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Abstract

Meta-analysis of genetic association studies increases sample size and the power for map-

ping complex traits. Existing methods are mostly developed for datasets without missing val-

ues, i.e. the summary association statistics are measured for all variants in contributing

studies. In practice, genotype imputation is not always effective. This may be the case when

targeted genotyping/sequencing assays are used or when the un-typed genetic variant is

rare. Therefore, contributed summary statistics often contain missing values. Existing meth-

ods for imputing missing summary association statistics and using imputed values in meta-

analysis, approximate conditional analysis, or simple strategies such as complete case

analysis all have theoretical limitations. Applying these approaches can bias genetic effect

estimates and lead to seriously inflated type-I or type-II errors in conditional analysis, which

is a critical tool for identifying independently associated variants. To address this challenge

and complement imputation methods, we developed a method to combine summary statis-

tics across participating studies and consistently estimate joint effects, even when the con-

tributed summary statistics contain large amounts of missing values. Based on this

estimator, we proposed a score statistic called PCBS (partial correlation based score statis-

tic) for conditional analysis of single-variant and gene-level associations. Through extensive

analysis of simulated and real data, we showed that the new method produces well-cali-

brated type-I errors and is substantially more powerful than existing approaches. We applied

the proposed approach to one of the largest meta-analyses to date for the cigarettes-per-
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day phenotype. Using the new method, we identified multiple novel independently associ-

ated variants at known loci for tobacco use, which were otherwise missed by alternative

methods. Together, the phenotypic variance explained by these variants was 1.1%, improv-

ing that of previously reported associations by 71%. These findings illustrate the extent of

locus allelic heterogeneity and can help pinpoint causal variants.

Author summary

It is of great interest to estimate the joint effects of multiple variants from large scale meta-

analyses, in order to fine-map causal variants and understand the genetic architecture for

complex traits. The summary association statistics from participating studies in a meta-

analysis often contain missing values at some variant sites, as the imputation methods

may not work well and the variants with low imputation quality will be filtered out. Miss-

ingness is especially likely when the underlying genetic variant is rare or the participating

studies use targeted genotyping array that is not suitable for imputation. Existing methods

for conditional meta-analysis do not properly handle missing data, and can incorrectly

estimate correlations between score statistics. As a result, they can produce highly inflated

type-I errors for conditional analysis, which will result in overestimated phenotypic vari-

ance explained and incorrect identification of causal variants. We systematically evaluated

this bias and proposed a novel partial correlation based score statistic. The new statistic

has valid type-I errors for conditional analysis and much higher power than the existing

methods, even when the contributed summary statistics contain a large fraction of missing

values. We expect this method to be highly useful in the sequencing age for complex trait

genetics.

Introduction

Meta-analysis has become a critical tool for genetic association studies in human genetics.

Meta-analysis increases sample sizes, empowers association studies, and has led to many excit-

ing discoveries in the past decade [1–5]. Many of these genetic discoveries have informed new

biology, provided novel clinical insights [6, 7], and led to novel therapeutic drug targets [8, 9].

Conditional meta-analysis has been a key component for these studies, which is useful to dis-

tinguish novel association signals from shadows of known association signals and to pinpoint

causal variants.

Existing methods for conditional meta-analysis were proposed based upon the assumptions

that summary association statistics from all variant sites are measured and shared. Yet, in prac-

tice, the score statistics from contributing studies often contain missing values, possibly due to

the use of different genotyping arrays, sequencing capture assays, or quality control filters by

each participating cohort. While genotype imputation is an effective approach to fill in missing

genotype data for participating cohorts, many scenarios may preclude accurate genotype

imputation. For example, a targeted genotyping array/sequencing assay (e.g. exome array)

may not provide sufficient genome-wide coverage for imputation. In addition, it is challenging

to impute low frequency variants even with the highest quality reference panels. Imputed

genotypes of low quality are often filtered out based upon the recommendations from the best

practices [10], since these variants are more prone to artefacts and can lead to inflated type I

errors. Therefore, missing data in meta-analysis of genetic association studies are unavoidable.

Some existing meta-analysis strategies can be highly biased in the presence of missing data.

Conditional meta-analysis in the presence of missing summary statistics
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First, a commonly used method for conditional analysis, COJO, can lead to biased results

when contributed summary association statistics from participating studies contain missing

values [11]. The COJO method approximates the variance-covariance matrix between associa-

tion statistics with the linkage disequilibrium (LD) information from a reference panel. When

the association statistics from contributed studies are missing at some variant sites, the correla-

tion matrix of the meta-analysis statistics can differ greatly from the LD matrix. Consider the

simple example of a meta-analysis of two independent studies, where variant 1 is only mea-

sured in study 1 and variant 2 is only measured in study 2. The meta-analysis association statis-

tics for the two variants are independent, which cannot be approximated by the LD. COJO

only uses meta-analysis results as input. Therefore, it cannot distinguish the scenario where

only study 1 measures both variants (and study 2 measures none), and the scenario where

study 1 only measures variant 1 and study 2 only measures variant 2. In the presence of miss-

ing data, COJO can be highly biased and lead to inflated type I errors.

Second, the strategy of imputing missing data from contributed association statistics and

using imputed association statistics in meta-analysis can also lead to inflated type I errors in

conditional analysis. A simple imputation strategy for marginal (or unconditional) analysis is

to replace missing summary statistics with zeros (REPLACE0), which are their expected value

under the null hypothesis [2, 3]. This method yields valid type I errors for marginal association

analysis. Taking this simple approach for conditional analysis, however, is problematic. The

genetic variants at conditioned sites are likely to have non-zero effects. Replacing missing sum-

mary data with zeros will bias the genetic effect estimates at conditioned variant sites, and can

lead to highly inflated type I errors for conditional analysis (see RESULTS). Similarly, the

methods that seek to impute missing summary statistics based upon LD (e.g. impG [12]) may

introduce substantial biases to the effects of missing variants. Plugging in the imputed Z-score

statistics into conditional analysis (impG+meta) can lead to inflated type I errors. Finally, dis-

carding studies with missing summary statistics (DISCARD, or complete case analysis) will

give valid type I errors, but at the cost of reduced power.

In the statistics literature, synthesis methods have previously been developed to meta-analyze

joint effects from different studies, where the participating studies measure different predictors

[13, 14]. The scenario is similar to the meta-analysis of genetic association studies with missing

data. Yet, in genetic association analysis, usually only marginal effects are reported and joint

effects have to be approximated from marginal effects. The synthesis methods also lack an

implementation for genetic association studies, which greatly limits their impact. To explore the

usefulness of synthesis methods, we proposed and implemented an extension of the synthesis

methods termed SYN+, which can be applied in genetic association meta-analysis.

To overcome these limitations of existing GWAS meta-analysis methods and improve

power, we developed an improved conditional meta-analysis method called partial correlation

based score statistic (PCBS) that borrows strength across multiple participating studies and con-

sistently estimates the partial variance-covariance matrices between genotypes and phenotypes.

We conducted extensive simulations, and showed that our PCBS method has valid type I error

and the highest power among all the methods. On the other hand, COJO, impG+meta and

REPLACE0 can lead to highly inflated type I errors in the presence of missing data. SYN+, while

having valid type I errors, is consistently less powerful than PCBS, especially when the missing-

ness is high or the conditioned variants have larger effects. We also demonstrated the clear

advantage of PCBS in the meta-analysis of cigarettes per day phenotype. PCBS identified many

more independently associated variants from known loci, compared to alternative approaches.

We implemented the proposed methods in the open-source software tools RAREMETAL

[15] and R package rareMETALS and made them publically available (https://genome.sph.

umich.edu/wiki/Rare_Variant_Analysis_and_Meta-Analysis). RAREMETAL and rareMETALS

Conditional meta-analysis in the presence of missing summary statistics
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use marginal score statistics and exact variance-covariance matrix as input, which is suitable for

rare variant association analysis. We also implemented the same method in rareGWAMA

(https://github.com/dajiangliu/rareGWAMA), which conducts meta-analysis using approxi-

mate covariance matrix from a reference panel. These methods and tools have been applied and

tested in a few large scale meta-analyses. We expect these methods to play an important role in

sequence-based genetic studies and lead to important genetic discoveries.

Materials and methods

In this section, we first review the standard meta-analysis methods for single variant and gene-

level association tests when analyzing datasets without missing summary statistics from con-

tributing studies. We then illustrated the limitations of the existing methods and described the

new method PCBS for valid and powerful conditional analysis in the presence of missing sum-

mary statistics from contributing studies.

Overview of meta-analysis methods

We denote the genotype for individual i at variant site j in study k as Gijk, which can take values

of 0,1 or 2, representing the number of the minor (or alternative) alleles in the locus. When the

genotypes are imputed or generated from low pass sequencing studies, genotype dosage can be

used in association analysis. In this case, Gijk will be the expected number of minor (or alterna-

tive) allele counts. We denote the non-genotype covariates as Zik, which includes a vector of

1’s to incorporate the intercept in the model. Single variant association can be analyzed in a

regression model: Yk = Gjkβj + Zkγk + ek. The score statistic for single variant association takes

the form:

Ujk ¼
1

ŝ2
0

P
iGijkðYik � ŷ ikÞ ð1Þ

where ŷ ik ¼ Zikĝk; ĝk is the covariate effect, and ŝ0 is the standard deviation of the phenotype

residuals estimated under the null model M0

Yk ¼ Zkγk þ ek; ek � MVNð0; ŝ2

0
IÞ ðM0Þ

Without the loss of generality, we assume that the phenotype residuals are standardized in

each study as in commonly done in practice. So ŝ0 is often equal 1 in practice. We denote the

vector of score statistics in a genetic region as Uk = (U1k,. . .,UJk). The variance-covariance

matrix between scores statistics is equal to

Vk ¼ 1=ŝ2

0
½G0kGk � GT

k ZkðZ
T
k ZkÞ

� 1ZT
k Gk� ð2Þ

For our illustration of the method, we focus on the analysis of continuous outcomes. Yet,

the meta-analysis and conditional meta-analysis methods work for both continuous outcomes

and binary outcomes.

The meta-analysis score statistics and their covariance matrices are calculated using the

Mantel-Haenszel method, i.e. U = ∑k Uk and V = ∑k Vk. The meta-analysis statistics can be

used to estimate the joint effects for variants 1,. . .,J, i.e. β̂ ¼ V� 1U.

We denote the score statistics at candidate and conditioned variant sites as U ¼ ðUG;UG� Þ,

where G and G�represent the genotypes from the candidate and conditioned variants respec-

tively. The variance covariance matrix for U equals to V ¼
VG VGG�

VG�G VG�

 !
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The conditional score statistic can be calculated by

UGjG� ¼ ðUG � VGG�V
� 1

G�UG� Þŝ
2

0
=ŝ2

c ð3Þ

where ŝ2
c is the residual variance estimated from the conditional analysis model

Yk ¼ G�kβG� þ Zkγk þ ek; ek � MVNð0; ŝ2

c IÞ ðMcÞ

After conditioning on the genotypes G�, the residual variance equals to

ŝ2
c ¼ ŝ2

0
1 � 1

N U0G�V
� 1

G�UG�
� �

.

It is easy to verify that the variance of the conditional score statistics under Mc is equal to

VGjG� ¼ ðVG � VGG�V
� 1

G�VG�GÞŝ
2

0
=ŝ2

c ð4Þ

The single variant and gene-level tests in conditional analysis can be calculated based upon

the conditional score statistics UGjG� and the covariance matrix VGjG� . Details are provided in

S1 Text.

Partial correlation based score statistics (PCBS)

Reviewing formulae (3) and (4), we note that the conditional score statistics and their variances

only depend on the partial variance-covariance matrix between the phenotypes and the geno-

types after the adjustment of covariates. The key idea underlying our approach is to derive a

consistent estimator for the partial covariances in the presence of missing summary statistics

and to use it for unbiased conditional analysis.

In statistics, to calculate the partial covariance between random variables Gjk and Yk adjust-

ing for variable Zk, we first regress out covariate Zk from both Gjk and Yk, and then calculate

the covariance between the residuals. Specifically,

r̂GjkYkjZk
¼

1

Njkŝ
2
0

G0jk Yk � Zkĝð Þ ð5Þ

For a given study, it is easy to check that the partial covariances are in fact scaled score sta-

tistics, i.e.

r̂GjkYkjZk
¼

1

Njk
Ujk ð6Þ

r̂Gj1kGj2kjZk
¼

1

Njk
Vj1 j2k

ð7Þ

Therefore, in meta-analysis, we propose to estimate the partial covariance between geno-

type Gij, phenotype Yi after adjusting the covariate effect Zi using all available summary statis-

tics:

r̂GYjZ;j ¼

P
k2fk:Mjk¼1g

Ujk
P

k2fk:Mjk¼1g
Njk

ð8Þ

r̂GGjZ;j1 j2
¼

P
k2fk:Mj1k¼Mj2k¼1g

Vj1 j2k
P

k2fk:Mj1k¼Mj2k¼1g
Njk

ð9Þ

Conditional meta-analysis in the presence of missing summary statistics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007452 July 17, 2018 5 / 19

https://doi.org/10.1371/journal.pgen.1007452


Here Mjk is an indicator variable that takes the value of 1 when the summary statistic at vari-

ant site j is measured in study k. For notational convenience, we define the matrices of partial

covariance as ρ̂GYjZ ¼ ðr̂GY;jÞj¼1;...;J and ρ̂GGjZ ¼ ðr̂GGjZ;j1 j2
Þj1 ;j2¼1;...;J . Under the fixed effect model,

we have EðV� 1

k UkÞ ¼ β for all k. We showed in S1 Text that Eðρ̂� 1
GGjZρ̂GYjZÞ ¼ β. Therefore, the

partial covariance matrices can be consistently estimated even in the presence of missing sum-

mary statistics.

We define partial correlation based score statistics as

~UGjG� ¼ ρ̂GYjZ � ρ̂GG�jZρ̂
� 1

G�G�jZρ̂G�YjZ ð10Þ

The covariances for ~UGjG� are equal to

~VGjG� ¼ covðρ̂GYjZÞ þ ρ̂GG�jZρ̂
� 1

G�G�jZcovðρ̂G�YjZÞρ̂
� 1

G�G�jZρ̂G�GjZ � ρ̂GG�jZρ̂
� 1

G�G�jZcovðρ̂G�YjZ; ρ̂GYjZÞ

� covðρ̂GYjZ; ρ̂G�YjZÞρ̂
� 1

G�G�jZρ̂G�GjZ ð11Þ

It is easy to verify that the conditional analysis using the estimator ~UGjG� is equivalent to the

standard score statistics when no missing data are present. In the presence of missing data, the

partial correlation based statistic ~UGjG� remains consistent. The conditional association analy-

sis can be performed by replacing the standard score statistic with a partial correlation based

score statistic. Details for calculating single variant and gene-level conditional association sta-

tistics can be found in S1 Text.

Extensions of PCBS to approximate conditional analysis. For rare variant association

meta-analysis, it is recommended to use exact covariance matrix for conditional analysis and

for gene-level association analysis. Using a reference panel to approximate the covariance

between association statistics may lead to biases, as shown in Hu et al [16]. Nonetheless, our

proposed conditional analysis method can also work with approximate covariance matrix for

more common variants using LD information from a reference panel. Specifically the covari-

ance between score statistics Uj1k
and Uj2k

can be approximated by

covðUj1k
;Uj2k
Þ � rj1 j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vj1 j1k

Vj2 j2k

p
, where rj1 j2 is the correlation coefficient between the geno-

types of variants j1 and j2 estimated from a reference panel So the approximate covariance

matrix for the kth study can be written as

V~ k ¼ diagð
ffiffiffiffiffiffiffiffiffiffi
V1;1;k

p
; . . . ;

ffiffiffiffiffiffiffiffiffi
VJ;J;k

p
ÞRdiagð

ffiffiffiffiffiffiffiffiffiffi
V1;1;k

p
; . . . ;

ffiffiffiffiffiffiffiffiffi
VJ;J;k

p
Þ with R ¼ ðrj1 j2Þ1�j1;j2�J :

The PCBS method can be implemented using the approximate covariance matrices as in

(10) and (11).

Imputation based methods in the presence of missing summary statistics

When the contributed summary association statistics from participating studies contain miss-

ing values, a natural strategy is to replace the missing values using imputation. Several imputa-

tion methods were previously developed. One method is REPLACE0, which is to replace the

missing values by 0. We denote the resulting statistics as U0 and V0. To mathematically

describe this method, we define an indicator variable Mjk, which takes value 1 if the summary

statistics at site j in study k is measured and 0 if missing. The meta-analysis score statistic is cal-

culated by

U0

j ¼
P

k2fk:Mjk¼1g
Ujk and V0

j1j2
¼
P

k2fk:Mj1k¼Mj2k¼1g
Vj1j2k

Conditional meta-analysis in the presence of missing summary statistics
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We proved in S1 Text that replacing missing summary association statistics with zero will

bias the genetic effect estimate, i.e. EðU0
G� Þ 6¼ V0

G� βG� . As a consequence, under the null hypoth-

esis that the candidate variant is not associated with the phenotype, the expectation of the condi-

tional score statistics is not equal to 0, i.e. EðUGjG� Þ ¼ VGG�βG� � V0
GG� ðV

0
G� Þ
� 1EðU0

G� Þ 6¼ 0. The

type I error for conditional analysis can be highly inflated.

A more sophisticated set of methods is to impute missing summary statistics based upon

LD information. Yet, the genetic effect estimates based upon the imputed Z-score statistics are

often biased, unless the following condition holds

E½Zimp� ¼ Simp;tagS
� 1

tagE½Ztag �

where Zimp and Ztag are Z-score statistics at the missing and tagSNP sites, Simp,tag and Stag are

genotype correlation matrices. A special case for this condition is that both the tagSNP and

missing variants have null effects. Similar to REPLACE0, applying impG+meta method can

lead to inflated type I errors.

DISCARD method. An alternative approach we call DISCARD, is to remove studies with

missing summary statistics and only use studies with complete data. The meta-analysis score

statistics under this analysis strategy are given by:

Urm
j ¼

P
k2fk:Mjk¼1;8jgUjk; V

rm
j1 j2
¼
P

k2fk:Mjk¼1;8jgVj1 j2k

An obvious limitation of the DISCARD method is that it may result in the removal of a

large number of studies and a significant loss of power.

SYN+ method–Extension of synthesis method to meta-analysis of genetic association

studies. Synthesis methods have been developed in the statistics literature for combining the

joint effects of multiple predictors in a meta-analysis [13]. The method can handle the scenario

where different studies measure different sets of predictors. The published methods only con-

sidered the simplest scenarios where at least one study measures the full set of variables. Addi-

tionally, the published synthesis methods lack an implementation that can be applied in

genetic association meta-analysis.

Our extension, the SYN+ method includes the following steps:

1. Derive estimating equations using marginal SNP effects

The joint effect needed by the synthesis method can be obtained using the shared score sta-

tistics and their covariance matrices. To facilitate the presentation of the method, we re-

write the full model, separating the measured (Gfj:Mjk¼1g) and unmeasured variants

(Gfj:Mjk¼0g). The full model is given by

Yk ¼ Gfj:Mjk¼1gbfj:Mjk¼1g þ Gfj:Mjk¼0gbfj:Mjk¼0g þ Zkγk þ � ðMfullÞ

The residual error from Mfull satisfies � � Nð0; s2
f Þ.

The score statistics from the measured variants satisfy

EðV� 1
fj1;j2 :Mj1k¼Mj2k¼1g;kUfj:Mjk¼1g;kÞ ¼ βfj:Mjk¼1g þ V� 1

fj1;j2 :Mj1k¼Mj2k¼1g;kVfj1;j2 :Mj1k¼1;Mj2k¼0g;kβfj:Mjk¼0g ð12Þ

The formula (12) can be viewed as an estimating equation for the unknown parameters β.

2. Estimate covariance matrix between genetic effects:

To be able to fit the estimating Eq in (12), we need to estimate the covariance matrix

between score statistics, from both the measured variants and the unmeasured variants. For

Conditional meta-analysis in the presence of missing summary statistics
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exact conditional analysis, the covariance matrix can be estimated using formula (8) and

(9). For approximate conditional analysis, the same method can be used with the approxi-

mate covariance matrix ~Vk

3. Estimate the joint effects by regression:

As in the original synthesis method, the joint effects β can be estimated by the estimating

Eq in (12).

The estimating Eq (12) uses the joint effects of the measured variants from each participat-

ing study as input. The variance of V� 1
fj1 ;j2 :Mj1k¼Mj2k¼1g;kUfj:Mjk¼1g;k is influenced by both the

residual variance from model Mfull as well as the phenotypic variance explained by the

unmeasured variants in study k. When missing rate is higher or when the unmeasured vari-

ants have larger effects, V� 1
fj1 ;j2 :Mj1k¼Mj2k¼1g;kUfj:Mjk¼1g;k can be noisier and have larger variance.

PCBS, on the other hand, aggregates information from all studies, and jointly models the

effects of all variants (including the variants that may be missing from a particular study but

measured in others). Therefore, PCBS is statistically more efficient than SYN+, even though

the SYN+ method gives unbiased estimates of the joint effect. The power for the SYN+

method can be much lower than PCBS when the missing rate is high or when the condi-

tioned variants explain a larger fraction of the trait variance.

Simulation study

We conducted extensive simulations to evaluate the performance of PCBS as well as 5 alter-

native approaches, including 1) impG+meta; 2) COJO; 3) REPLACE0; 4) DISCARD and 5)

SYN+ using simulated data. We simulated genetic data following a coalescent model that we

previously used for evaluating rare variant association analysis methods [2]. The model cap-

tures an ancient population bottleneck and recent explosive population growth. Model param-

eters were tuned such that the site frequency spectrum and the fraction of the singletons of the

simulated data match that of large scale sequence datasets.

For quantitative traits, phenotype data from each cohort were simulated according to the

linear model:

Yi ¼ b0 þ
XJ

j¼1

Gijbj þ
XJ

j¼1

G�ijgj þ �i

where Gij and G�ij denote the candidate and conditioned variant genotypes, and βj and γj are

their effects respectively. The model assumes that the genetic variants have additive effects on

the phenotype.

The genetic effects for candidate variants follow a mixture normal distribution, which

accommodates the possibility that a genetic variant can be causal (with probability c) or non-

causal (with probability 1 − c): bj � ð1 � cÞ � Ið0Þ þ c� Nð0; t2
b
Þ. The genetic effects for the

conditioned variants follow: gj � Nð0; t2
g
Þ.

To evaluate the influence of missing data, we randomly chose a certain fraction (10% 30%

or 50%) of the sites from each study and masked them as missing. We then applied the new

method PCBS, along with impG+meta, COJO, DISCARD, REPLACE0 and SYN+ to the data.

In our evaluations, we used the exact LD with COJO and impG+meta, in order to remove the

influence of approximate LD and focus on the impact of missing summary statistics on the

power and type I error. We evaluated the type I errors and power for each approach under a

variety of scenarios with different genetic effect sizes, fractions of causal variants in the gene

region, and the fractions of missing data.
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Meta-analysis of datasets with cigarettes per day phenotype

To evaluate the effectiveness of methods in real datasets, we applied our methods to a meta-

analysis of seven cohorts with a cigarettes-per-day (CPD) phenotype, a key measurement for

studying nicotine dependence. Participating studies were the Minnesota Center for Twin and

Family Research (MCTFR) [17–19], SardiNIA[20], METabolic Syndrome In Men (METSIM)

[21], Genes for Good [22], COPDGene with samples of European ancestry[23], Center for

Antisocial Drug Dependence (CADD) [24], and full UK Biobank. Genotypes were imputed

using the Haplotype Reference Consortium panel [25] and the Michigan Imputation Server

[26] (with the exception of UK Biobank dataset, which was imputed centrally by the UK Bio-

bank team). Summary association statistics from the seven cohorts were generated using

RVTESTS [27], and meta-analysis performed using rareMETALS with the PCBS statistics and

other alternative approaches. Detailed descriptions of the cohorts are available in S1 Text sec-

tion 4, including the methods for association analyses and the adjusted covariates.

To ensure the validity of our association analysis results, we conducted extensive quality

control for the imputed genotype data. We filtered out variant sites with the imputation quality

metric R2 < .7, and sites that showed large differences in allele frequencies from the imputa-

tion reference panel. Imputation dosages were used in the association analysis.

For each sentinel SNP with genome-wide significance (α = 5×10−8), we defined the locus as

the 1 MB window surrounding it. We applied iterative single variant conditional analysis to

identify independently associated variants in each locus. We started by conditioning on the

most significant variant from marginal association analysis. After each round of the associa-

tion analysis, if the top variant remained statistically significant, we added the top variant to

the set of conditioned variants, and performed an additional round of association testing. We

applied the six methods to analyze the data, including the PCBS statistic, SYN+, impG+meta,

REPLACE0, DISCARD and COJO. In order to examine if the low frequency variants in aggre-

gate can be explained by the identified independently associated variants, we also performed

gene-level association analysis for rare variants with MAF<1%, conditional on the identified

independently associated variants.

Results

Evaluation of type I error

We evaluated the type I errors for the six conditional analysis methods PCBS, SYN+, COJO

(with exact LD), impG+meta, REPLACE0, and DISCARD. Scenarios were considered for dif-

ferent combinations of the fractions of missing data, the genetic effects of the variants in the

candidate gene, and the genetic effects of the conditioned variants.

First, we noted that PCBS, SYN+ and DISCARD are the only three methods that have con-

trolled type I errors across all scenarios, consistent with our theoretical expectation (Table 1).

The type I error rate for the other three methods, i.e. impG+meta, REPLACE0 and COJO are

inflated in a number of scenarios. The inflation tends to increase with the effect of the condi-

tioned variant(s) and the rate of missingness. In many scenarios, the type I error can be>100X

inflated over the significance threshold (α = 5×10−8). For example, when the conditioned vari-

ant effect is .04, and the association statistics from 30% of the variant sites are missing, type I

errors for impG+meta, COJO and REPLACE0 are .015, .57 and .74 under the significance

threshold of α = 0.005. When the missing rate is 50%, and the conditioned variant effects is .08,

the type I errors for the three methods become .25, .65, and .60.

Second, among the methods with the controlled type I error rates (i.e. SYN+, PCBS and

DISCARD), PCBS is consistently the most powerful method (Table 1). The power advantage
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of PCBS over the other two approaches increases when 1) the conditioned variant(s) have

larger effects or 2) the fraction of missing summary association statistics is larger. For example,

when candidate variant effect is .04, the conditioned variant effect is .08, and the missing rate

of score statistics is 30%, the power for PCBS is .21, which is 75% higher than the power for

SYN+ (.12). When the candidate variant effect is.08, the conditioned variant effect is .08, and

score statistics from 50% of the variant sites in each participating study are missing, the power

for PCBS and SYN+ are respectively .83 and .74.

Due to the obvious limitations of complete case analysis, the DISCARD method of discard-

ing the studies with missing data can lead to considerable loss of power (Table 1). The power

for DISCARD is substantially lower than PCBS and SYN+. In some scenarios where the miss-

ingness is high, the power is barely larger than the significance threshold.

Interestingly, gene-level association tests are affected by two types of missing data with

opposite consequences: Missing values at causal variant sites reduce power but missing values

at non-causal variant sites tend to reduce noise and thus improve power (Table 2). When

missingness is higher, the power of gene-level tests is lower, but the power loss is small. For

instance, when a causal variant in the candidate gene has effects sampled from N(0,0.22), the

conditioned variant has effect .1, and 30% of the contributed summary statistics in each study

have missing values, the power for burden/SKAT/VT tests are 58%/58%/56%, which are only

slightly reduced compared to the power of analyzing the complete datasets (60%/61%/60%).

On the other hand, the method that discards studies with missing data has much reduced

power (0.011/0.011/8.8×10−3).

Table 1. Power and type I errors of meta-analysis of single variant tests in the presence of missing data for continuous outcomes. Datasets were simulated according

to the genetic and phenotype model described in METHODS. Meta-analysis was performed to combine 20 cohorts with 1500 individuals each. For each replicate, sum-

mary association statistics were generated, and a certain fraction of the generated summary statistics were masked as missing. Scenarios with different combinations of

known variant effects, candidate variant effects and fractions of missingness were considered. Six analysis strategies were considered: 1) PCBS; 2) SYN+; 3) ImpG+meta; 4)

COJO; 5) DISCARD and 6) REPLACE0. Type I error and power were evaluated using 105 replicates under the significance threshold of α = 0.005.

Conditioned Variant

Effect

Candidate Variant

Effect

Fraction of

Missing Data

Type I Error/Power

PCBS SYN+ ImpG

+Meta

COJO DISCARD REPLACE0 Analyze the Full Dataset

[Gold Standard]

Type I Error

0.04 0 0.1 5.0 × 10−3 4.4 × 10−3 5.2 × 10−3 0.065 4.1 × 10−3 9.5 × 10−3 4.9 × 10−3

0.04 0 0.3 5.4 × 10−3 4.0 × 10−3 0.015 0.57 3.8 × 10−3 0.14 5.4 × 10−3

0.04 0 0.5 5.2 × 10−3 3.5 × 10−3 0.021 0.61 1.8 × 10−3 0.46 5.1 × 10−3

0.08 0 0.1 5.0 × 10−3 3.0 × 10−3 9.3 × 10−3 0.25 2.0 × 10−3 0.025 4.8 × 10−3

0.08 0 0.3 5.6 × 10−3 1.7 × 10−3 0.12 0.61 2.0 × 10−3 0.45 4.4 × 10−3

0.08 0 0.5 5.2 × 10−3 1.3 × 10−3 0.25 0.65 9.3 × 10−4 0.60 4.9 × 10−3

Power

0.04 0.04 0.1 0.22 0.20 - - 0.092 - 0.22

0.04 0.04 0.3 0.21 0.18 - - 0.021 -

0.04 0.04 0.5 0.20 0.17 - - 4.5 × 10−3 -

0.08 0.04 0.1 0.21 0.17 - - 0.063 - 0.21

0.08 0.04 0.3 0.21 0.12 - - 0.013 -

0.08 0.04 0.5 0.19 0.11 - - 3.2 × 10−3 -

0.04 0.08 0.1 0.88 0.87 - - 0.57 - 0.88

0.04 0.08 0.3 0.87 0.85 - - 0.12 -

0.04 0.08 0.5 0.86 0.83 - - 0.017 -

0.08 0.08 0.1 0.88 0.84 - - 0.49 - 0.88

0.08 0.08 0.3 0.86 0.76 - - 0.083 -

0.08 0.08 0.5 0.83 0.74 - - 0.011 -

https://doi.org/10.1371/journal.pgen.1007452.t001
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Our method was developed for the fixed effect meta-analysis, where the genetic effects are

assumed to be constant across different studies. But since PCBS first aggregates association sta-

tistics from across studies and then performs conditional analysis, the impact of genetic effects

heterogeneities does not invalidate the test and the type I error remains well controlled. The

power is slightly reduced, but the advantages over other methods remain. To confirm this, we

performed simulation analysis assuming that the genetic effects across studies are heteroge-

neous (S1 Table, S2 Table). In our simulations, the genetic effects for a given variant in differ-

ent studies were simulated from a normal distribution NðmbG�
; ðmbG�

=2Þ
2
Þ, allowing for

substantial between-study heterogeneities. The power comparison for different methods

remains similar to the scenarios where the genetic effects are the same across studies.

Results for the meta-analysis of cigarettes per day phenotype

We performed a meta-analysis of CPD phenotype in 7 cohorts. The locus CHRNA5-CHRNB4-

CHRNA3 was previously identified as associated with CPD [28]. After careful quality control,

42,669,770 variants were meta-analyzed. A majority (32,796,258) of these variants had minor

allele frequencies <1%.

Table 2. Power and type I errors of meta-analysis of gene-level tests in the presence of missing data. Datasets were simulated according to the genetic and phenotype

model described in METHODS. Within the gene region, 20% of the variant sites are deemed causal. Meta-analysis was performed to combine 10 cohorts with 2000 indi-

viduals each. For each replicate, summary association statistics were generated, and a certain fraction (10%, 30% or 50%) of the generated summary statistics were masked

as missing. Scenarios with different combinations of known variant effect, candidate variant effects and fractions of missingness were considered. To evaluate the power

loss due to missing data, we also analyzed the full dataset as a gold standard. Type I errors and power were evaluated for three rare variant tests (simple burden, SKAT and

VT) using 1 million replicates under the significance threshold of α = 0.005.

Conditioned Variant

Effect

Candidate Variant Effect (τβ) Fraction of Missing Data Type I Error/Power for Burden/SKAT/VT (α = 0.0005)

PCBS Analyze the Full Dataset [Gold Standard]

Type I Error

0.05 0 0.1 4.5 × 10−3/3.1 × 10−3/

3.8 × 10−3
4.8 × 10−3/4.1 × 10−3/4.5 × 10−3

0.05 0 0.3 4.7 × 10−3/4.4 × 10−3/

3.4 × 10−3
4.7 × 10−3/4.4 × 10−3/6.0 × 10−3

0.05 0 0.5 6.4 × 10−3/4.0 × 10−3/

3.4 × 10−3
4.7 × 10−3/5.0 × 10−3/4.4 × 10−3

0.1 0 0.1 3.3 × 10−3/2.6 × 10−3/

4.9 × 10−3
5.3 × 10−3/5.9 × 10−3/5.3 × 10−3

0.1 0 0.3 6.0 × 10−3/4.7 × 10−3/

4.1 × 10−3
4.7 × 10−3/5.4 × 10−3/4.1 × 10−3

0.1 0 0.5 6.3 × 10−3/6.7 × 10−3/

6.3 × 10−3
5.8 × 10−3/5.9 × 10−3/4.9 × 10−3

Power

0.05 0.1 0.1 0.21/0.21/0.19 0.22/0.23/0.21

0.05 0.1 0.3 0.19/0.19/0.17

0.05 0.1 0.5 0.17/0.16/0.14

0.1 0.1 0.1 0.22/0.22/0.20

0.1 0.1 0.3 0.20/0.20/0.18

0.1 0.1 0.5 0.17/0.16/0.14

0.05 0.2 0.1 0.59/0.60/0.58 0.60/0.61/0.59

0.05 0.2 0.3 0.57/0.57/0.55

0.05 0.2 0.5 0.54/0.53/0.52

0.1 0.2 0.1 0.59/0.60/0.58

0.1 0.2 0.3 0.58/0.58/0.56

0.1 0.2 0.5 0.54/0.53/0.52

https://doi.org/10.1371/journal.pgen.1007452.t002
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It is important to note that even with high quality imputation panels, such as the haplotype

reference consortium panel [25], there was still considerable missing data in the imputed data-

sets. A fraction of 76.1% of the variants were missing from at least one participating study post

imputation, due to filtering on the imputation quality (R2>.7). Compared to common vari-

ants, rare variants were considerably more likely to be missing: 95.3% of the variants with

MAF<1% were missing from at least one cohort, compared to the fraction of 20.1% for the

common variants with MAF>1%.

The Quantile-Quantile plot for–log10(p-value) is well calibrated (S1 Fig). The genomic con-

trol value is 1.14 for common variants with MAF>0.01, and 1.00 for rare variants with

MAF<0.01. The genomic control value is consistent with that of large scale GWAS for highly

polygenic traits [29, 30]. The intercept for LD score regression [31] was 1.01, which shows little

influence from potential population structure. The meta-analysis of 7 cohorts identifies 9 loci

(S2 Fig), including the well-known CPD associated loci, the nicotine receptor genes CHRNB2,

CHRNB3-CHRNA6,CHRNA5-CHRNB4-CHRNA3, the gene CYP2A6 that encodes cyto-

chrome P450 protein, the gene PDE1C that encodes Phosphodiesterase 1C, FAM163B-DBH,

YTHDF3 and GRM4. Among these loci, CHRNB2 and FAM163B-DBH are associated with

CPD at the genome-wide significance threshold for the first time.

While smoking behaviors are known to be heritable, only the CHRNA5-CHRNB4-CHRNA3
and CYP2A6 loci have been consistently implicated in human GWAS to date. The other nico-

tine receptor gene CHRNB3-CHRNA6was first identified with genome-wide significance in an

isolated population for associations with nicotine dependence and nicotine use [32]. CHRNB2
was implicated in the nicotine dependence trait, but not at genome-wide significance. To our

knowledge, there is no report that this gene is associated with CPD at genome-wide signifi-

cance [33].

In order to understand the allelic architecture of the CPD phenotype and compare different

methods on real data, we performed sequential forward selection with the new PCBS method,

and identified 5 independently associated variants for the CHRNA5-CHRNB4-CHRNA3 locus

and 4 independently associated variants for the CYP2A6 locus at genome-wide significance

threshold (with p-values < 5 × 10−8) (Table 3). The other loci do not have additional indepen-

dently associated variants besides the sentinel variant.

As a comparison, we also performed sequential forward selection using the five alternative

approaches (S3 Table). Using the SYN+ method, fewer independently associated variants are

identified. At the CHRNA5-CHRNB4-CHRNA3 locus, 3 independently associated variants are

identified, and also at the CYP2A6 locus, only 3 independently associated variants are identi-

fied. DISCARD also identifies fewer number of independently associated SNPs. The results

from real data analysis is consistent with our simulation study that PCBS has higher power

than alternative approaches.

Among the approaches that have inflated type I errors in simulations, impG+meta identi-

fies a lot of SNPs with very significant p-values. Many of these identified SNPs have substantial

missingness among the participating cohorts (e.g. N<50,000). Given the inflated type I errors

that we observed in simulations, as well as the small available sample sizes for the top variants,

the validity of the results using impG+meta is of concern. Most of the top variants identified

by COJO and REPLACE0 have low missingness, so there are not many false positive results.

Yet, COJO and REPLACE0 identified fewer independently associated SNPs compared to

PCBS and SYN+ (Table 3 and S3 Table). Together, the analysis of real data confirmed our

simulation experiments.

We examined if our independently associated variants explained previously known associa-

tion signals. To do this, we looked up GWAS catalog [34] using key words “CPD” or “ciga-

rettes per day” and found 11 associated variants in the loci that we identified (S4 Table). We
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first analyzed these 11 variants conditional on our independently associated variants. All of

these variants became insignificant, which indicated that our newly identified independently

associated variants can explain previously known association signals. We also performed

conditional analysis in the opposite direction to examine if our identified association signal

may be explained by the known variants. We found that variants within the CPY2A6 locus

remained highly significant and variants within the CHRNA5-CHRNB4-CHRNA3 locus

remained marginally significant. Together, our independently associated variants explained

1.1% of the phenotypic variance, which substantially improves the phenotypic variance (.64%)

explained by the 11 known signals.

Finally, in addition to single variant association, we investigated if rare variants within each

of the 9 loci were independently associated with the CPD phenotype (S5 Table). 27 genes were

analyzed using simple burden, SKAT and VT tests under a MAF threshold of 0.01. Only one

Table 3. Independently associated variants identified using sequential forward selection with PCBS method. Sequential conditional analyses for the 9 loci were con-

ducted, where we iteratively performed conditional analysis, conditioning on the top variants from earlier rounds. Top association signals at each iteration are shown. The

sequential conditional analysis stops when the top association signal is no longer significant under the genome-wide significance threshold α = 5 × 10−8.

POS RS REF ALT AF PVALUE BETA SE N ANNO GENE

Locus rs2072659 Marginal association analysis

1:154548521 rs2072659 C G 0.1 1.9 × 10−8 -0.041 7.3 × 10−3 134862 Utr3 CHRNB2
Locus rs550432263 Marginal association analysis

5:1385253 rs550432263 G A 2.8 × 10−6 3.6 × 10−8 71 13 34858 Intergenic SLC6A3
Locus rs9366836 Marginal association analysis

6:34009601 rs9366836 A G 0.17 3.3 × 10−8 0.028 5.2 × 10−3 134862 Intron GRM4
Locus rs215600 Marginal association analysis

7:32333642 rs215600 G A 0.64 4.8 × 10−11 -0.027 4.0 × 10−3 134862 Intron PDE1C
Locus rs58379124 Marginal association analysis

8:42579203 rs58379124 T C 0.77 4.4 × 10−14 0.035 4.6 × 10−3 134862 Intron CHRNB3
Locus rs1217106 Marginal association analysis

8:64567670 rs1217106 A G 0.78 2.2 × 10−9 -0.028 4.4 × 10−3 134862 Intergenic YTHDF3
Locus rs56116178 Marginal association analysis

9:136460224 rs56116178 A G 0.11 2.5 × 10−9 0.038 6.3 × 10−3 134862 Intergenic FAM163B-DBH
Locus rs11852372 Marginal association analysis

15:78801394 rs11852372 A C 0.34 7.7 × 10−115 0.096 4.2 × 10−3 128249 Intron AGPHD1
Conditional on rs11852372

15:78896129 rs1317286 A G 0.34 1.7 × 10−22 0.027 2.8 × 10−3 128249 Intron CHRNA3
Conditional on rs11852372 and rs1317286

15:78814389 rs7181245 C T 0.21 2.5 × 10−13 -0.032 4.4 × 10−3 128249 Intron AGPHD1
Conditional on rs11852372, rs1317286 and rs7181245

15:78911181 rs8040868 T C 0.40 2.2 × 10−11 0.020 2.9 × 10−3 128249 Synonymous CHRNA3
Conditional on rs11852372, rs1317286, rs7181245 and rs8040868

15:78739763 rs2089162 A G 0.33 3.5 × 10−8 0.011 2.0 × 10−3 128249 Intron IREB2
Locus rs56113850 Marginal association analysis

19:41353107 rs56113850 T C 0.58 6.6 × 10−67 0.070 4.0 × 10−3 128249 Intron CYP2A6
Conditional on rs56113850

19:41371480 rs117824460 A G 0.029 6.2 × 10−23 -0.13 0.013 128249 Intergenic CYP2A6
Conditional on rs56113850 and rs117824460

19:41406448 rs117540499 G A 0.023 2.4 × 10−17 -0.11 0.013 128249 Intergenic CYP2A6
Conditional on rs56113850, rs117824460 and rs117540499

19:41345395 rs7246742 T G 0.13 1.9 × 10−8 -0.033 5.9 × 10−3 128249 Intergenic CYP2A6

https://doi.org/10.1371/journal.pgen.1007452.t003
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gene (CHRNA5) has gene-level p-values less than 0.05/27, which is the Bonferroni threshold.

None of the genes have exome-wide significant gene-level association p-values.

Discussion

We proposed a simple yet effective meta-analysis method to estimate joint and conditional

effects of rare variants in the presence of missing summary statistics from contributing studies.

The method leads to the optimal use of shared summary association statistics. It has well con-

trolled type I error and much higher power than alternative approaches even when a large

number of contributing studies contain missing summary statistics.

Several approaches were previously developed to combine genetic effects across studies

when different studies may measure different genetic variants e.g. Verzilli et al [35] and New-

combe et al [36]. These methods have some noticeable limitations. The method by Verzilli et al

requires the individual level genotype and phenotype data as input. Also the method focuses

on random effects meta-analysis, while our approach focuses on fixed effect meta-analysis.

The method by Newcombe et al models the haplotype counts in cases and controls. The

method does not allow for the adjustment of covariates, which is a serious limitation. Both

methods use MCMC for fitting the model, which may not scale well for contemporary meta-

analysis with tens of millions of variants and dozens of studies.

It is important to note that our method, PCBS is developed for proper conditional and

joint analysis when imputation fails to work. As we showed in our meta-analysis of smoking

phenotypes, even with the state-of-the-art imputation methods and high quality reference

panels, there are still considerable amount of association statistics filtered out from partici-

pating studies. The rate of missingness is much higher for rare variant association statistics

than for common variant association statistics. PCBS will be particularly useful for the meta-

analysis of sequence data, where the measured variants are predominantly low frequency or

rare [37].

Our method is not developed to replace genotype imputation. Genotype imputation fills in

missing genotypes with imputed values, and increases effective sample sizes and power. Our

method does not increase the effective sample size for tested variants. In practice, imputation

method should first be applied in each participating cohort. Our method should be applied at

the meta-analysis stage for valid and powerful conditional meta-analysis, especially when con-

tributed summary statistics from participating cohorts contain missing values.

Missing data will continue to be a persistent issue in the next generation of large-scale

genetic studies. Major biobanks have started to develop their own genotyping arrays and

imputation reference panels to incorporate customized content. Combining these newly geno-

typed studies with existing datasets will result in missing summary statistics. Our method will

continue to be useful when analyzing these newly generated datasets.

Another major application of the proposed method is in the meta-analysis of sequence

data. Given the use of targeted sequencing assays and variability in batch processing and qual-

ity control across studies, it would be difficult to impute missing genotype data or missing

summary statistics. One of the challenges in sequence-based meta-analysis is to properly

represent monomorphic sites, as the polymorphic variant sites are not known a priori.

Neither un-called variant sites (e.g. due to insufficient coverage or failed quality control) nor

monomorphic sites contribute to the single variant meta-analysis statistic. Yet they should be

treated differently in joint and conditional meta-analysis. Summary statistics from monomor-

phic variants should be replaced by zeros. On the other hand, summary statistics from un-

called variants should be treated as missing data, and the conditional association analysis can

be performed using our partial correlation based score statistics.
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While not the focus of this article, the proposed method is also helpful for downstream analy-

ses that make use of the joint effects of multiple variants, e.g. estimating the phenotypic variance

explained by variants in LD or fine mapping causal variants (e.g. using methods such as RIVERA

[38], FINEMAP [39], CAVIARBF [40]) The validity of these analyses relies critically on the proper

estimates of the joint effects, which are usually obtained from single variant association statistics

and the LD information from a reference panel. When summary statistics from contributing stud-

ies contain missing data, the correlations between resulting marginal meta-analysis association

statistics may not be properly approximated by the LD estimated from a reference panel. In this

case, PCBS can be used to obtain valid joint effect estimates, which can potentially lead to better

calibrated estimates phenotypic variance explained and more accurate fine mapping analysis.

Taken together, our partial correlation based score statistic is a simple yet effective method

for estimating joint and conditional effects from a meta-analysis. With its efficient implemen-

tations in RVTESTS, RAREMETAL and rareGWAMA, this method will have broad applica-

tion in current array-based meta-analysis, as well as the upcoming imputation-based meta-

analysis (e.g. based upon the haplotype reference consortium panel) and sequence-based

meta-analysis. Correct inference on the joint and conditional effects using these methods will

pave the way for a more accurate characterization and a more complete understanding of the

genetic architecture of complex traits.
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