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EDITORIAL COMMENT
Machine Learning for Risk Prediction
Does One Size Really Fit All?*
Collin M. Stultz, MD, PHDa,b
T he advent of generative models, like
ChatGPT, has propelled machine learning to
the forefront of the general public’s mind.

The ability to use such large language models to
answer a wide range of questions from completely
different domains is both impressive and concerning.
Indeed, it begs the question—can a single model be
“smart” enough to correctly answer any question it
is posed? While models like ChatGPT perform well,
on average, across a variety of different tasks, it has
important failure modes that have yet to be compre-
hensively studied.

Machine learning models, unfortunately, are never
one-size-fits-all algorithms. In reality, machine
learning rests on the premise that machines can learn
useful insights when given enough training data. A
model is therefore not guaranteed to perform well on
data that are dissimilar to the data upon which it was
trained. Nevertheless, it is difficult to resist the urge
to explore the boundaries of what a model has
learned by testing its performance on new data that
may not be obviously related to the training data.
Such experiments can, in fact, provide insight into
what the model has learned and help one understand
how and when the model can fail.

In this issue of JACC: Advances, Jang et al1 conduct
a thorough and insightful study exploring how a
previously developed machine learning model,
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MARKER-HF (Machine learning Assessment of RisK
and EaRly mortality in Heart Failure), which was
designed to predict mortality in patients with heart
failure, performs on cohorts that have an array of
different diagnoses. Firstly, the authors demonstrate
that MARKER-HF retains its discriminatory ability
with respect to predicting mortality in heart failure
patients in a large community-based hospital registry
from Kyungpook National University Hospital. More
impressively, they discover that Marker-HF’s
discriminatory ability is largely maintained in cohorts
representing patients who have no prior diagnosis of
heart failure. The fact that MARKER-HF performance
is good across a panoply of common disorders sug-
gests that it may be a “one-size-fits-all” model for risk
prediction across a variety of different diseases; ie,
patients with recent acute coronary syndrome or a
history of atrial fibrillation, chronic obstructive pul-
monary disease, chronic kidney disease, diabetes
mellitus, hypertension, and malignancy.

The MARKER-HF score was constructed using a
machine learning method called a decision tree.2 A
decision tree is essentially a complex, “tree-like”
flowchart that encapsulates a series of decisions and
corresponding consequences. In the present applica-
tion, given a particular patient’s list of clinical char-
acteristics, one can follow the instructions listed in
this flowchart to decide whether this patient is at high
risk of death or not. Now, there are some subtleties
here, as the authors use “Adaptive Boosting”—a pro-
cess that involves constructing many different deci-
sion trees and combining the predictions from these
trees to arrive at a final prediction. The process of
learning the model involves learning the optimal set
of decisions for each decision tree and how to
combine the predictions from each tree without
overfitting the model to the training data. Model
overfitting happens when the model learns to
perform well on the training data, but performs
poorly on examples that were not in the training set.
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Jang et al,1 make a compelling case that their de-
cision tree model is indeed performant on cohorts
distinct from their training data, and, more impor-
tantly, performant on a cohort from another country.
This is a very important result, the significance of
which is hard to overstate. A major failure mode of
many machine learning models is that they do not
generalize outside of the home institution where they
were trained and tested. In this regard, the authors
have gone a long way to demonstrate the utility of
their method across different heart failure pop-
ulations. Nonetheless, while this work is a valiant
effort and an important advance, like all interesting
and provocative studies, it raises a number of ques-
tions that have yet to be answered.

MARKER-HF uses only 8 clinical variables to
calculate a risk score: diastolic blood pressure,
creatinine, blood urea nitrogen, hemoglobin, white
blood cell count, platelets, albumin, and red blood
cell distribution width. These variables were
selected using an iterative approach that selects
“the most common and discriminating subset of
variables out of those available in the UCSD
cohort.”2 An examination of the 8 features used in
MARKER-HF provides insight into why it performs
adequately across a variety of disorders, as several
of these clinical variables were already known to be
independent predictors of death in different pop-
ulations.3-8 It is therefore likely that the perfor-
mance of the MARKER-HF is wholly explained by
the fact that the chosen features are quite powerful
for discriminating between high-risk and low-risk
patients; the upshot being that sophisticated ma-
chine learning methods may not be needed for this
task. To be precise, a simple logistic regression
model or a Cox proportional hazards model—both of
which are standard statistical techniques—devel-
oped using these 8 features may perform just as
well as MARKER-HF. As this comparison was not
done in this paper, it remains unclear whether
Adaptive Boosting Decision Trees (the method used
to develop the MARKER-HF score) was needed
at all.

While the areas under the receiver operator curve
(AUCs) of MARKER-HF are good over a range of
different diagnoses, these data are not sufficient to
truly understand how to use the model in practice. All
too often, machine learning practitioners (and I count
myself a member of this community) rely on the AUC
as our main metric of success. However, good
discriminatory ability is only a necessary condition
for a good model, and consequently, a good AUC does
not guarantee that a model is ready for prime time.
For example, while the MARKER-HF AUC for 1-year
mortality predictions is 0.738, the authors report a
corresponding sensitivity of 0.65. In fact, the re-
ported sensitivity for predicting 1-year death in HF
patients—the task the MARKER-HF was designed to
tackle—is only 0.68. In fairness to the authors, the
sensitivity is a function of the MARKER-HF threshold
one uses to make a decision about whether a patient
is actually at high risk or not, so this is in principle
modifiable. However, the authors state that this value
corresponds to the optimal threshold and the crite-
rion used to choose it remains unclear. For outcomes
such as death, it is desirable to have sensitivities that
are considerably higher.

MARKER-HF is a promising tool that will likely find
a welcome role in our armamentarium of risk strati-
fication methods for heart failure patients. Whether it
is truly a one-size fits all model, however, remains to
be seen.
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