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Application of artificial intelligence 
in endoscopic image analysis 
for the diagnosis of a gastric cancer 
pathogen‑Helicobacter pylori 
infection
Chih‑Hsueh Lin 1,2,11, Ping‑I Hsu 3,11, Chin‑Dar Tseng 1,2*, Pei‑Ju Chao 1,2, I‑Ting Wu 3, 
Supratip Ghose 4, Chih‑An Shih 5,6, Shen‑Hao Lee 1,2,7, Jia‑Hong Ren 1,2, Chang‑Bih Shie 3 & 
Tsair‑Fwu Lee 1,10,2,8,9*

Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, 
duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a 
gastroenterologists’ impression of endoscopic images is inaccurate and cannot be used for the 
management of gastrointestinal diseases. The aim of this study was to develop an artificial 
intelligence classification system for the diagnosis of H. pylori infection by pre‑processing endoscopic 
images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 
patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan 
Hospital were obtained for the derivation and validation of an artificial intelligence classification 
system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network 
(CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with 
different classification models for deep learning of gastric images. The comprehensive assessment for 
H. pylori status by scSE‑CatBoost classification models for both body and antrum images from same 
patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value 
of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an 
artificial intelligence classification model using scSE‑CatBoost deep learning for gastric endoscopic 
images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis 
of H. pylori infection in clinical practice.

Helicobacter pylori (H. pylori) infects the epithelial lining of the stomach and is the major cause of chronic gastri-
tis, peptic ulcer disease, and gastric  cancer1. H. pylori eradication has become the standard therapy to cure peptic 
ulcer  disease1. In regions with a high incidence of gastric adenocarcinoma, eradication of H. pylori is advocated 
to prevent the development of gastric  cancer2.
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Several diagnostic methods utilizing invasive or non-invasive techniques with varying levels of sensitivity and 
specificity have been developed to detect H. pylori infection. Invasive methods including rapid urease test, histol-
ogy, and culture require endoscopy with biopsies of gastric  tissues3. Rapid urease test is based on the production 
of urease enzyme by H. pylori bacteria. The sensitivity the test are significantly lower in patients with intestinal 
metaplasia and also in the cases with peptic ulcer  bleeding4–6. Additionally, treatment with proton-pump inhibi-
tors, antibiotics, and bismuth compounds may also lead to false-negative results because these agents can prevent 
the production of urease by H. pylori3. Furthermore, several organisms such as Klebsiella pneumoniae, Staphylo-
coccus aureus, Proteus mirabilis, Enterobacter cloacae, and Citrobacter freundii in the oral cavity or stomach also 
present urease activity and may give false-positive  results6. Histology is more expensive than rapid urease test. 
Many factors affect the diagnostic accuracy of histological examination, such as the number and location of the 
collected biopsy materials, the experiences of pathologists, the staining techniques, PPIs or antibiotic use, and 
the presence of other bacterial  species4, but with structural similarity to Helicobacter7.

Several studies have demonstrated that the judgment of H. pylori infection by conventional white light endos-
copy could be based on the presence of diffuse redness, rugal hypertrophy, or thick and whitish  mucus8. However, 
diagnosis by the impression of a gastroenterologist using endoscopic images is inaccurate and cannot be used 
for the management of gastrointestinal diseases in clinical  practice8.

Recently, emerging studies have highlighted the application of artificial intelligence in the diagnosis of gas-
trointestinal  diseases9–11. For example, the application of deep learning to endoscopic images by a Convolutional 
Neural Networks (CNN) has been used to detect small intestine or colon  lesions12 and to assess the invasion 
depth of gastric  cancer13–15. Deep learning with the computer-aided analysis of endoscopic images using CNN 
has also been developed for the diagnosis of H. pylori  infection10,16,17. However, several studies applying artificial 
intelligence in the diagnosis of H. pylori infection used inadequate tests as gold standards for diagnosis such as 
serum H. pylori  antibody10,16 and urine H. pylori  antibody17. In fact, a positive test of serum or urine H. pylori 
antibody indicates the tested subjects with either active or past H. pylori infection. Therefore, these studies using 
antibody tests as gold standards for active H. pylori infection might have a false-positive result for those with 
past H. pylori infection, and the inadequate gold standard would impair the diagnostic accuracy of developed 
AI system for H. pylori diagnosis. Additionally, some of these studies excluded patients with peptic ulcer and 
gastric cancer from the investigated  population18. Exclusion of these important target populations might limit 
the generalizability of the CNN decision system for the diagnosis of H. pylori infection.

With regard to the artificial intelligence technology in the diagnosis of gastrointestinal diseases, Liu et al. 
proposed two sub-networks: O-stream and P-stream. The original image was used as an O-stream. The input 
extract color, global features, and preprocessed image were used as the input of the P-stream to extract texture 
and detailed  features19. Sobri et al. proposed a computer visualization technology to extract features from texture 
and color and to extract features of the Gray-Level Co-occurrence Matrix (GLCM) from the wavelet transformed 
image. They used discrete wavelet transform on the endoscopic image, classified the endoscopic gastritis image 
with image features, and then combined the texture and color moment features to develop a classifier model, 
 SVM20. Many pre-processing articles use discrete wavelet transform, GLCM, and color space conversion methods 
to extract texture features.

Hierarchical feature engineering in high dimensional learned kernels from the complex connection of param-
eters and nonlinear activation function makes the learned features in the CNN augur well, with the benefit of 
translation invariance. However, many methods in the past used separate modules with deep learning to extract 
features of images concerned with the nature of the underlying problem. Jain et al. proposed a CNN-based WCE-
Net model for anomaly detection and positioning in Wireless Capsule Endoscopy (WCE)  images21. Zhang et al. 
proposed a dense CNN network-based stereo matching method with multiscale feature connections as Dense-
CNN. A new dense connection network with multiscale convolutional layers was constructed using Dense-CNN. 
The rich image features were extracted, and the combined multiscale features with context information were used 
to estimate the cost of stereo matching. The experimental results with the proposed new loss function strategy 
have been used to learn neural network parameters more reasonably, which can improve the performance of 
the proposed Dense-CNN model in disparity  calculation22. Several previous studies have shown that a cognitive 
visual attention mechanism that adds to the CNN network architecture can extract more important features from 
the original image and improve the performance of artificial intelligence.

Currently, diagnosis of H. pylori infection during endoscopy requires gastric biopsies with rapid urease test, 
histology or culture in clinical practice. However, gastric biopsies with aforementioned tests require biopsy instru-
ments and costs of rapid urease test, histology and culture. Additionally, histological examination and culture of 
H. pylori are time-consuming. Furthermore, gastric biopsy may induce bleeding in patients taking antiplatelet 
or anticoagulant agents and those with coagulopathy. If a novel artificial intelligence system using real-time 
endoscopic images has a similar ore even higher diagnostic accuracy for H. pylori infection as aforementioned 
biopsy methods, it may replace these diagnostic modalities and also can save medical cost, provide immediate 
diagnosis and avoid biopsy-induced bleeding in patients with bleeding tendency.

In this study, we hypothesized that artificial intelligence learning technology can accurately assess H. pylori 
status by endoscopic images, and aimed to develop a novel artificial intelligence classification system for the 
diagnosis of H. pylori infection by CNN and Concurrent Spatial and Channel Squeeze and Excitation (scSE) 
network, combined with different classification models for deep learning of gastric images. In order to increase 
the generalizability of the artificial intelligence classification system, we included the subjects with and without 
major upper gastrointestinal diseases such as peptic ulcer and gastric cancer. In addition, we used an accurate 
method, rapid urease test, as the gold standard for the diagnosis of H. pylori infection in this study. Furthermore, 
the current study used the CNN model and the attention technology, which could improve the body and antrum 
images with a better classification effect.
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Materials and methods
Patient population. Patients receiving endoscopy with gastric biopsies for rapid urease test at An Nan 
Hospital (Tainan, Taiwan) from October 2020 to December 2021 were retrospectively searched. The exclusion 
criteria included (1) previous eradication treatment for H. pylori infection, (2) history of gastrectomy, (3) use 
of antibiotics within the previous 4 weeks, (4) use of proton pump inhibitor within 2 weeks before endoscopy 
(5) coexistence of serious concomitant illness (for example, decompensated liver cirrhosis, uremia, and malig-
nancy), and (6) upper gastrointestinal bleeding. The patients were divided into 5 equal subsets, and each subset 
had about 60 patients. The endoscopic images from the first three subsets of patients (n = 182) receiving endos-
copy between October 2020 and June 2021 were assigned to the derivation group for creating an artificial intel-
ligence classification system in the diagnosis of H. pylori infection. The endoscopic images from the other two 
subsets of patients (n = 120) receiving endoscopy between July 2021 and December 2021 were assigned to the 
validation group for assessing the accuracy of the derived artificial intelligence classification system. The study 
protocol was approved by the Institutional Review Board of the An Nan Hospital of China Medical University 
(TMANH109-REC008). The Institutional Review Board waived informed consent requirement of the study 
because it was a retrospective work.

Upper endoscopy and gastric images. Upper endoscopy was performed using a standard endoscope 
(GIF-Q260J; Olympus, Tokyo, Japan). Gastric images captured during high-definition, white-light examination 
of the antrum (forward) and body (forward and retroflex) were used for both the derivation and validation data-
sets. An antral gastric biopsy specimen and a body biopsy specimen were obtained for rapid urease test. H. pylori 
status was determined by the results of rapid urease test (Delta West Bentley, WA, Australia)23. Archived gastric 
images obtained during standard white-light examination from the endoscopic database were extracted. Two 
endoscopists independently screened and excluded images that were suboptimal in quality (i.e., blurred images, 
excessive mucus, food residue, bleeding, and/or insufficient air insufflation). The representative areas were then 
independently selected by two endoscopists according to standard selection criteria. The standard criteria for 
representative image selection included (1) clear images, (2) no bubbles, blood or food residue, (3) no reflex 
light, and (4) no specific lesions (e.g., erosion, ulcer or tumor). No special tool was used for representative area 
selection. Table 1 shows the numbers of patients and images in the derivation and validation groups. The major 
gastrointestinal diseases that patients suffered from included gastroesophageal reflux disease (n = 69), non-ulcer 
dyspepsia (n = 199), gastric ulcer (n = 20), duodenal ulcer (n = 12), and gastric cancer (n = 2).

Figure 1 demonstrates the overall research flowchart. Endoscopic images of the gastric body and antrum 
from patients receiving endoscopy with confirmation of H. pylori status by rapid urease test were obtained for 
the derivation of an artificial intelligence classification system. The CNN and scSE network, combined with dif-
ferent classification models for deep learning of gastric images. The characteristics of the sample images were 
extracted effectively, and the classification model used the gastroscopic images from the antrum or body to 
make a comprehensive evaluation and diagnosis. All methods were performed in accordance with the relevant 
guidelines and regulations. The total number of patients providing endoscopic images was 302, of which 136 
were H. pylori-negative and 166 were H. pylori-positive. Table 1 shows the numbers of patients and images in 
the derivation and validation datasets. The endoscopic images were obtained from the gastric antrum and body 
(Fig. 2). H. pylori status in the two gastric parts was classified into positive or negative categories using the arti-
ficial intelligence classification model.

Capture image. Since the original input image affected the accuracy of the output result, unnecessary fea-
ture information was removed. As shown in Fig.  3, the representative area was selected by the endoscopists 
for image capture. Because the traditional image pre-processing method may destroy the original important 
features of the image and cannot improve the accuracy of machine learning classification, we did not use any 
traditional image pre-processing technology in this study. Two deep learning neural network models, CNN and 
scSE, were directly used to extract the image features to facilitate subsequent analysis of image features by vari-
ous machine learning classification methods.

Convolutional neural networks (CNN). The problem with traditional deep learning models is that they 
ignore three dimensional information, such as the horizontal, vertical, and color channels of the data. For  CNN24, 

Table 1.  Numbers of patients and images in the derivation and validation datasets.

H. pylori infection status No. of patients No. of images

Derivation dataset

 Positive 101 Antrum: 172
Body: 152

 Negative 81 Antrum: 138
Body: 122

Validation dataset

 Positive 65 Antrum: 110
Body: 97

 Negative 55 Antrum: 91
Body: 77
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each image in the train and test set of images passes through a series of layers, including the convolutional, pool-
ing, and fully connected layers. Among these, the convolutional and pooling layers can maintain shape char-
acteristics to avoid a large increase in parameters, while the fully connected layer will be extracted. The image 
feature uses the connection between each neuron and the upper neuron to perform the final  classification25. 
Because CNN has a shared weight architecture and translation invariance features, and feature extraction and 
classification can be generated at the same time during training, allowing the network to learn more effectively 
in  parallel26, so it has excellent results in image data  work27.

Spatial and channel squeeze and excitation block (scSE). For the scSE  network28, the Spatial 
Squeeze and Channel Excitation Block (cSE) and Channel Squeeze and Spatial Excitation Block (sSE) models 
were used to adjust the network features and were regarded as important effective feature maps or feature chan-
nels. Weight was used to weigh and reduce the impact of unimportant features. Therefore, useful information 
was given a higher weight, while invalid information was given a lower  weight29. As shown in Fig. 4, in the 

Figure 1.  Overall research flow chart.

Figure 2.  (a) Endoscopic images of the body and (b) Endoscopic images of the antrum.
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cSE model, the C × W × H feature vector of the feature map was converted to C × 1 × 1 through global average 
pooling, and then two 1 × 1 × 1 feature information was used for processing to obtain C-dimensional feature 
information, normalized using the Sigmoid activation function, and finally multiplied channel wise to obtain 
the feature map of  cSE30. As shown in Fig. 5, the sSE model was a spatial attention mechanism, which mainly 
used 1 × 1 convolution to compress the original feature map to form a change from C × W × H to 1 × W × H, and 
then the Sigmoid function layer normalized the feature information from 0 to 1 and obtained the feature map 
of spatial attention, and finally directly added it to the original feature map to complete the spatial information 
 calibration31. As shown in Fig. 6, the scSE was mainly composed of a parallel connection of two modules, cSE 
and sSE. After the original feature map passed through the sSE and cSE models, two modules were added to 
obtain a more accurate and calibrated feature  map32.

Derivation and training algorithm. The endoscopic images of 182 patients were used for deep machine 
learning. Classification is the process of predicting the category of a given data point and belongs to the category 
of supervised learning, in which the target is also provided with input  data33–35. For the need to predict H. pylori 
infection, it is more suitable to use classification algorithms for classification. As shown in Fig. 7, the layers of 
the feature extraction network were stacked from the original two to four, and finally, the last layer was used 
to match the input of the classification model such as KNN, SVM, RF, GBDT, AdaBoost, XGBoost, LGBoost, 

Figure 3.  (a) Body and (b) Antrum image capture.

Figure 4.  Channel attention mechanism of cSE architecture model.
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CatBoost. The output of the network was globally average pooled, and the original 8 × 8 × 256 dimensions were 
compressed to one dimensional data to allow the classification model to classify.

Validation algorithm. Endoscopic images from 120 patients were used to evaluate the performance of the 
derived Artificial intelligence diagnostic system. There are different evaluation index methods for each machine 
learning model, and many evaluation indexes can be used to measure the performance of the classification 
model or prediction. The adjustment of parameters and feature selection of different models are typically used 

Figure 5.  Spatial attention mechanism of sSE architecture model.

Figure 6.  A scSE architecture model composed of cSE and sSE.

Figure 7.  Convolutional network combined with classification model.
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to achieve better evaluation performance and to help monitor and evaluate the situation to make appropriate 
fine tuning parameters and optimization  goals36. In this study, six evaluation metrics were used to judge the 
performance of each classification model: accuracy, positive predictive value (PPV), negative predictive value 
(NPV), sensitivity, specificity, and area under the curve (AUC). Table 2 shows the confusion matrix for binary 
classification. The confusion matrix in predictive analysis was composed of true negative (TN, the predicted 
result was negative, and True was also negative), false negative (FN, predicted result was negative; however, the 
actual result was positive), false positive (FP, predicted result was positive, but the actual result was interpreted as 
negative), and true positive (TP, predicted result was positive, but the actual result was also positive)37. The per-
formance of artificial intelligence diagnostic system for a single gastric image was assessed. Chi-square test was 
used to compare the performance of the different models. Differences were considered statistically significant at 
P < 0.05. Because the distribution of H. pylori on the surface of the stomach is heterogeneous through the gastric 
antrum and body, we also assessed the performance of the scSE-CatBoost diagnostic module for the representa-
tive images from the antrum and the body of the same patients.

Informed consent statement. All authors have confirmed the manuscript and approved the publication 
of the manuscript.

Approval statement. A statement to confirm that all experimental protocols were approved by An Nan 
Hospital Medical Foundation Human Body Experiment Committee.

Results
Each machine learning model can effectively help in understanding the performance of the model for the evalu-
ation results. Therefore, this study used the attention mechanism and a combination of classification models to 
classify positive and negative and to evaluate and compare the two parts of the body and antrum infected by H. 
pylori. The classification methods of K-Nearest Neighbor (KNN)38, Support Vector Machine (SVM)39, Adaptive 
Boosting (AdaBoost)40, Random Forest (RF)41, Gradient Boosting Decision Tree (GBDT)42, eXtreme Gradient 
Boosting (XGBoost)43, Light Gradient Boosting (LGBoost)44, and Categorical Boosting (CatBoost)45 were used 
on the CNN and scSE models. The performance of each model was assessed by six parameters including accuracy, 
sensitivity, specificity, PPV, NPV, and AUC.

Performance of CNN or scSE combined with different classification models for the diagnosis 
of H. pylori infection by endoscopic images from the gastric body or antrum. Table 3 shows 
the performance of CNN combined with different classification models for the diagnosis of H. pylori infection 
using endoscopic images from the gastric body. The CNN-CatBoost classification model had the best perfor-
mance, with an accuracy of 88%, sensitivity of 93%, specificity of 80%, and AUC of 0.87. Table 4 displays the 

Table 2.  Confusion matrix for binary classification. TP true positive, FP false positive, FN false negative, TN 
true negative.

Predict result Positive Negative

Positive TP FP

Negative FN TN

Table 3.  Performance of CNN combined with different classification models for the diagnosis of H. pylori 
infection by single endoscopic image from gastric body. CNN, KNN, SVM, RF, GBDT, AdaBoost, XGBoost, 
LGBoost, CatBoost, PPV, NPV and AUC are short for Convolutional Neural Networks, K-Nearest Neighbor, 
Support Vector Machine, Random Forest, Gradient Boosting Decision Tree, Adaptive Boosting, eXtreme 
Gradient Boosting, Light Gradient Boosting, Categorical Boosting, Positive Predictive Value, Negative 
Predictive Value and Area Under the ROC curve, aP = 0.001 for CNN-GBDT vs CNN.

Method Accuracy Sensitivity Specificity PPV NPV AUC 

CNN 0.86 0.96 0.69 0.85 0.89 0.82

CNN-KNN 0.85 0.91 0.73 0.86 0.82 0.82

CNN-SVM 0.84 0.91 0.70 0.85 0.81 0.81

CNN-RF 0.87 0.93 0.77 0.88 0.85 0.85

CNN-GBDT 0.82 0.88 0.72 0.85 0.76a 0.80

CNN-AdaBoost 0.87 0.92 0.77 0.88 0.84 0.84

CNN-XGBoost 0.88 0.93 0.79 0.89 0.86 0.86

CNN-LGBoost 0.88 0.92 0.79 0.89 0.85 0.86

CNN-CatBoost 0.88 0.93 0.80 0.90 0.86 0.87
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performance of scSE combined with different classification models for the diagnosis of H. pylori infection using 
endoscopic images from the gastric body. The scSE-LGBoost classification model achieved the best performance 
with an accuracy of 90%, sensitivity of 93%, specificity of 83%, and AUC of 0.88.

Table 5 lists the performance of CNN combined with different classification models for the diagnosis of H. 
pylori infection using endoscopic images from the gastric antrum. CNN-LGBoost had the best performance, 
with an accuracy of 87%, sensitivity of 89%, specificity of 86%, and AUC of 0.87. Table 6 demonstrates the 
performance of scSE combined with different classification models for the diagnosis of H. pylori infection by 
endoscopic images of the gastric antrum. Both scSE-KNN and scSE-CatBoost achieved the best performance, 
with an accuracy of 89%, sensitivity of 90%, specificity of 88%, and AUC of 0.89.

Comprehensive assessment of H. pylori status by the scSE‑CatBoost classification model with 
endoscopic images of both the body and antrum. Table 7 shows the results of the comprehensive 
assessment for H. pylori status by the scSE-CatBoost classification model with endoscopic images of both the 
body and the antrum of same patients. In this comprehensive classification model, H. pylori status was judged as 
a negative result if both body image and antrum image were classified as a negative result by the scSE-CatBoost 
classification model. If either the body or antrum image was classified as a positive result by the scSE-CatBoost 
classification model, the H. pylori status in the comprehensive assessment was judged as a positive result. The 
comprehensive assessment with the scSE-CatBoost classification model using endoscopic images from the 
antrum and body of same patients had good performance with an accuracy of 90%, sensitivity of 100%, specific-
ity of 81%, and AUC of 0.88.

Table 4.  Performance of scSE combined with different classification models for the diagnosis of H. pylori 
infection by single endoscopic image from gastric body. scSE, KNN, SVM, RF, GBDT, AdaBoost, XGBoost, 
LGBoost, CatBoost, PPV, NPV and AUC are short for Spatial Squeeze and Channel Excitation Block, 
K-Nearest Neighbor, Support Vector Machine, Random Forest, Gradient Boosting Decision Tree, Adaptive 
Boosting, eXtreme Gradient Boosting, Light Gradient Boosting, Categorical Boosting, Positive Predictive 
Value, Negative Predictive Value and Area Under the ROC curve. No differences in the performances of 
accuracy, sensitivity, specificity, PPV, NPV and AUC between groups.

Method Accuracy Sensitivity Specificity PPV NPV AUC 

scSE 0.88 0.93 0.80 0.89 0.86 0.86

scSE-KNN 0.89 0.93 0.81 0.90 0.87 0.87

scSE-SVM 0.83 0.90 0.71 0.85 0.80 0.81

scSE-RF 0.88 0.94 0.76 0.88 0.88 0.85

scSE-GBDT 0.84 0.91 0.72 0.86 0.81 0.82

scSE-AdaBoost 0.87 0.90 0.81 0.90 0.82 0.86

scSE-XGBoost 0.89 0.93 0.80 0.90 0.86 0.87

scSE-LGBoost 0.90 0.93 0.83 0.91 0.87 0.88

scSE-CatBoost 0.88 0.93 0.80 0.89 0.86 0.86

Table 5.  Performance of CNN combined with different classification models for the diagnosis of H. pylori 
infection by single endoscopic image from gastric antrum. CNN, KNN, SVM, RF, GBDT, AdaBoost, XGBoost, 
LGBoost, CatBoost, PPV, NPV and AUC are short for Convolutional Neural Networks, K-Nearest Neighbor, 
Support Vector Machine, Random Forest, Gradient Boosting Decision Tree, Adaptive Boosting, eXtreme 
Gradient Boosting, Light Gradient Boosting, Categorical Boosting, Positive Predictive Value, Negative 
Predictive Value and Area Under the ROC curve. aP = 0.002 for CNN-KNN vs CNN; bP = 0.008 for CNN-SVM 
vs CNN; cP = 0.001 for CNN-RF vs CNN; dP = 0.004 for CNN-AdaBoost vs CNN; eP < 0.001 for CNN-XGBoost 
vs CNN; fP < 0.001 for CNN-LGBoost vs CNN; P < 0.001 for CNN-CatBoost vs CNN.

Method Accuracy Sensitivity Specificity PPV NPV AUC 

CNN 0.80 0.93 0.66 0.77 0.88 0.79

CNN-KNN 0.84 0.88 0.80a 0.84 0.84 0.84

CNN-SVM 0.83 0.86 0.78b 0.83 0.82 0.82

CNN-RF 0.83 0.85 0.81c 0.85 0.82 0.83

CNN-GBDT 0.78 0.82 0.73 0.78 0.77 0.77

CNN-AdaBoost 0.83 0.87 0.79d 0.83 0.83 0.83

CNN-XGBoost 0.87 0.88 0.86e 0.89 0.86 0.87

CNN-LGBoost 0.87 0.89 0.86f 0.89 0.86 0.87

CNN-CatBoost 0.86 0.89 0.84g 0.87 0.86 0.86
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Discussion
In this study, we developed a novel artificial intelligence classification system for the diagnosis of H. pylori infec-
tion by endoscopic images using the CNN and scSE networks and machine learning methods. The sensitivity, 
specificity, and accuracy for predicting H. pylori status by scSE-CatBoost classification model using endoscopic 
images from both the antrum and the body were 100%, 81%, and 90%, respectively. The results indicate that 
scSE-CatBoost classification model can achieve a high accuracy for the diagnosis of H. pylori infection with white 
light endoscopic images. It is important to note that the negative predictive value of our artificial intelligence-
assisted H. pylori diagnosis system was 100%. The possibility of positive H. pylori status of the patients receiving 
endoscopy is extremely low if our image diagnosis system shows negative result of H. pylori status. Therefore, it 
is not necessary to further perform biopsy to check H. pylori status during endoscopy. The avoiding unnecessary 
biopsy for H. pylori testing has clinical implications because it can decrease medical cost, save endoscopy time and 
prevent biopsy-induced bleeding in patients with bleeding tendency. Currently, we still suggest the endoscopists 
to perform biopsy with rapid urease test or histology to confirm the diagnosis of H. pylori infection in patients 
with positive predictions by our artificial intelligence diagnostic system because the positive predictive value of 
our diagnostic system is suboptimal (82%). It is necessary to further confirm the diagnosis of H. pylori infection 
before the administration of eradication therapy. Nonetheless, the accuracy of our artificial intelligence diagnostic 
system may be further improved by deep learning of more endoscopic images and application of new learning 
technologies in the future. If no differences in the accuracies between our artificial intelligence diagnostic sys-
tem and rapid urease test or histology exist, our image diagnostic system has a great potential to replace current 
biopsy-dependent methods for H. pylori testing.

The current study has several innovative improvements in the diagnosis of H. pylori infection by CNN 
and scSE networks. First, we examined the performances of CNN and scSE networks combined with different 
classification models for the diagnosis of H. pylori infection. The results showed that scSE-CatBoost classifica-
tion models could achieve a very high accuracy for the diagnosis of H. pylori infection. Second, we assessed 
endoscopic images obtained from white light endoscopic system that was commonly used in daily practice in 
endoscopic unites. Some studies used blue laser or linked color images to develop image classification system 
for the diagnosis of H. pylori infection. These images are not ready to obtain in most endoscopic units. Third, 
some artificial intelligence diagnostic systems excluded the endoscopic images from patients with peptic ulcer 
and gastric cancer from the investigated population and limited the generalizability of their image diagnostic 
system in patients with important gastrointestinal diseases. In the current study, we included the subjects with 

Table 6.  Performance of scSE combined with different classification models for the diagnosis of H. pylori 
infection by single endoscopic image from gastric antrum. scSE, KNN, SVM, RF, GBDT, AdaBoost, XGBoost, 
LGBoost, CatBoost, PPV, NPV and AUC are short for Spatial Squeeze and Channel Excitation Block, 
K-Nearest Neighbor, Support Vector Machine, Random Forest, Gradient Boosting Decision Tree, Adaptive 
Boosting, eXtreme Gradient Boosting, Light Gradient Boosting, Categorical Boosting, Positive Predictive 
Value, Negative Predictive Value and Area Under the ROC curve. aP < 0.001 for scSE-KNN vs scSE; bP < 0.001 
for scSE-SVM vs scSE; cP < 0.001 for scSE-RF vs scSE; dP = 0.002 for scSE-GBDT vs scSE; eP < 0.001 for scSE-
AdaBoost vs scSE; fP < 0.001 for scSE-XGdaBoost vs scSE; gP < 0.001 for scSE-LGdaBoost vs scSE; hP < 0.001 
for scSE-CatBoost vs scSE; iP < 0.001 for scSE-KNN vs scSE; kP = 0.021 for scSE-SVM vs scSE; lP = 0.009 for 
scSE-RF vs scSE; mP = 0.009 for scSE-AdaBoost vs scSE; nP = 0.004 for scSE-XGBoost vs scSE; oP < 0.001 for 
scSE-LGBoost vs scSE; pP < 0.001 for scSE-CatBoost vs scSE.

Method Accuracy Sensitivity Specificity PPV NPV AUC 

scSE 0.82 0.95 0.65 0.77 0.92 0.80

scSE-KNN 0.89 0.90 0.88a 0.90i 0.88 0.89

scSE-SVM 0.85 0.88 0.82b 0.86k 0.84 0.85

scSE-RF 0.86 0.87 0.84c 0.87l 0.84 0.86

scSE-GBDT 0.81 0.83 0.79d 0.83 0.80 0.81

scSE-AdaBoost 0.86 0.86 0.85e 0.87m 0.84 0.86

scSE-XGBoost 0.88 0.90 0.85f 0.88n 0.88 0.88

scSE-LGBoost 0.88 0.89 0.87g 0.90o 0.87 0.88

scSE-CatBoost 0.89 0.90 0.88h 0.90p 0.88 0.89

Table 7.  Comprehensive assessment for H. pylori status by scSE-CatBoost classification models with 
endoscopic images from the antrum and body of same patients. scSE, CatBoost, PPV, NPV and AUC are short 
forms for Spatial Squeeze and Channel Excitation Block, Categorical Boosting, Positive Predictive Value, 
Negative Predictive Value and Area Under the ROC curve.

Method Accuracy Sensitivity Specificity PPV NPV AUC 

scSE-CatBoost 0.90 1.00 0.81 0.82 1.00 0.88
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and without major upper gastrointestinal diseases in the process of developing the artificial intelligence image 
diagnostic system. Therefore, our artificial intelligence classification system can be applied for the diagnosis of 
H. pylori infection in the patients with peptic ulcer and gastric cancer. In addition, some previous artificial intel-
ligence diagnostic system used inadequate tests (serum of urine H. pylori antibody tests as gold standards for 
the diagnosis of H. pylori  infection10,16. In the current study, we used rapid urease test as the gold standard for 
the diagnosis of H. pylori infection in this study. The rapid urease test is a reliable testing for H. pylori infection 
with a sensitivity of 90–95% and a specificity of 95–100%3.

This study used deep learning combined with classification models for datasets of endoscopic images from the 
gastric body and antrum. The evaluation of the model mainly uses CNN and scSE for evaluation and comparison. 
The experimental results showed that the use of scSE had a higher evaluation effect, either using gastric body 
or antrum images. The main reason is that the scSE model can perform weighting operations on information 
channels to enhance effective information and suppress invalid information. After adding the scSE model, it 
has more nonlinearity for the overall network, which can better fit the complex correlation between channels, 
not only increasing the effectiveness of extracting features but also greatly reducing the number of parameters 
and calculations.

Our data showed that the comprehensive assessment by scSE-CatBoost classification models with endoscopic 
images of both the body and antrum had a good performance in determining H. pylori status. The performance 
of for H. pylori status by scSE-CatBoost classification models could achieve an accuracy of 0.90, a sensitivity of 
1.00, a specificity of 0.81, and an AUC of 0.88.

Our study has several limitations. First, the assessment of endoscopic images was not real-time. In clini-
cal practice, it is important for real-time assessment of H. pylori infection during live endoscopy. Second, we 
only included patients without previous H. pylori eradication therapy. It remains unclear whether the artificial 
intelligence-assisted image diagnosis system can be applied for post-eradication assessment for H. pylori status. 
Third, this study was a retrospective work, our artificial intelligence-assisted image diagnosis system still require 
prospective validation in other populations.

Conclusions
In clinical practice, the judgment of H. pylori infection by gastroenterologists’ impression of endoscopic images is 
often inaccurate. The comprehensive assessment of gastric endoscopic images by the scSE-CatBoost classification 
model and deep learning can achieve good performance in the determination of H. pylori status. The current 
study suggests that a machine learning based Image recognition system can be applied to distinguish H. pylori 
status and has great potential to be applied in the survey or diagnosis of H. pylori infection during endoscopy.

Data availability
The datasets generated and analysed during the current study are not publicly available due to privacy or ethical 
restrictions but are available from the corresponding author on reasonable request.
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