of existing tools based on NLP and text mining techniques that have been applied in
occupational and environmental exposure research. For this, we utilise a hybrid approach
combining classical and automatic reviewing methods with RobotAnalyst [8], which is
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a recently developed web-based software system that combines text mining and machine
learning algorithms. Papers published in the PubMed, Scopus and WoS databases are
screened and reviewed to answer the following research questions:

• What are the most common text mining and NLP approaches used in exposure
assessment research?

• What resources are used for this task?
• What are the most common NLP methods used?
• What are the main challenges and future directions of research?

2. Review Methodology

In this literature review, a search was conducted in three scientific literature databases.
We include articles available in full and peer-reviewed, where our search returned 6420 articles,
out of which 5957 were selected for pre-screening after duplicates were removed. In Figure 1,
we show the process of selecting for this review, where for each search on the three different
platforms (PubMed, Scopus and Web of Sciene), we used the following query terms:

(“natural language processing” OR “text mining” OR “text-mining” OR “text and data
mining” OR ontology OR lexic* OR corpus OR corpora) AND (exposome OR exposure OR
socioexposome OR (“risk factor” AND (“work” OR “occupational” OR “environmental*”)))

Pre-screening was performed as a two-step process. First, to reduce human workload,
we utilised RobotAnalyst [8] to identify 998 full papers. RobotAnalyst is a web-based and
freely available software system that utilises both text mining and machine learning meth-
ods to categorise and rank references for their relevance (Free access to RobotAnalyst can
be requested to reproduce this work: http://www.nactem.ac.uk/robotanalyst/ (accessed
on 2 November 2021). The system uses an iterative classification process which makes
decisions based on the abstract for each reference. Next, we manually screened the titles
and abstracts of those papers using the inclusion and exclusion criteria outlined below.
The inclusion and exclusion criteria used to select studies relevant to occupational exposure
research were provided by two experts in occupational exposure. Based on these criteria,
we identified 80 papers that specifically focused on text mining and/or natural language
processing in the field of exposure research. Next, the full papers were reviewed for their
relevance to occupational exposure and usage of NLP or text mining methods. Finally,
40 copies of the full papers of those were retrieved and reviewed in full, resulting in a total
of 37 articles that fulfilled our defined inclusion and exclusion criteria.

Inclusion criteria:

• Original work;
• Study exposures concerning humans;
• Study occupational and/or environmental exposures of humans, such as airborne agents

(e.g., particulates or substances and biological agents (viruses)), stressors, psycho-social
and physical (e.g., muscle-skeletal) exposures as well as workplace accidents;

• Have their full texts available;
• Are written in English;
• Focus on text mining or natural language processing and their texts containing a

method, experiments and result section.

Exclusion criteria:

• Studied animal or plant exposures;
• Studied drug, nutrition or dietary exposures on humans;
• Written in another language than English;
• Commentaries, opinion papers or editorials.

http://www.nactem.ac.uk/robotanalyst/
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Figure 1. Overview of article selection process used in this narrative literature review.

3. Results

In the following section, we summarise the findings of this literature review, where
we focus on the types of resources used, computational methods and existing NLP tools.
In Figure 2, we show the number of papers published each year, where we can observe an
increase in publications over time. We also categorise each paper in Table 1 based on NLP
tools used, resources and computational method. Finally, we give a brief overview of the
literature reviews and qualitative research in this area.

Figure 2. Number of NLP papers applied to occupational exposure research published each year
from 2010 to 2021.
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Table 1. A categorisation of each paper based on tools used, resources and computational methods.

Papers

Tool used
NLTK [9–13],

[14]

Other [9,15–18],
[19–21],

[13,22–24],
[25–27]

Not declared [15,28–32],
[33–37],
[38–40]

Resources
Scientific literature [12,15,28,29,41,42],

[14,22,23,31],
[24,43,44],

[19–21,33,34,45],
[35,36,46,47]

Existing Database [13,30,35,37,45]

Twitter [11,18,39]

EHR [9,21,48]

Accident reports [10,17,25]

Computational Method
Machine learning [9,15,28,41],

[10,12,28,29],
[13,17,30,42,48],
[11,14,18,22,31],

[23–25,27]

Knowledge based [19–21,43,44]
Database creation and fusion [27,33–35,45,46],

[36,37,47]

Rule-based algorithms [27,40]

A. Resources

There are different types of resources used, where the most common resource is the
existing scientific literature (see Figure 3). Other data sources include databases, social
media platforms, electronic health records and accident reports (see Table 1).

B. Computational Methods

Overall, there are four main categories of computational approaches used which
include machine learning, knowledge-based approaches, and database creation and fusion
approaches. Figure 4 shows the split of computational approaches found in this review.

C. Existing NLP tools

There are a number of different existing NLP preprocessing tools used (see Figure 5),
where NLTK [49] is the most commonly used for preprocessing textual data. Given the
vast number of different NLP tools used in other studies, we have summarised the tools as
‘Other’. However, it has to be noted that a large amount of studies did not declare the type
of text mining tool that was used in their work.
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Figure 3. A chart showing the different types of resources used in the selected articles.

Figure 4. A chart showing the computational methods utilised in the selected articles.

Figure 5. A chart showing a summary of the different types of NLP tools in each article.
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3.1. Machine Learning Methods

Ref. [9] proposes a contactless clinical decision support system to diagnose patients
with COVID-19 and monitor quarantine progression using Electronic Health Records.
Relevant keywords are extracted from unstructured text using NLTK, and the results are
added to a searchable database. The final steps of this work include the integration of
the system with cloud services and visualisation to make results accessible to clinicians.
The work by [28] proposes a computational approach of mapping the impact of climate
change on global health via scientific literature. A total of 3730 papers are labelled manually
and subsequently fed into an SVM (Support Vector Machine) to classify the unlabelled
documents into the different label categories. Next, topic modelling is used to analyse and
visualise the content of the literature. The authors of [15] propose to use scientific literature
on PubMed to assess the impact of environmental exposures from early life using different
unsupervised learning methods (e.g., LDA (Latent Dirichlet Allocation)) to gain insight
into the different topics. The work by [29] models the impact of COPD (chronic obstructive
pulmonary) from smoking using Adverse Outcome Pathways generated from the scientific
literature. The is collected and filtered from PubMed to create a corpus and then clustered
using the text mining approach proposed by [50]. Research by [10] classifies incident
reports to improve aviation safety into two categories using an LSTM (Long Short-Term
Memory) with attention. A total of 200,000 reports are preprocessed using NLTK, and
word vectors are generated using ULMFiT (Universal Language Model Fine-tuning for Text
Classification) [51]. Ref. [12] extracts information from the scientific literature to evaluate
the impact of human exposure to electromagnetic fields, where topic modelling is used to
generate domain-specific lexicons. Work by [42] develops a computational literature review
approach for in utero exposure to environmental pollutants, where they aim to identify mul-
tiple chemicals and their health effects and reduce the burden of manual literature reviews.
The titles and abstracts of 54,134 papers are clustered using the DoCTER software [16]. The
authors of [30] propose a network-based predictive model to assess chemical toxicity for
risk assessment of environmental pollutants. The Registry of Toxic Effects of Chemical
Substances (RTECS) database [52] is used, where chemicals were annotated with an iden-
tifier to show the structure of it. Work by [13] introduces a supervised machine learning
approach to complement a previous manual literature retrieval for the Exposome-Explorer
database [53], where an extensive variety of machine learning algorithms are evaluated
using Sckit-Learn [54]. Ref. [48] uses multivariable logistic regression to classify the spread
of household transmission of COVID-19 in healthcare workers. As part of this work, term-
frequency inverse document frequency (tf-idf) matrices are used match confirmed cases by
residential address. The authors of [17] use Chinese accident reports for safety risk analysis
in the construction industry, where a software called ROST is used to preprocess the docu-
ments and perform cluster and network structural analysis. Research conducted by [14]
develops a corpus of over 3500 abstracts that were manually annotated by an Exposome
expert for chemical exposures according to a taxonomy. The taxonomy is based on 32 nodes
and was split into two categories: biomonitoring and exposure routes. Finally, the data
were fed into an SVM (Support Vector Machine) to classify unseen documents. The authors
of [11] analyse the sentiment of tweets collected based on a specific geolocation (Texas coun-
ties along I-20) to determine if there is a link between CVD (cardiovascular disease) rates
and factors that may cause or increase the risk included on the tweets. A voting classifier is
used to determine the sentiment of each tweet into positive or negative, where an accuracy
of 73.69% is achieved. Ref. [31] developed an ensemble classifier, called SOCcer, to map
job titles to occupational classification codes (SOC). For this, a variety of publicly available
resources were used to match job titles and tasks to the US SOC-2010 code, which resulted
in a knowledge base of around 62,000 linked jobs. To train the ensemble classifier, job
descriptions from a bladder cancer study were used as training data, whereas an evaluation
of the algorithm was conducted on job titles for personal airborne measurements during an
inspection. Research conducted by [18] collected data using Twitter’s API for ‘asthma’, and
both manual (e.g., expert annotation and evaluation) and automatic analysis (e.g., topic
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modelling) are conducted to identify health-related tweets. One of the dominant topics
identified by experts was environmental influences and references to triggers of asthma.
The work by [22] uses text mining to assess chemical health risks, where PubMed abstracts
are used to identify the mode of action (MOA) of carcinogens. For this work, they use
the previously developed CRAB tool [55], which uses a bag-of-words approach to convert
abstracts into vectors. Then, an SVM classifier with Jensen–Shannon divergence (JSD)
kernel is trained to categorise the abstracts into a predefined taxonomy. The work by [23]
develops a ranking algorithm to automatically recommend scientific abstracts for curation
at CTD (Comparative Toxicogenomics Database [56]). This is completed by screening
each abstract and assigning a document relevancy score (DRS), where 3583 articles are
used from PubMed for this task. To analyse each abstract, a variety of text mining tools
and approaches are used, which include ABNER [57], MetaMap [58] and Oscar3 [59] for
gene/protein recognition and chemical recognition, respectively. Finally, a ranking algo-
rithm is developed that sorts abstracts for curation relevance. The authors of [24] introduce
a new method to classify biomedical documents for curation using the Comparative Toxi-
cogenomics Database (CTD). A total of 1059 previously collected articles are annotated for
entities (e.g., genes, chemicals, diseases and respective interactions), and manual abstract
annotation is performed for chemicals relevant to the CTD. Finally, the documents are
classified using a SVM. The authors of [25] use 225 electric power causality accident reports
from China to identify factors that contribute to personal injury. TF-IDF is used to obtain
the word frequency in a document, and the results are subsequently visualised using word
clouds. The results are then used to extract key information on the dangers described
in the reports. Our results also show that the majority of papers in this section utilise
existing literature or databases to extract new information or classify unseen documents
into existing categories. Classification experiments are performed using a wide variety of
existing supervised machine learning algorithms (e.g.,: SVM or logistic regression). At the
same time, new information is commonly uncovered and visualised using unsupervised
learning methods (e.g.,: LSA or PCA). NLTK is a commonly used tool for preprocessing
textual data, but there are also other NLP tools utilised that may be more suitable to deal
with different languages or domains (e.g., ROST or CRAB).

3.2. Knowledge-Based Methods

Ref. [43] investigates Adverse Outcome Pathways (AOP) of pesticide exposure
based on scientific literature collected on PubMed. For this, the recently developed
AOP-helpFinder [60] is extended and subsequently known as AOP-helpFinder 2. The fol-
lowing properties were added: (i) the tool’s ability to automatically process and screen
abstracts from PubMed, (ii) link stressors with a dictionary of events and (iii) calculate
scores for both systems based on the position and weighted score for all event types.
The tool is then evaluated by applying it to screen for a list of pesticides that have unknown
long-term exposure effects on human health. Research conducted by [44] utilises a lin-
guistic analysis of 261 scientific abstracts related to the ‘Exposome’ to gain insight into the
current range of exposome research conducted. A literature search was performed, and
an analysis was conducted using a combination of Termine [61] and NLTK [49] to extract
multi-word terms and compute word frequency counts. The second part of this analysis
uses over 500 biomedical ontologies provided at the National Center for Biomedical Ontol-
ogy to automatically map abstracts to relevant ontologies. This work was subsequently
extended by [62], who are using topic modelling and ontology analysis to provide an up-
dated overview of knowledge representation tools relevant to exposure research. The work
by [21] creates a new semantic resource for exposures, which is evaluated both in a clinical
setting and on scientific literature. The resource contains (i) manual annotations derived
from clinical notes and knowledge from the Unified Medical Language System (UMLS) to
find exposome concepts. Ref. [20] use five corpora of epidemiological studies with different
exposures and outcomes to extract exposure-related information that can aid systematic re-
views and other summaries. In this work, a rule-based system called GATE [63] is used that
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relies on the development of dictionaries, where a total of 21 dictionaries were manually
created with domain-specific exposures and outcomes. Research conducted by [19] uses
rule-based patterns to analyse 60 PubMed abstracts in the obesity domain for six semantic
concepts (study design, population, exposures, outcomes, covariates and effect size). Four-
teen separate dictionaries are created that contain terms related to the previously mentioned
six semantic concepts using a variety of tools [64,65]. Research conducted by [27] enhances
the existing METLIN Exposome database to include over 950,000 unique small molecules.
As part of this work, IBM Watson [66] is utilised, where Watson’s NLP approach is based
on both rules (e.g., dictionary) and machine learning. The authors of [40] developed a rule-
based SES (socioeconomic status) algorithm (https://github.com/vserch/SES (accessed on
12 November 2021)) to analyse Electronic Health Records using the Ruby programming
language. In this work, the effects of socioeconomic factors on overall health (e.g., mortality,
education, occupation) in minorities are used to ensure that these factors will be considered
as exposure in future work. In summary, we found that common knowledge sources
are dictionaries, lists and ontologies, where sources for this knowledge often are existing
literature or clinical notes. Interestingly, there is not one preferred text mining tool used in
any of the studies, and therefore, a large variety of different NLP tools are utilised.

3.3. Database Creation and Fusion

One of the most popular databases created is the comparative toxicogenomics database
(CTD), which was developed in 2004 and is updated annually [45]. Generally speaking,
this resource is made up of three databases, which include (i) a third party database that
contains data from external sources (e.g., MeSH), (ii) a manually curated database of
data screened by scientists and (iii) a public web application that combines data from
the curation database and third party database. The resources’ aim is to provide content
that relates chemical exposures with human health to gain a better insight into diseases
that are influenced by the environment. Research by [33] created an updated human
exposome database for predicting the biotransformation of chemicals by using literature
mining to manually identify scientific articles. For this work, PubMed was queried based
on several keywords related to the exposome (e.g., human exposome, drinking water, air,
and disinfection or combustion by-products), where most selected publications were review
articles that contain environmental matrices (e.g., indoor air exposome, dust exposome,
or waterborne chemicals). The work by [34] uses the text mining approach proposed
by [36] to generate a new database of organic pollutants in China. The database is based
on 2799 scientific publications and includes a total of 112,878 records. Research conducted
by [46] uses the AOP-helpFinder tool as proposed by [36] to screen a PubMed corpus
for exposure to endocrine-disrupting chemicals. The authors of [35] utilise text mining in
combination with integrative systems biology to support decision making for the usage of
BPFs (bisphenol F) in manufacturing and therefore circumvent adverse outcome pathways
(AOP). To establish a connection between environmental exposures (e.g., to BPFs) and
health effects, a variety of existing literature and databases such as PubMed, ToxCast,
CompTox, and AOP-wiki are used. In this work, a previously proposed text mining
tool called AOP-help Finder [60] is used to analyse abstracts for links between chemical
substances and AOPs. The corpus for this work was developed using both automatic
and manual searches. First, an automatic search of PubMed was conducted using the
AOP-helpFinder tool to identify links between BPF and AOPs. Then, TOXLINE [67]
was searched from the year 2017 for articles that contain BPF and synonyms of BPF in a
toxicological context. The authors of [47] present an update of the environmental exposure
to the nanomaterials database by using NLP to retrieve information from textual data
and integrate it into the database. The first step in this work is to use OpenNLP (https:
//opennlp.apache.org/ (accessed on 19 November 2021)) to preprocess and prepare a
corpus of 10 scientific articles related to environmental risk assessment. An ontology
called EXPOSEO ontology is subsequently developed and used to match the extracted
information into concepts that can be integrated into the existing database. The work by [36]

https://github.com/vserch/SES
https://opennlp.apache.org/
https://opennlp.apache.org/
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uses text mining to create a list of all chemicals related to ‘blood-associated chemicals’,
which is then used to create a Blood Exposome Database. Several keywords were used to
query PubMed, where the results were then checked manually to remove false positives
and a phrase exclusion list was created. The final number of literature abstracts found is
1,085,023 (https://exposome1.fiehnlab.ucdavis.edu/download/pmid_title_abstract_sb.zip
(accessed on 19 November 2021)) and then linked to chemicals, based on the synonym
for a chemical, existing links between PubChem and PubMed and by mining supplement
tables for chemical synonyms using R (Code in R: https://github.com/barupal/exposome
(accessed on 19 November 2021)). As a result, new blood chemicals were discovered in
the literature. A similar approach for assessing cancer hazards was used by [68] using the
PubMed literature. The work by [69] uses a three-step process to update the comparative
toxicogenomics database (CDT) with exposure data from the scientific literature sourced on
PubMed. A variety of techniques are used to extract vocabularies, which include but are not
limited to MeSH [70], Gene Ontology [71] and NCBI Gene [72]. These techniques extract
vocabularies for chemical and anatomy words, disease terms, biological processes and
geographic locations, respectively. Finally, the data are integrated into the CDT, creating
49 new tables that contain 239 columns. Research by [37] proposes a new database called
the Toxin-Toxin-Target Database (T3DB), which consolidates multi-disciplinary data on
toxic compound exposure. A taxonomy of compounds is generated using a classifier to
categorise compounds into groups, and then, an ontology of chemical entities is developed.
In a nutshell, we find that there is a need for and high usage of databases that hold domain-
specific knowledge for exposure research. Furthermore, most databases outlined in this
review are generated using literature mining or existing databases, where information
commonly retrieved include chemicals, anatomy words, disease terms, biological processes
and geographic locations.

3.4. Literature Reviews and Qualitative Research

Ref. [38] conducts a review of existing ontologies relevant to the external exposome
research and argues for the future development of semantic standards. This argument is
driven by the variation of exposome resources, where differences include but are not limited
to variables having the same or similar names but measuring different exposures. The work
by [26] produces a systematic literature review on transport-related injury, where the first
reviewer used traditional methods and the second reviewer utilised text mining techniques
to perform the same review. The text mining portion of this work uses WordStat [73], QDA
Miner [74], and literature screening was conducted in Abstrackr [75]. Research by [39]
investigates how the public reacted to reports of increased lead levels in school drinking
waters. Both a quantitative and qualitative evaluation was performed, where it was found
that (i) the majority of tweets were by news agencies and people holding positions in public
offices, and (ii) the three most important themes of tweets were information sharing, health
concerns and socio-demographic disparities. Overall, we have found that there is a small
number of existing reviews that include the use of NLP methods and tools in exposure
research. In addition to this, there is also a utilisation of mixed methods to better gauge
public opinion on exposure-related health concerns.

4. Discussion

There are a number of challenges remaining in the field of NLP applied to occupational
exposure research. In the following section, we outline some challenges and opportunities
for future work in this area:

• Data volume and quality Whilst there has been some use of unsupervised machine
learning methods (e.g., clustering via LDA) in the selected studies, a majority use
supervised machine learning. One downside of this is that the latter approach requires
human annotated data, which usually requires expert knowledge and is therefore a
time-consuming and costly process. To overcome this issue, the use of semi-supervised
or unsupervised learning methods might be explored, because it requires either sig-

https://exposome1.fiehnlab. ucdavis.edu/download/pmid_title_abstract_sb.zip
https://github.com/barupal/exposome
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nificantly less annotated training data or none at all. An example of this is the use
of topic modelling techniques to cluster jobs and exposures from the existing litera-
ture. Another opportunity lies in using semi-supervised Named Entity Recognition to
increase the coverage of annotated literature.

• Novel deep learning techniques The present studies predominantly utilise traditional
machine learning techniques (e.g., SVMs); however, the field has drastically evolved
over recent years with more advanced techniques known as deep learning methods
producing scaleable and accurate results. This includes but is not limited to transfer
learning [76] or adversarial learning [77], which include a variety of neural networks
structures or knowledge graphs that have been at the core of NLP research.
This also includes Transformer-based methods [78] (e.g., large pre-trained language
models such as BERT [79]), which have made a significant impact on the field of NLP
over recent years and could prove to be useful in NLP for occupational exposure
research. This type of deep learning method is based on attention [80], which has been
shown to improve results in a variety of other domains that have utilised NLP (e.g.,
healthcare). These advances could be used to improve tasks such as Named Entity
Recognition (NER) [81] or Relation Extraction (RE) [82] in occupational exposure
research, which up until this point have relied on traditional machine learning only.
Both tasks could prove useful in the context of occupational exposure research to auto-
matically identify key concepts (e.g., types of exposures, jobs or work environments)
but also how they relate to one another (e.g., a particular role is in a specific work
place). Other advances could be made through the use of unsupervised methods,
which thus far have also relied on traditional machine learning only. More recent
methods such as Neural Topic Models (NTM) have become increasingly popular for
different tasks, including document summarisation and text generation [83] due to
their flexibility and capability. These methods could also be applied to occupational
exposure research to uncover new topics and concepts at a larger scale or draw new
connections between exposures and work environments. Similarly, NTM methods
could also be coupled with pre-trained language models to further boost performance
and result in more accurate representations of new topics [83].

• Extrapolating existing research to other domains of exposure research Most of the re-
search explored in this review is specific to a particular type of exposure, databases or en-
hancement of literature reviews. The domain-specificity and different needs/requirements
for each type of exposure make it therefore hard to extrapolate these existing works to
other fields, link and scale up existing approaches.

5. Conclusions

In this work, we have manually reviewed 37 papers relevant to NLP applied to
occupational exposure research. Our results show that (i) there has been an increase in
articles published, (ii) most work uses existing NLP tools, and (iii) traditional machine
learning is the most popular approach. Furthermore, we have outlined challenges and
opportunities for future research that could further advance the field.
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