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ABSTRACT: Peptidoglycan (PGN) is a cell wall constituent in dental plaque bacteria that triggers inflammatory responses. 
PGN binds Toll-like receptors, leading to increases in prostaglandin E2 and interleukin-1, which play crucial roles in the 
inflammatory response and tissue destruction. Dental surgery can give plaque bacteria access to blood circulation, thereby 
creating a risk of septic inflammation of the endocardium. Plant-derived flavonoids have been reported to reduce inflam-
matory cytokine secretion by host cells. In the present study, we investigated the effects of flavonoid myricetin on ex-
pression of cyclooxygenase 2 (COX-2) in the H9c2 cells treated with PGN from Streptococcus sanguinis, a bacterial con-
stituent of dental plaque associated with infective endocarditis. Myricetin exposure resulted in dose-dependent suppres-
sion of PGN-induced COX-2 expression, diminished phosphorylation of p38, extracellular signal regulated kinase 1/2, 
and c-Jun N-terminal kinase, and reduced IB- degradation, consistent with decreased COX-2 activity. In conclusion, 
the aforementioned results suggest that myricetin is useful for moderating the inflammatory response in infective 
endocarditis.
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INTRODUCTION

Dental plaque is a complex biofilm made up of an amal-
gamation of more than 500 kinds of Gram-positive and 
-negative microbial species (Dewhirst et al., 2010), early 
colonizing species are associated with dental caries 
(Hamada and Slade, 1980; Yamashita et al., 1993). Al-
though Streptococcus sanguinis has been reported to have 
preventative effects (Kuramitsu et al., 2007; Nyvad and 
Kilian, 1987; Xu et al., 2007), it is often a late colonizer 
of subgingival plaque, particularly when homeostasis in 
the oral environment has been disrupted (McNicol and 
Israels, 2010). S. sanguinis produce pathogen-associated 
molecular patterns (PAMPs), such as peptidoglycan 
(PGN) and lipoteichoic acid (LTA), which stimulate the 
immune system through binding Toll-like receptors 
(TLRs).

PGN, which is composed of -1,4-linked N-acetylglu-
cosamine and N-acetylmuramic acid cross-linked by pep-
tides, is a major bacterial cell wall constituent (Paik et al., 
2005; Ge et al., 2008). TLRs are a highly conserved fam-
ily of transmembrane pathogen recognition receptors. To 

date, 13 mammalian TLRs have been characterized, each 
of which responds to different pathogen molecules (Xu et 
al., 2007; Paik et al., 2005). TLRs are broadly distributed 
on immune cells and their activation signals production 
of proinflammatory cytokines, histamine and prostaglan-
din E2 (Paik et al., 2005; Ge et al., 2008; Lindner et al., 
2009; Chi et al., 2011). All TLRs activate common signal-
ing pathways, leading to activation of the transcription 
factor, such as nuclear factor (NF)-B (Müller-Anstett et 
al., 2010). TLR signaling is mediated by two pathways, a 
myeloid differentiation primary response 88 (MyD88)- 
dependent one that triggers proinflammatory cytokine 
expression and an MyD88-independent one [Toll/inter-
leukin (IL)-1 receptor-domain-containing adaptor protein 
inducing interferon- (TRIF)/TRIF related adaptor mol-
ecule (TRAM)-mediated)] responsible for interferon type 
I production. TLR4 is unique since it recognizes both 
MyD88-dependent and MyD88-independent pathways 
(Müller-Anstett et al., 2010). Binding of ligands to TLR4 
enhances activation of downstream signaling molecules, 
such as mitogen-activated protein kinase (MAPK), extra-
cellular signal regulated kinase (ERK) 1/2, p38, and c-Jun 
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N-terminal kinase (JNK) 1/2 (Into et al., 2004; Darieva 
et al., 2004).

Signaling through the TLR2 pathway is one of the main 
molecular mechanisms involved in immune cell responses 
to the Gram-positive pathogen PGN (Dammermann et 
al., 2013). A fast response to PGN is beneficial to the 
host at moderate levels by promoting inflammation and 
priming the immune system to eliminate the invading 
pathogen; however, an excessive response to PGN can 
promote chronic inflammation (Sanchez-Lopez et al., 
2014; Lee et al., 2015). Dental surgery can enable the 
spread of bacteria through the bloodstream, which can 
lead to formation of vegetations in the lining of heart 
chambers and valves, thereby promoting septic inflam-
mation of the endocardium (Ito, 2006). S. sanguinis ap-
pears to play an important role in infective endocarditis 
by increasing proinflammatory cytokines and cyclooxy-
genase-2 (COX-2), an enzyme that synthesizes proinflam-
matory prostaglandins, thereby enhancing chronic inflam-
matory responses (Valera et al., 2007; Chen et al., 2009; 
Veltrop et al., 1999; Banks et al., 2002).

Flavonoids are a broadly distributed class of plant pig-
ments, universally present in vascular plants, that are re-
sponsible for much of the coloring in plants. A variety of 
flavonoids have been reported to promote anti-inflamma-
tory activity without cytotoxicity (Grenier et al., 2015; Lee 
and Lee, 2016; Gutiérrez-Venegas et al., 2013; Gutiérrez- 
Venegas et al., 2017), and high flavonoid dietary intake 
has been associated with anti-inflammatory benefits 
(Veltrop et al., 1999). The flavonoid myricetin, which is 
abundant in tea, berries, fruits, and vegetables (Peterson 
and Dwyer, 1998), has diverse biological activities, in-
cluding antioxidative, antiproliferative, and anti-inflam-
matory effects, as well as purported antidiabetic, anticar-
cinogenic, antibacterial, neuroprotective, and hepatopro-
tective activities (Gutiérrez-Venegas et al., 2013, Ong and 
Khoo, 2000; Yokomizo and Moriwaki, 2006; Puupponen- 
Pimiä et al., 2001; Molina-Jiménez et al., 2004; Kielian 
et al., 2005).

Myricetin has been shown to exhibit anti-inflammatory 
effects through inhibiting of IL-1 transcription and nitric 
oxide production in PGN-treated RAW 246.7 cells 
(Gutiérrez-Venegas and González-Rosas, 2017; Gutierrez 
and Hoyo-Vadillo, 2017; Hiermann et al., 1998; Peterson 
and Dwyer, 1998). Myricetin suppresses PGN-induced 
COX-2 expression by H9c2 cells, which are derived from 
rat heart tissues, suggesting that myricetin exerts anti-in-
flammatory activity in periodontal disease (Lee and Lee, 
2016; Gutiérrez-Venegas et al., 2013; Gutiérrez-Venegas 
et al., 2017). Additionally, we showed that myricetin had 
a protective influence on human gingival fibroblasts 
(HGFs) following LTA-induced activation of inflamma-
tory cytokines (Gutiérrez-Venegas et al., 2013).

In light of these findings and given that PGN is in-
volved in the activation of multiple signaling pathways 
downstream of TLR2 including MAPK pathways 
(Gutiérrez-Venegas et al., 2013), the aim of the present 
study was to evaluate the effects of myricetin on PGN- 
induced inflammatory responses in H9c2 cardiomyocytes. 
The effects of myricetin on PGN-activated signaling path-
ways were assessed with western blot analysis. Because 
PGN-induced nuclear translocation of NF-B in response 
to phosphorylation and degradation of IB- promotes 
expression of inflammatory molecules (Gutiérrez-Venegas 
et al., 2013; Gutiérrez-Venegas et al., 2017), we also as-
sessed the effect of myricetin on the phosphorylation of 
IB- in whole cell extracts.

MATERIALS AND METHODS

Super Script One-Step reverse transcription polymerase 
chain reaction (RT-PCR) reagents were purchased from 
Invitrogen (Carlsbad, CA, USA). Myricetin (3,5,7,3’,4’,5’- 
hexahydroxyflavon, <96%), phenylmethyl sulfonyl fluo-
ride, sodium dodecyl sulfate, ethylenediamine tetraacetic 
acid, PD98059, SB203580, SP600125, and tetrazolium 
salt were obtained from Sigma-Aldrich Co. (St. Louis, 
MO, USA). Antibodies agonist phospho-ERK (Thr 202/ 
Tyr 204), phospho-p38 (Tyr 182), phospho-JNK (Thr 
183/Try 186), phospho-IB-, -actin, anti-COX-2, and 
luminol reagent were purchased from Santa Cruz Bio-
technology (Santa Cruz, CA, USA).

H9c2 cell culture
Cells were obtained from American Type Culture Col-
lection (lot # 63781507; Manassas, VA, USA) grown in 
Dulbecco’s modified Eagle medium (Sigma-Aldrich Co.) 
with 10% fetal bovine serum (Invitrogen) and supple-
mented with penicillin (120 unit/mL), streptomycin (75 
g/mL), gentamycin (160 g/mL), and amphotericin B 
(3 g/mL) in a 5% CO2 environment. Cells were used 
between 5 to 9 passages (Ito, 2006).

Cell treatment
Myricetin was dissolved in dimethyl sulfoxide in a stock 
concentration 1 mM and a final concentration of 10 M, 
and was incubated in fresh culture medium 30 min prior 
to PGN stimulation. Cells were incubated in fresh media 
and reagents for different periods, then were divided into 
control group (basal) with a vehicle, myricetin, and myri-
cetin plus PGN. The concentration was used based on 
previous results by Gutiérrez-Venegas et al. (2013). Cells 
were pre-incubated with PD98059 (30 M), SB203580 
(20 M), SP600125 (30 M), or H89 (10 M) for 60 min 
before being stimulated with PGN (10 g/mL) for 6 h. 
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Fig. 1. Cell Viability in the presence of (A) peptidoglycan (PGN), (B) myricetin, and (C) PGN and/or myricetin. Data are mean±SD
(n=3).

RT-PCR
Total RNA was isolated from H9c2 cells using Trizol. To-
tal cell RNA (1 g) was reversed transcribed using One 
Strep RT-PCR kit (Invitrogen). PCR was performed us-
ing oligonucleotides 5’-TTC AAA TGA GAT TGT GGG 
AAA TTG CT-3’ (coding strand) and 5’-GTA GAG GCA 
GGG ATG ATG TT-3’ derived from COX-2; 5’-GTA 
GAG GCA GGG ATG ATG TT-3’ (anticoding strand) de-
rived from glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) gene. PCR amplification conditions included 
denaturing at 94oC for 1 min, annealing at 55oC for 1 
min, and extension at 72oC for 1.5 min: PCR was carried 
out for 35 cycles. Amplification was characterized by 
fragment size on ethidium bromide-stained agarose gels. 
Three independent experiments were performed for each 
treatment. Data were analyzed by using LabWorks 4.0 
(Labworks LLC., Lehi, UT, USA).

Western blotting
Cell homogenates were centrifuged at a speed of 11,290 
g for 10 min. Proteins were extracted with lysis buffer 
and pulse sonicated. Lysates were cleared by centrifuga-
tion and the resulting supernatant was transferred to a 
new tube. Protein concentrations of the supernatant were 
quantified with Bradford protein assay reagent kit (Bio- 
Rad Laboratories, Hercules, CA, USA). Samples (30 g) 
were separated using sodium dodecyl sulfate (SDS)-pol-

yacrilamide gel electrophoresis and transferred to polyvi-
nylidene difluoride membranes. Membranes were blocked 
with 5% non-fat dry milk in Tris-buffered saline Tween- 
20 (TBST) for 1 h, washed, and probed with the respec-
tive polyclonal antibodies. Primary antibodies used were 
anti-phospho-p38 (1:10,000), anti-ERK 1/2 (1:10,000), 
anti-JNK (1:10,000), anti-IB- (1:10,000), and anti- 
COX-2 (1:10,000) (Santa Cruz Biotechnology). After in-
cubation with primary antibody, membranes were wash-
ed with TBST and incubated with secondary antibodies 
for 1 h. Proteins were detected using Western Blotting 
Luminol Reagent (Santa Cruz Biotechnology).

Statistical analysis
Each experiment was repeated at least three times. Quan-
tified results are presented as mean±standard deviation 
(SD). Significant differences were determined using fac-
torial analysis of variance. P<0.05 was considered signif-
icant difference.

RESULTS

Myricetin and PGN did not disrupt H9c2 cell viability.
The effects of PGN (1∼15 g/mL) and myricetin (1∼15 
M) on the viability of H9c2 cells were assessed after 24 
h, 48 h, and 72 h. 3-(4,5-Dimethyldiazol-2-yl)-2,5-di-
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Fig. 2. Effects of peptidoglycan (PGN) on phosphorylation of ex-
tracellular signal regulated kinase (ERK) 1/2, c-Jun N-terminal 
kinase (JNK), and p38 in H9c2 cells. (A) p-ERK1/2, (B) p-JNK, 
and (C) p-p38. Data are mean±SD (n=3); *P<0.05 vs. PGN 0 
µg/mL.

phenyltetrazolium bromide (Sigma-Aldrich Co.) assays 
showed that cell viability was not altered by any of these 
treatments, confirming that neither compound was cyto-
toxic at the concentrations employed (Fig. 1).

PGN promotes MAPK phosphorylation and myricetin 
inhibited PGN-induced MAPK phosphorylation in H9c2 
cells.
PGN (10 g/mL) induced time-dependent MAPK phos-
phorylation. Maximal pERK1/2 was obtained 15 min in-
to the PGN treatment and ERK1/2 levels were decreas-
ing after 30 min. Maximal p-JNK levels were obtained 
30∼45 min into the PGN treatment and maximal p-p38 
levels were seen after 45 min (Fig. 2). Western blotting 
confirmed that PGN strongly induced phosphorylation 
of ERK1/2, p38, and JNK in H9c2 cells, and that these 
phosphorylation effects were blocked by myricetin in a 
concentration-dependent manner (Fig. 3).

Myricetin inhibits PGN-induced IB- degradation in 
H9c2 cells.
Extracts of H9c2 cells pretreated with myricetin (1∼15 

M) for 1 h followed by stimulation with PGN (10 g/ 
mL) for 120 min were analyzed for IB- levels. As shown 
in Fig. 4, PGN-stimulated H9c2 cells had increased IB- 
 levels at 120 min (P<0.05). Myricetin (15 M) pre-
vented IB- phosphorylation and degradation in a con-
centration-dependent manner.

Inhibitory effect of myricetin on PGN-induced COX-2 
transcription and translation
Myricetin (1∼15 M for 30 min) decreased COX-2 ex-
pression in H9c2 cells appreciably. Subsequent stimula-
tion of myricetin-pretreated (1∼15 M for 30 min) H9c2 
cells with 10 g/mL PGN for 6 h promoted a 4-fold in-
crease in expression of COX-2. PGN-stimulated COX-2 
secretion decreased by about 90% (Fig. 5). PGN induced 
a dose-dependent increase in COX-2 protein synthesis, 
and this expression was modulated by inhibition of the 
MAPK/ERK kinase (MEK) inhibitor PD98059, indicating 
that ERK1/2 is involved in COX-2 expression in H9c2 
cells (Fig. 5E).
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Fig. 3. Effects of myricetin on peptidoglycan (PGN)-induced 
phosphorylation of extracellular signal regulated kinase (ERK) 
1/2, p38, and c-Jun N-terminal kinase (JNK) in H9c2 cells. (A) 
p-ERK1/2, (B) p-JNK, and (C) p-p38. Data are mean±SD (n=3); 
*P<0.05 vs. PGN alone.

Fig. 4. Western blot analysis of IB- in H9c2 cells treated with (A) peptidoglycan (PGN) or (B) myricetin. Data are mean±SD
(n=3). Significantly different from #0 min and *PGN alone (P<0.05).

DISCUSSION

In this study, we evaluated, for the first time, the effect 
of myricetin on the inflammatory response induced by 
PGN in H9c2 cells. We showed that myricetin blocks 

MAPK phosphorylation stimulated by PGN. In addition, 
we confirmed that myricetin can attenuate COX-2 expres-
sion and found that myricetin blocked activation of NF- 
B, probably by arresting IB- degradation and translo-
cation of the NF-B subunit p65 in PGN-stimulated H9c2 
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Fig. 5. Effects on COX-2 expression peptidoglycan (PGN)- or 
myricetin-induced H9c2 cells using Western blot analysis [(A) 
and (B), respectively] and RT-PCR analysis [(C) and (D), re-
spectively]. (E) Effects of kinase inhibitors of PGN-induced 
COX-2 expression in H9c2 cells. Data are mean±SD (n=3); 
Significantly different from #PGN 0 g/mL and *PGN alone 
(P<0.05).

cells. PGN binding of TLR2 promotes phosphorylation 
of IB-, subsequent IB- degradation, and NF-B trans-
location to the nucleus, where it regulates expression of 
proinflammatory mediators (Cho et al., 2007; Ma et al., 
2010; Wu et al., 2003).

Our recent study demonstrated that myricetin inhibits 
induction of COX-2 and prostaglandin E2 in HGFs acti-
vated with LTA (Gutiérrez-Venegas et al., 2013). The 
COX-2 gene promoter contains two major regions that 
function synergistically in binding regulatory transcrip-
tion factors, one of which binds NF-B following PGN 
activation. A crucial step in NF-B activation is rapid de-
pletion of cytoplasmic IB- protein by proteolytic deg-

radation, which is triggered by phosphorylation of IB- 
at two amino-terminal serine residues. Subsequent ubiq-
uitination marks phosphorylated IB- for degradation 
via the ubiquitin-proteosome pathway. In this study, we 
demonstrated that myricetin, like other flavonoids (Bali 
et al., 2014), strongly inhibits IB- activity.

MyD88 mediates MAPK activation and NF-B signal-
ing; MAPK signaling pathways play important roles in 
PGN transduction pathways. In this study, p-ERK1/2, 
p-JNK, and p-p38 levels were decreased by myricetin in 
PGN-stimulated H9c2 cells. These data agree with find-
ings in macrophages, lung fibroblasts, epidermal cells, 
and umbilical vein endothelial cells (Chen et al., 2009; 
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Veltrop et al., 1999; Gutiérrez-Venegas and González- 
Rosas, 2017). Our findings that PGN-induced increases 
in COX-2 could be blocked the MEK−the enzyme the 
phosphorylates MAPKs including ERK1/2−suggest that 
ERK1/2 is involved in COX-2 expression in H9c2 cells 
and support that notion that MAPK activity is important 
in the upregulation of proinflammatory cytokines expres-
sion via NF-B in PGN-stimulated H9c2 cells. Addition-
ally, expression of IL-6 and -8 are controlled by the phos-
phoinositide 3-kinase pathway. Inhibition of either phos-
phoinositide 3-kinase or MAPK promotes expression of 
proinflammatory cytokines (Gutiérrez-Venegas et al., 
2013; Gutiérrez-Venegas et al., 2017; Gutiérrez-Venegas 
and González-Rosas, 2017).

The present findings showing that myricetin can mod-
ulate PGN triggered cyto-immunological responses in 
H9c2 cells are consistent with prior reports showing that 
other flavonoids, including apigenin, epigallocatechin-3- 
gallate, luteolin, kaempferol, and quercetin exert im-
mune-modulatory effect in H9c2 cells (Hsieh et al., 2013; 
Feng et al., 2017). Clinical studies are needed to assess 
the suitability of myricetin for periodontal disease treat-
ment.
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