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INTRODUCTION 
 

Coronavirus disease 2019 (COVID-19), caused by the 

infection of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) [1], has become a 

global pandemic and brought a heavy burden on 

health care around the world. As of December 10, 

2021, SARS-CoV-2 has led to more than 265 million 

infections and over five million deaths in 223 
countries and territories [2]. Mild COVID-19 patients 

are often accompanied by fever, cough, and myalgia. 

However, acute respiratory distress syndrome (ARDS) 
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ABSTRACT 
 

Corticosteroid has been proved to be one of the few effective treatments for COVID-19 patients. However, 
not all the patients were suitable for corticosteroid therapy. In this study, we aimed to propose a machine 
learning model to forecast the response to corticosteroid therapy in COVID-19 patients. We retrospectively 
collected the clinical data about 666 COVID-19 patients receiving corticosteroid therapy between January 
27, 2020, and March 30, 2020, from two hospitals in China. The response to corticosteroid therapy was 
evaluated by hospitalization time, oxygen supply duration, and the outcomes of patients. Least Absolute 
Shrinkage and Selection Operator (LASSO) was applied for feature selection. Five prediction models were 
applied in the training cohort and assessed in an internal and an external validation dataset, respectively. 
Finally, two (C reactive protein, lymphocyte percent) of 36 candidate immune/inflammatory features were 
finally used for model development. All five models displayed promising predictive performance. Notably, 
the ensemble model, PRCTC (prediction of response to corticosteroid therapy in COVID-19 patients), derived 
from three prediction models including Gradient Boosted Decision Tree (GBDT), Neural Network (NN),  
and logistic regression (LR), achieved the best performance with an area under the curve (AUC) of  
0.810 (95% confidence interval [CI] 0.760–0.861) in internal validation cohort and 0.845 (95% CI  
0.779–0.911) in external validation cohort to predict patients’ response to corticosteroid therapy. In 
conclusion, PRCTC proposed with universality and scalability is hopeful to provide tangible and prompt clinical 
decision support in management of COVID-19 patients and potentially extends to other medication predictions. 
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and multiple organ failure (MOF) are common in 

severe and critical patients, contributing to the 

principal cause of death in COVID-19 [3]. A previous 

study has reported that immune dysregulation and 

inflammatory cytokines storm played important roles 

in ARDS and MOF in COVID-19 patients [4]. It is 

acknowledged that once entering into cells, SARS-

CoV-2 will trigger antiviral responses of the hosts' 

innate and adaptive immunity [5]. For example, 

numerous immune and inflammatory cells are 

activated and produce various proinflammatory 

cytokines, termed cytokine storms. These cytokines 

will further induce tissue damage which contributes to 

more production of cytokines in turn. This positive 

feedback loop finally gives rise to ARDS and MOF 

[6]. Thus, anti-inflammatory/immunomodulatory 

therapy may be beneficial especially for severe and 

critical COVID-19 patients. 
 

Corticosteroid, a kind of affordable, nonspecific anti-

inflammatory, and immunomodulatory drug, has been 

widely applied to treat COVID-19 patients. However, 

the effect of corticosteroid therapy is an enduring 

controversy, especially in critical COVID-19 patients 

[7, 8]. Several published clinical trials revealed that 

administration of systemic corticosteroids was 

associated with a lower 28-day mortality compared with 

usual care or placebo in these patients [9, 10]. But some 

other studies demonstrated corticosteroid therapy 

delayed viral clearance [11, 12], cause a secondary 

infection [13], and prolonged the duration of 

hospitalization in COVID-19, middle east respiratory 

syndrome, and influenza pneumonia [14]. The 

controversy was principally attributed to the question 

that it was unclear who can benefit from corticosteroid 

therapy. Cai et al. found corticosteroid treatment in 

patients with neutrophil-to-lymphocyte ratio > 6.11 at 

admission was accompanied by a lower risk of 60-day 

all-cause mortality. However, they did not 

systematically screen the factors which might be 

associated with the efficiency of corticosteroid therapy. 

And it was unknown whether any other features could 

predict the efficiency of corticosteroid therapy [15]. 

Thus, it would make sense to investigate more 

indicators to guide the corticosteroid use in COVID-19 

patients. 
 

Statistical modeling and machine learning algorithms 

have potential performance in the diagnosis, treatment, 

prediction of epidemic development, and outcome of 

COVID-19 patients [16]. There were some models for 

discovering and repurposing drugs suitable for 

combating COVID-19 [17, 18]. However, the 

computational models to help decision-making on 

precision medication of COVID-19 are currently not 

available. Given the puzzles of targeting responders  

to corticosteroid therapy in COVID-19 and the 

superiority of machine learning, we aim to develop a 

model to help clinicians identify the patients who will 

benefit from corticosteroid therapy. 

 

MATERIALS AND METHODS 
 

Cohort study design 

 

All COVID-19 patients from two hospitals (Sino-

French New City Campus of Tongji Hospital, SF; 

Optical Valley Campus of Tongji Hospital, OV) 

between January 27, 2020, and March 30, 2020, were 

diagnosed according to the Diagnosis and Treatment 

Protocol of COVID-19 published by the National 

Health Commission of the People’s Republic of China 

(Trial Version 7) [19]. The electronic health records 

(EHR) of diagnosed COVID-19 patients were 

retrospectively reviewed. Patients who received 

corticosteroid therapy and were with immune/ 

inflammatory laboratory test results at admission were 

included in our study. Finally, this multicenter, 

retrospective study included 666 consecutive COVID-

19 patients. Hospitalization time, oxygen supply 

duration, and outcomes were considered together to 

evaluate response to corticosteroid therapy since these 

were well-recognized indicators for judging the 

efficacy of hormone therapy [15, 20]. Selected 

patients dying in the hospital were straightforwardly 

determined as non-response to corticosteroids. 

Considering the longer hospitalization time and 

oxygen supply duration in critically ill patients, and to 

avoid the bias of labeling patients caused by this 

reason, we divided the remaining patients into 

general, severe, and critical groups according to the 

Diagnosis and Treatment Protocol of COVID-19 

(Trial Version 7) [19]. In each group, patients with 

hospitalization time and oxygen supply duration 

below the median of the population were defined as 

responders. In contrast, patients with hospitalization 

time or oxygen supply duration no shorter than the 

median of the population were defined as non-

responders. Besides, patients without receiving 

oxygen treatment were classified based only on 

hospitalization time. Thus, all the 666 patients with 

different severities were classified into responders and 

non-responders accordingly.  

 

We then randomly partitioned 50% and 50% of 

participants from SF into training cohort and internal 

validation cohort, respectively. Participants from OV 

were used as the external validation cohort. Naturally, 

there were 268 patients in the training cohort, 267 

patients in the internal validation cohort, and 131 

patients in the external validation cohort. 
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Data preprocessing and feature selection 

 

To enable this model to inform treatment decision-

making, we only selected features that are readily 

available at admission. Since corticosteroids are 

involved in the regulation of immune and inflammatory 

factors, a total of 36 candidate immune/inflammatory 

laboratory tests were collected from EHRs of patients 

on admission. Trained researchers entered and double-

checked the data independently. Features were excluded 

if ≥20% of values were missing (Supplementary Figure 

1A), which resulted in ten features left for model 

development (Supplementary Figure 1B). Then, we 

utilized the missForest [21] algorithm to impute the 

missing values in each hospital respectively 

(Supplementary Figure 2).  

 

Features selection aimed to optimize the feature group 

by identifying the smallest independent set of features 

with the greatest predictive performance and minimize 

overfitting. We applied LASSO (Least Absolute 

Shrinkage and Selection Operator) logistic regression to 

identify the most informative set of features [22] 

(Figure 1A). LASSO utilizes the L1 penalty to make the 

coefficients of weak features turn to zero during fitting 

[23]. We regarded features with zero coefficients as 

redundant, and only non-zero coefficient features were 

included for model training (Figure 1B). 

 

Model development and validation 

 

As previously demonstrated [24, 25], we fitted the 

selected features into five computational prediction 

models, including Logistic Regression (LR), Support 

Vector Machine (SVM), Gradient Boosted Decision Tree 

(GBDT), K-Nearest Neighbor (KNN), and Neural 

Network (NN), to predict whether patients were 

responsive to corticosteroid therapy. We selected the five 

models because of their representativity and popularity in 

EHR prediction. Besides, they are sensitive to different 

data modalities. For instance, GBDT model is based on 

the decision tree, where features are merely used to split 

the node, thus GBDT is not sensitive to scale and 

distribution of features [26], which is applicable to KNN 

as well. Therefore, scaling is not required for GBDT and 

KNN. LR, SVM, and NN train weights by gradient 

descent, leading to the sensitivity to feature scales. Thus, 

standardizing data is required to eliminate the differences 

between features and accelerate the convergence of 

model [27]. Patients with predictive probability larger  

or equal to 0.5 were considered as responders to 

corticosteroid therapy. Otherwise, patients were 

 

 
 

Figure 1. The features were selected by LASSO. (A) showed LASSO variable trace profiles of the ten features. The vertical dashed line 

shows the best lambda value (0.081) chosen by tenfold cross-validation. (B) showed features with zero coefficient (colored with gray) at 
lambda = 0.081, was considered less crucial to the patient’s response to corticosteroid therapy and removed by Lasso logistic regression 
analysis. Features with positive coefficient (colored with red) are regarded as positively associated with response to corticosteroid therapy. 
Features with negative coefficient (colored with blue) are regarded as negatively associated with response to corticosteroid therapy. 
Abbreviations: LASSO least absolute shrinkage and selection operator; IL-8 interleukin-8; IL-10 interleukin-10; IL-6 interleukin-6; IL-2R 
interleukin-2 receptor; IL-1β interleukin-1β; TNF-α tumor necrosis factor α; PCT procalcitonin; CRP C reactive protein. 
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considered as non-responders. To establish the ensemble 

model, we tested various combinations of baseline 

models and discovered that the composition of LR, 

GBDT, and NN with respective weighted voting 0.1, 0.8, 

and 0.1 delivered the highest AUC. R library “caret” was 

adopted for model training and prediction with 10-fold 

cross-validation. The LR, SVM, GBDT, KNN, and NN 

were ran with method “glm,” “svmLinearWeights,” 

“gbm,” “knn,” and “avNNet” with default settings, 

respectively. Data were standardized before training and 

testing. We obtained the feature importance of baseline 

and ensemble model from R package “caret”. 

 

Statistical analysis 

 

All statistical analysis was conducted with R (version 

3.6.2). We obtained the receiver operating 

characteristics (ROC) curve and AUC analysis with R 

“pROC” package. We plotted the calibration curve with 

R “rms” package. We calculated the accuracy (ACC), 

sensitivity (SE), specificity (SP), positive predictive 

value (PPV), negative predictive value (NPV), Cohen’s 

kappa coefficient (Kappa), F1 score, and Brier score 

with R “caret,” “epiR,” and “rms” packages. We 

considered P values less than 0.05 as statistically 

significant. the ninety-five percent confidence interval 

(CI) was reported if necessary. 

 

Ethics approval 

 

The study was performed in accordance with the tenets of 

the Declaration of Helsinki and the Good Clinical Practice 

principles. This study was approved by the Research 

Ethics Commission of Tongji Medical College, Huazhong 

University of Science and Technology (TJIRB20200406) 

with waived informed consent by the Ethics Commission 

mentioned above. This study was registered in the 

Chinese Clinical Trial Registry (ChiCTR2000032161). 

 

Availability of data and material 
 

Clinical data without names of patients can be requested 

from the corresponding author by signing Material 

Transfer Agreement. 

 

RESULTS 
 

Baseline characteristics of patients 
 

From 666 patients included in the study, 268, 267, and 

131 patients were included in the training, internal 

validation, and external validation cohort, respectively 

(Table 1). According to the definitions of responders and 
non-responders to corticosteroid therapy in this study, the 

training cohort comprised 103 responders and 165 non-

responders; internal validation cohort, 108 responders and 

159 non-responders; external validation cohort, 49 

responders, and 82 non-responders. The median age in the 

training cohort, internal validation cohort, and external 

validation cohort was 64 (54.5–72) years, 64 (52–70.5) 

years, and 63 (50–70) years, respectively. There were 69 

patients, 178 patients, and 96 patients with severe and 

critical illness in the three cohorts respectively. The 

median hospitalization time was 23 (16–32) days, 21 (14–

28) days, and 19 (11.5–27.5) days, and the median oxygen 

supply duration was 15 (7–24) days, 14 (6–23), and 11 

(4–21) days in the training, internal validation, and 

external validation cohort, respectively. Finally, 203 

(75.75%) patients in the training cohort, 189 (70.79%) 

patients in the internal validation cohort, and 81 (61.83%) 

patients in the external validation cohort were discharged 

from hospitals. Hypertension (40.8%–51.1%) was the 

most common comorbidity among the selected patients 

(Table 1). Detailed baseline characteristics of cohorts 

were presented in Table 1. We also analyzed the baseline 

characteristics of non-responders and responders to 

corticosteroid therapy. Except for age, the rate of 

hypertension and dyspnea, the duration of hospitalization 

time, and oxygen supply duration, there were no other 

significantly different characteristics between non-

responders and responders. We excluded dead patients 

when calculating the oxygen supply duration and 

hospitalization time of non-responders and responders for 

the fact that we defined dead patients as non-responders 

without considering the oxygen supply duration and 

hospitalization time. The details were presented in 

Supplementary Table 2. 

 

Data preprocessing and feature selection 

 

We did not include the baselines into features selection 

for the fact that most of the baselines were not 

significantly different between responders and non-

responders except age (Supplementary Table 2). 

However, studies have indicated different age groups 

had different vulnerabilities, immune responses, and 

inflammatory responses to SARS-CoV-2, which was 

manifested by the levels of immune/inflammatory 

features [28–30]. Thus, we did not include age in our 

prediction model as we have considered the broadest 

immune/inflammatory features. Finally, 34 included 

raw candidate immune/inflammatory features, except 

interferon-γ and interleukin-4 which were not available 

in selected patients, were shown in Supplementary 

Table 1. Features with a proportion of missing values 

greater than or equal to 20% were filtered 

(Supplementary Figure 1A), resulting in ten features 

left, including lymphocyte count, lymphocyte percent, 

tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), 
interleukin-2 receptor (IL-2R), interleukin-6 (IL-6), 

interleukin-8 (IL-8), interleukin-10 (IL-10), C reactive 

protein (CRP), and procalcitonin (PCT), for further 
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Table 1. Baseline clinical characteristics of patients. 

Characteristics 
Total 

(N=666) 

Training cohort 

(N=268) 

Internal validation 

cohort (N=267) 

External validation 

cohort (N=131) 

Age (years), median (IQR) 64 (54–71) 64 (54–71) 64 (52.5–71) 67 (59–75) 

Sex, n (%)  

     Female 295 (44.29) 123 (45.90) 122 (45.69) 50 (38.17) 

     Male 371 (55.71) 145 (54.10) 145 (54.31) 81 (61.83) 

Hypertension, n (%) 296 (44.44) 120 (44.78) 109 (40.82) 67 (51.15) 

CHD, n (%) 75 (11.26) 22 (8.21) 33 (12.36) 20 (15.27) 

Diabetes, n (%) 128 (19.22) 46 (17.16) 57 (21.35) 25 (19.08) 

COPD, n (%) 11 (1.65) 3 (1.12) 4 (1.50) 4 (3.05) 

CKD, n (%) 13 (1.95) 8 (2.99) 3 (1.12) 2 (1.53) 

Severity, n (%) 

     General group 323 (48.50) 199 (75.25) 89 (33.33) 35 (26.72) 

     Severe and critical group 343 (51.50) 69 (24.75) 178 (66.67) 96 (73.28) 

Fever, n (%) 587 (88.14) 236 (88.06) 246 (92.13) 105 (80.15) 

Cough, n (%) 499 (74.92) 198 (73.88) 195 (73.03) 106 (80.92) 

Dyspnea, n (%) 365 (54.80) 157 (58.58) 141 (52.81) 67 (51.15) 

Sputum, n (%) 268 (40.24) 100 (37.31) 102 (38.20) 66 (50.38) 

Fatigue, n (%) 272 (40.84) 96 (35.82) 130 (48.69) 46 (35.11) 

Diarrhea, n (%) 179 (26.88) 73 (27.24) 81 (30.34) 25 (19.08) 

Myalgia, n (%) 143 (21.47) 54 (20.15) 64 (23.97) 25 (19.08) 

Hospitalization time, days, 

median (IQR) 
22 (14–30) 23 (16–32) 21 (14–28) 19 (11.5–27.5) 

Oxygen supply duration, 

days, median (IQR) 
15 (6–23) 15 (7–24) 14 (6–23) 11 (4–21) 

Ventilation model, n (%)     

Non-invasive ventilation 514 (82.24%) 214 (85.26%) 205 (81.67%) 95 (77.24%) 

Invasive ventilation 111 (17.76%) 37 (14.74%) 46 (18.33%) 28 (22.76%) 

Outcomes     

Discharge  473 (71.02) 203 (75.75) 189 (70.79) 81 (61.83) 

Death  193 (28.98) 65 (24.25) 78 (29.21) 50 (38.17) 

Lymphocyte percent (%), 

median (IQR) 
8.20 (3.30–14.40) 8.75 (4.05–15.03) 7.70 (3.10–13.75) 7.10 (2.93–15.98) 

CRP 

     mg/l, median (IQR) 
79.35 (34.13–150.53) 69.30 (31.00–126.20) 87.30 (39.80–160.70) 84.30 (26.58–151.65) 

Response to Corticosteroid therapy, n (%) 

     Response 260 (39.03) 103 (38.43) 108 (40.45) 49 (37.40) 

     Non-response 406 (60.96) 165 (61.57) 159 (59.55) 82 (62.60) 

Abbreviation: IQR, interquartile ranges; CHD, coronary heart disease; COPD, chronic obstructive pulmonary disease;  
CKD, chronic kidney disease; CRP, C reactive protein. 

 

analysis (Supplementary Figure 1B). Features before 

(Supplementary Figure 2A, 2C) and after (Supplementary 

Figure 2B, 2D) imputation were provided in SF and OV, 

respectively. 

 

LASSO logistic regression finally identified two most 

informative features (lymphocyte percent, CRP) for 

model development (Figure 1A). Lymphocyte percent 

was positively correlated (0.0227) with the response to 

corticosteroid therapy, while CRP was accompanied by 

a negative correlation (−0.0037) with the response to 

corticosteroid therapy (Figure 1B). Since lymphocyte 

percent was an indicator of immune status and CRP was 

one of the most sensitive markers of inflammation in 

various diseases [31, 32], it suggested that the predictive 

markers selected by LASSO were theoretically closely 

related to corticosteroid therapy. 

 

Model performance 

 

In general, all five models (LR, SVM, GBDT, KNN, 

and NN) showed similar and promising corticosteroid 

therapy response prediction performance across cohorts 

(Table 2). The AUC was 0.740 with LR, 0.744 with 
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Table 2. Performance for prediction of response to corticosteroid therapy of models in different cohorts. 

 AUC (95% CI) Accuracy (95% CI) 
SN 

(95% CI) 

SP 

(95% CI) 

PPV 

(95% CI) 

NPV 

(95% CI) 
Kappa F1 Brier 

Internal validation cohort        

LR 
0.810  

(0.759–0.861) 

0.670  

(0.611–0.727) 

0.444  

(0.349–0.543) 

0.824  

(0.756–0.880) 

0.632  

(0.513–0.739) 

0.686  

(0.615–0.751) 
0.282 0.522 0.179 

SVM 
0.809  

(0.758–0.859) 

0.6854  

(0.626–0.741) 

0.370  

(0.279–0.469) 

0.899  

(0.842–0.941) 

0.714  

(0.578–0.827) 

0.678  

(0.610–0.740) 
0.292 0.488 0.188 

GBDT 
0.803  

(0.751–0.855) 

0.730  

(0.673–0.783) 

0.694  

(0.598–0.780) 

0.755  

(0.680–0.819) 

0.658  

(0.563–0.744) 

0.784  

(0.711–0.847) 
0.445 0.676 0.180 

KNN 
0.784  

(0.731–0.837) 

0.704  

(0.645–0.758) 

0.519  

(0.420–0.616) 

0.830  

(0.763–0.885) 

0.675  

(0.563–0.774) 

0.717  

(0.647–0.781) 
0.362 0.586 0.192 

NN 
0.804  

(0.753–0.854) 

0.700  

(0.642–0.755) 

0.676  

(0.579–0.763) 

0.717  

(0.640–0.786) 

0.619  

(0.525–0.707) 

0.765  

(0.689–0.831) 
0.387 0.646 0.180 

PRCTC 
0.810  

(0.760–0.861) 

0.738  

(0.681–0.790) 

0.685  

(0.589–0.771) 

0.774  

(0.701–0.836) 

0.673  

(0.577–0.759) 

0.783  

(0.711–0.845) 
0.457 0.679 0.177 

External validation cohort        

LR 
0.808  

(0.734–0.882) 

0.725  

(0.640–0.780) 

0.571  

(0.422–0.712) 

0.817  

(0.716–0.894) 

0.651  

(0.491–0.790) 

0.761  

(0.659–0.846) 
0.398 0.609 0.171 

SVM 
0.812  

(0.739–0.885) 

0.687  

(0.600–0.765) 

0.429  

(0.288–0.578) 

0.842  

(0.744–0.913) 

0.618  

(0.436–0.778) 

0.711  

(0.611–0.799) 
0.288 0.506 0.191 

GBDT 
0.842  

(0.776–0.908) 

0.779  

(0.698–0.847) 

0.776  

(0.634–0.882) 

0.781  

(0.675–0.864) 

0.679  

(0.540–0.797) 

0.853  

(0.753– 0.924) 
0.541 0.724 0.157 

KNN 
0.787  

(0.710–0.863) 

0.718  

(0.632–0.793) 

0.551  

(0.402–0.693) 

0.817  

(0.716–0.894) 

0.643  

(0.480–0.785) 

0.753  

(0.650–0.838) 
0.379 0.593 0.183 

NN 
0.810  

(0.736–0.883) 

0.733  

(0.649–0.806) 

0.735  

(0.589–0.851) 

0.732  

(0.622–0.824) 

0.621  

(0.484–0.745) 

0.822  

(0.715–0.902) 
0.450 0.673 0.163 

PRCTC 
0.845  

(0.779–0.911) 

0.771  

(0.690–0.840) 

0.755  

(0.611– 0.867) 

0.781  

(0.675–0.864) 

0.673  

(0.533–0.793) 

0.842  

(0.740–0.916) 
0.523 0.712 0.156 

Abbreviation: AUC, area under the curve; LR, logistic regression; SVM, supported vector machine; GBDT, gradient boosted 
decision tree; KNN, k-nearest neighbor; NN, neural network; PRCTC, prediction of response to corticosteroid therapy in 
COVID-19 patients; SN, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value;  
CI, confidence interval. 

SVM, 0.812 with GBDT, 0.808 with KNN, and 0.747 

with NN for the training cohort (Figure 2A). The AUC 

was 0.810 with LR, 0.809 with SVM, 0.803 with 

GBDT, 0.784 with KNN, and 0.804 with NN for the 

internal validation cohort (Figure 2B). The AUC was 

0.808 with LR, 0.812 with SVM, 0.842 with GBDT, 

0.787 with KNN, and 0.810 with NN for the external 

validation cohort (Figure 2C). Then we have tried 

various permutations of the baseline models with 

different voting weights and found that the ensemble 

model PRCTC (prediction of response to corticosteroid 

therapy in COVID-19 patients) derived from GBDT, 

NN, and LR achieved the best predictive performance. 

The relative importance of features included in models 

is shown in Supplementary Figure 3.  

 

For the training cohort, PRCTC displayed an AUC of 

0.803 (95%CI 0.752–0.854) in predicting the response to 

corticosteroid therapy (Figure 2A). For the internal 

validation cohort, PRCTC achieved an AUC of 0.810 

(95%CI 0.760–0.861) to predict the response to 

corticosteroid therapy in COVID-19 patients with an 

accuracy of 0.738 (95%CI 0.681–0.790) (Figure 2B). For 

the external validation cohort, PRCTC demonstrated an 

AUC of 0.845 (95%CI 0.779–0.911) and an accuracy of 

0.771 (95%CI 0.690–0.840) (Figure 2C).  

 

The calibration curves of PRCTC in two validation 

cohorts were depicted in Figure 3, showing that PRCTC 

displayed the minimal Brier score of 0.177 (intercept 

0.375, slope 0.829) for the internal validation cohort 

(Figure 3A) and 0.156 (intercept 0.216, slope 1.007) for 

external validation cohort (Figure 3B). As a result, no 

further modifications of models were performed. Figure 

3C–3D further illustrated the ensemble predicted 

probability distribution on ground-truth no-response and 

response patients in internal validation and external 

validation cohort, respectively. 

 

DISCUSSION 
 

The management of COVID-19 patients remains the top 
priority in areas where the virus is raging since 

vaccinations are likely to take years to reach full 

coverage and may not protect against new variants. 

Though corticosteroid has been proved to be one of the 
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few effective drugs for COVID-19 patients, the 

population who would benefit from corticosteroid 

therapy remains unclear. The key to solving this clinical 

challenge is timely and precisely identifying COVID-19 

patients who may respond to corticosteroid therapy in 

the context of limited medical resources. In this study, 

we developed and validated an ensemble model named 

PRCTC, derived from LR, GBDT, and NN, which 

achieved the best performance in prediction among all 

the integrated models to predict the response to 

corticosteroid therapy based on lymphocyte percent and 

CRP at admission. By calculating the inputted values of 

CRP and lymphocyte percentage, the model will output 

the probability of response to corticosteroid therapy. 

Patients with predictive probability larger or equal to 

0.5 were considered as responders to corticosteroid 

therapy. Otherwise, patients were considered as non-

responders. Surprisingly, the model performed an AUC 

of 0.810 in the internal validation cohort and 0.845 in 

the external validation cohort. With this model, 

clinicians could make a prompt and precise medical 

decision on whether to apply corticosteroids to COVID-

19 patients and therefore prevent unneeded patients 

from side effects of corticosteroid therapy.  

 

The two selected features were reliable in this 

prediction model. Lymphocyte percent and CRP have 

been reported to be associated with the severity and 

outcome of COVID-19 [33, 34]. Decreased lymphocyte 

percent and elevated CRP are universal in patients with 

COVID-19, especially in critical patients [35]. In this 

study, increased lymphocyte percent was positively 

correlated with the response to corticosteroid therapy 

while elevated CRP was negatively correlated with 

response to corticosteroid therapy. The results were 

consistent with the conclusions of previous studies 

about corticosteroid therapy in critical patients with 

other diseases. The Adjunctive Corticosteroid 

Treatment in Critically Ill Patients with Septic Shock 

(ADRENAL) trial demonstrated that hydrocortisone 

infusion in sepsis patients subjected to mechanical 

ventilation did not reduce the mortality compared with 

that of patients receiving standard care and placebo. 

What’s more, the mortality in this clinical trial was 

close to the mortality of critically ill patients with 

COVID-19 [36, 37]. Some other systematic reviews and 

meta-analyses also did not recommend corticosteroid 

use for sepsis [38–40]. Given the fact that the 

pathophysiology of sepsis, characterized by cytokine 

release, systemic inflammation, lymphopenia, and 

following immunosuppression, is similar to that of 

COVID-19 to a certain extent [41, 42], we have reason 

to believe the reliability of two selected features in our 

model. Additionally, Ebisawa et al. uncovered that 

lower CRP predicted stronger corticosteroid 

responsiveness in multicentric Castleman’s disease with 

unknown mechanisms [43]. Considering the immuno-

modulatory and anti-inflammatory functions of 

corticosteroid [44], the effects of corticosteroid may 

depend on the function of immune system. And an 

extremely high level of CRP usually indicates an 

extremely dysfunctional immune system that cannot be 

redressed by corticosteroid. However, the exact 

mechanism is urgent to be investigated in further study. 

Interestingly, it is lymphocyte percent but not 

lymphocyte count that is associated with the response of 

 

 
 

Figure 2. PRCTC achieved a prompt performance in evaluation on the validation datasets. (A–C) showed ROC curve and AUC of 
SVM, LR, GBDT, KNN, and NN in training cohort, internal validation cohort, and external validation cohort, respectively. Abbreviations: 
PRCTC, prediction of response to corticosteroid therapy in COVID-19 patients; ROC, receiver operating characteristic curve; AUC, area 
under the curve; SVM, supported vector machine; LR, logistic regression; GBDT, gradient boosted decision tree; KNN, k-nearest neighbor; 
NN, neural network. 



www.aging-us.com 61 AGING 

corticosteroid therapy. Lymphocyte percentage is the 

proportion of lymphocytes to white blood cells. Its level 

is determined not only by lymphocyte count, but also by 

the number of other types of white blood cells such as 

neutrophil granulocytes, eosinophil granulocytes 

basophilic granulocytes, and monocyte. Furthermore, 

due to the individual differences in white blood cell 

count, lymphocyte percentage is a better indicator of 

immune status than lymphocyte count. Studies also 

revealed decreased lymphocyte percentage but not 

lymphocyte count was an independent poor prognostic 

factor in advanced cancers [45, 46], which reinforced 

the superiority of lymphocyte percentage. Based on the 

results of previous studies above, we believe the two 

features included in PRCTC are clinically reliable for 

prediction.  

 

Until December 10, 2021, the highly contagious delta 

variant of SARS-CoV-2 has quickly spread around the 

world [47]. Its high contagiousness was mostly 

attributed to the mutations of spike protein [48]. Though 

the delta variant has been shown to have a 108% 

 

 
 

Figure 3. Calibration curves of PRCTC model were shown in validation cohorts. Calibration curves of PRCTC model were shown for 

internal validation cohort (A) and external validation cohort (B), respectively. The triangle represents the observation group. Each group 
contained an average of 20 observations. The dashed line is the datum line. The bottom vertical lines refer to the predicted probability 
distribution. The red curve is the fitted nonparametric calibration curve. PRCTC predicted probability distribution on ground-truth no-
response and response patients were shown in internal validation (C) and external validation cohort (D), respectively. Abbreviations: PRCTC, 
prediction of response to corticosteroid therapy in COVID-19 patients. 
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increase in hospitalization risk, 235% increase in ICU 

admission and 133% higher chance of death than the 

original variant, the pathophysiology of the delta variant 

and the original variant was similar, characterized by 

elevated serum levels of cytokines and decreased the 

count of lymphocyte, and the status of the disease was 

reflected on the levels of the immune/inflammatory 

indicators [49]. Besides, a massive vaccination campaign 

has begun since December 2020. Several studies have 

reported various vaccines could decrease the transmission 

of SARS-CoV-2 among the population and prevent the 

disease from progressing into critical ill by pre-activating 

the immune system [50–52]. Though we have no idea 

how the vaccines impact the immune/inflammatory 

indicators of patients with COVID-19, its effect on the 

pre-activation of the immune system is universally 

recognized. And the effect on the immune system will be 

manifested by the levels of immune/inflammatory 

indicators, and these are what we are concerned about 

during the development of this prediction model. In 

summary, we think our prediction model still works 

when confronted with the specific population of COVID-

19 patients. Given the fact that the SARS-CoV-2 was 

sporadic in China now, we have little data for further 

validation in this study. But our research provided a 

primary model to do such work in the further large-scale, 

prospective investigation. 

 

There were several advantages of PRCTC. First, this 

model could be widely applied with great universality. 

The two features considered in this model were 

routinely monitored in the process of management of 

COVID-19 patients, which meant the selected features 

were easily accessible, even in community medical 

institutions. Thus, PRCTC could be widely accepted 

and applied in hospitals with different levels. More 

importantly, PRCTC had strong scalability of the 

application. We adopted various types of classification 

algorithms in the development of PRCTC, which 

enabled the model to deal with various and complex 

data. Based on the inside algorithms of the model, 

PRCTC could potentially extend to other diseases for 

patient management, including diagnosis, treatment, and 

prognostic prediction after fine-tuning. 

 

In addition, to our knowledge, PRCTC is the first model 

so far to enable decision-making on precise 

corticosteroid use in COVID-19, though numerous 

computational prediction models were developed for 

discovering and repurposing suitable drugs, prediction 

for disease severity and prognosis in the context of 

COVID-19 [17, 18, 24, 25]. Zhang et al. built a protein 

3D model according to the virus RNA, and then 
performed a screen of mass chemical compounds to 

identify protein-ligand interacting pairs [17]; Beck et al. 

developed an artificial intelligence model to predict 

binding affinity between antiviral drugs approved by 

Food and Drug Administration and target proteins [18]. 

These models predicted potential drugs based on the 

structure of proteins and drugs but still could not 

precisely recognize the targeted population. In this 

study, we firstly established a machine learning model 

named PRCTC to identify the patients benefitting from 

corticosteroid therapy by involving lymphocyte percent 

and CRP, which could help the precise medical decision 

on corticosteroid use in particular patients.  

 

However, there are still some limitations in our research. 

First, the model achieved promising but moderate AUCs 

in the internal and external validation cohorts, which may 

attribute to the limited number of patients in our study. 

Second, some immune-inflammatory parameters missing 

in ≥20% of the population did not enter the training 

process due to the retrospective nature of the study. 

Third, the types, dosage, and duration of corticosteroid 

therapy were not considered in this study, given the 

limited number of patients in each cohort. Thus, a large-

scale, prospective investigation is urgent to be designed 

to refine our study. 

 

CONCLUSIONS 
 

To conclude, in this multicenter, retrospective study, 

PRCTC was proposed with robustness, universality, and 

scalability that enabled accurately and timely 

identifying COVID-19 patients benefit from 

corticosteroid therapy. However, these findings warrant 

further investigation. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Visualization of the denoising and filtering process. (A) Heatmap of raw lab test data. (B) Heatmap of lab 
test data after removing lab test features with more than and equal to 20% missing entries across the SF and OV hospitals. Black tiles refer to 
missing entries. Abbreviations: NK, natural killer; Th, T-helper lymphocyte; Ts, T-suppressor lymphocyte; C3, complement 3; C4, complement 
4; CRP, C reactive protein; PCT, procalcitonin; IFN−γ, interferon-γ; TNF-α, tumor necrosis factor α; IL-1β, interleukin-1β; IL-2R, interleukin-2 
receptor; IL-4, interleukin-4; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IGA, immunoglobulin A; IGG, immunoglobulin G; IGM, 
immunoglobulin M; C-IGG SARS-CoV-2 specific antibody IgG; C-IGM SARS-CoV-2 specific antibody IgM; SF, Sino-French New City Campus of 
Tongji Hospital; OV, Optical Valley Campus of Tongji Hospital. 
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Supplementary Figure 2. Visualization of the imputation process. (A, C) Heatmap of SF and OV lab test data before imputation. (B, D) 

Heatmap of SF and OV lab test data after imputation. Black tiles refer to missing entries. Abbreviations: CRP, C reactive protein; PCT, 
procalcitonin; TNF-α, tumor necrosis factor α; IL-1β, interleukin-1β; IL-2R, interleukin-2 receptor; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, 
interleukin-10; SF, Sino-French New City Campus of Tongji Hospital; OV, Optical Valley Campus of Tongji Hospital. 
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Supplementary Figure 3. The importance of relative features derived from PRCTC, GBDT, NN, and LR model, respectively. 
Abbreviations: PRCTC, prediction of response to corticosteroid therapy in COVID-19 patients; LR, logistic regression; GBDT, gradient boosted 
decision tree; NN, neural network. 
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Supplementary Tables 
 

Supplementary Table 1. Data of features before screening in different cohorts. 

Features  

median (IQR)  

Total 

(N=666) 

Training cohort 

(N=268) 

Internal validation 

cohort (N=267) 

External validation 

cohort (N=131) 

NK cell count per μl 
111.50  

(39.50–193.75) 

133.00  

(49.00–190.00) 

111.50  

(45.75–159.50) 

101.00  

(28.00–199.00) 

NK cell percent, (%) 
9.84  

(6.43–17.57) 

9.34  

(5.77–17.79) 

9.84  

(7.52–20.73) 

10.28  

(6.54–15.73) 

(Th+Ts) count  

per μl  

717.50  

(318.25–1045.75) 

700.00  

(339.75–1185.00) 

783.75  

(362.38–898.25) 

610.00  

(284.00–1248.00) 

(Th+Ts) percent, (%) 
65.90  

(59.50–74.03) 

63.77  

(60.71–71.84) 

71.25  

(61.55–77.71) 

66.36  

(57.86–71.38) 

Th/Ts 
2.15  

(1.31–3.26) 

2.50  

(1.62–3.26) 

1.71  

(1.20–2.47) 

2.18  

(1.44–3.39) 

(T+B+NK) count 

per μl 

1039.50  

(553.75–1520.63) 

1151.00  

(728.00–1701.00) 

1046.00  

(620.38–1314.50) 

981.50  

(472.00–1805.00) 

(T+B+NK) percent, (%) 
99.19 (98.58–

99.53) 

99.32  

(98.69–99.56) 

99.03  

(98.44–99.37) 

99.19  

(98.57–99.53) 

(CD3+CD4+) count 

per μl 

413.50  

(191.75–632.00) 

415.00  

(205.50–736.50) 

378.00  

(212.75–546.00) 

425.00  

(185.00–715.00) 

(CD3+CD4+) percent, (%) 
44.81  

(37.03–52.36) 

45.32  

(32.44–50.62) 

44.13  

(33.13–52.74) 

43.09  

(39.17–48.86) 

(CD3+CD8+) count 

per μl 

233.50  

(74.50–379.00) 

184.00  

(78.50–355.00) 

260.00  

(91.50–353.25) 

205.00  

(56.00–405.00) 

(CD3+CD8+) percent, (%) 
20.48  

(13.57–29.85) 

17.93  

(14.41–24.36) 

24.45  

(16.94–31.80) 

20.42  

(12.23–27.29) 

(CD3-CD19+) count 

per μl 

126.00  

(66.50–218.50) 

135.00  

(86.00–292.00) 

100.50  

(46.50–156.50) 

145.00  

(72.00–266.00) 

(CD3-CD19+) percent, (%) 
15.43  

(9.72–26.07) 

18.22  

(10.47–28.75) 

12.07  

(7.33–19.02) 

17.78  

(12.27–22.05) 

Total T-THS 
1.69  

(0.68–3.09) 

1.60  

(0.74–2.69) 

1.85  

(1.14–3.61) 

1.39  

(0.47–3.08) 

(CD3+CD19-) count 

per μl 

682.00  

(309.00–1061.50) 

680.00  

(324.00–1212.00) 

704.50  

(372.25–925.25) 

605.00  

(274.00–1263.00) 

(CD3+CD19-) percent, (%) 
69.96  

(57.74–78.32) 

66.52  

(56.80–75.60) 

76.08  

(62.64–81.80) 

70.06  

(60.43–75.94) 

C3, g/L 
0.82  

(0.69–0.97) 

0.83  

(0.71–0.98) 

0.80  

(0.65–0.92) 

0.81  

(0.64–1.01) 

C4, g/L 
0.21  

(0.15–0.28) 

0.21  

(0.15–0.28) 

0.21  

(0.14–0.30) 

0.19  

(0.14–0.26) 

Ferritin μg/L 
957.00  

(548.45–1841.70) 

917.50  

(556.08–1677.95) 

968.50  

(548.00–1852.50) 

1166.20  

(503.15–2601.00) 

Lymphocyte count, per μl 
0.60  

(0.38–0.93) 

0.62  

(0.40–0.94) 

0.59  

(0.35–0.89) 

0.60  

(0.37–1.02) 

Lymphocyte percent, (%) 
8.20  

(3.30–14.40) 

8.75  

(4.05–15.03) 

7.70  

(3.10–13.75) 

7.10  

(2.93–15.98) 

CRP, mg/L 
79.35  

(34.13–150.53) 

69.30  

(31.00–126.20) 

87.30  

(39.80–160.70) 

84.30  

(26.58–151.65) 

PCT, ng/mL 
0.11  

(0.05–0.45) 

0.09  

(0.04–0.27) 

0.10  

(0.05–0.53) 

0.19  

(0.08–1.48) 

TNF-α, pg/mL 
9.90  

(7.50–14.25) 

9.50  

(7.10–12.60) 

9.65  

(7.68–13.65) 

12.65  

(8.43–28.38) 

IL-1β, pg/mL 
5.00  

(5.00–5.45) 

5.00  

(5.00–5.00) 

5.00  

(5.00–5.00) 

5.00  

(5.00–11.08) 



www.aging-us.com 71 AGING 

IL-2R, U/mL   
816.00  

(494.00–1288.50) 

780.00  

(458.00–1155.00) 

801.00  

(473.00–1336.75) 

1061.00  

(570.75–1653.75) 

IL-6, pg/mL   
24.83  

(5.19–89.94) 

21.03  

(5.01–65.39) 

30.38  

(5.27–89.78) 

27.47  

(5.77–276.43) 

IL-8, pg/mL   
20.20  

(10.65–54.70) 

18.40  

(10.00–45.20) 

19.15  

(10.45–48.75) 

30.25  

(13.50–110.25) 

IL-10, pg/mL 
6.20  

(5.00–13.58) 

5.50  

(5.00–11.15) 

6.90  

(5.00–13.95) 

6.40  

(5.00–20.13) 

IGA, g/L 
2.30  

(1.64–2.99) 

2.28  

(1.63–2.93) 

2.23  

(1.62–3.09) 

2.41  

(1.88–3.01) 

IGG, U/L 
12.60  

(10.30–5.70) 

12.90  

(10.33–15.63) 

12.40  

(10.05–16.08) 

12.60  

(10.90–14.30) 

IGM, U/L 
0.87  

(0.63–1.27) 

0.90  

(0.63–1.27) 

0.82  

(0.62–1.29) 

0.95  

(0.62–1.14) 

C-IGG, U/L 
181.09  

(150.49–223.12) 

177.83  

(146.35–205.31) 

181.09  

(157.34–222.06) 

188.72  

(152.19–263.46) 

C-IGM, U/L 
61.71  

(26.99–160.88) 

55.14  

(23.65–148.14) 

50.73  

(27.57–135.14) 

93.02  

(44.73–341.40) 

Abbreviation: IQR, interquartile ranges; NK, natural killer; Th, T-helper lymphocyte; Ts, T-suppressor lymphocyte; C3, 
complement 3; C4, complement 4; CRP, C reactive protein; PCT, procalcitonin; TNF-α, tumor necrosis factor α; IL-1β, 
interleukin-1β; IL-2R, interleukin-2 receptor; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IGA, 
immunoglobulin A; IGG, immunoglobulin G; IGM, immunoglobulin M; C-IGG SARS-CoV-2 specific antibody IgG; C-IGM 
SARS-CoV-2 specific antibody IgM. 
Footnote: the data of interferon-γ and interleukin-4 was missing in all selected patients, thus, we did not make statistics. 
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Supplementary Table 2. Baseline clinical characteristics of non-responders and responders to 
corticosteroid therapy.  

Characteristics 
Non-responders 

(n=406) 

Responders 

(n=260) 
p–value 

Age (years), median (IQR) 66.5 (57–74) 61 (48–67.5) <0.0001 

Sex, n (%)   0.5397 

Female 176 (43.35) 119 (45.77)  

Male 230 (56.65) 141 (54.23)  

Hypertension, n (%) 198 (48.77) 98 (37.69) 0.005 

CHD, n (%) 53 (13.05) 22 (8.46) 0.0674 

Diabetes, n (%) 81 (19.95) 47 (18.08) 0.5494 

COPD, n (%) 9 (2.22) 2 (0.77) 0.1528 

CKD, n (%) 7 (1.72) 6 (2.31) 0.5954 

Fever, n (%) 359 (88.42) 228 (87.69) 0.7758 

Cough, n (%) 314 (77.34) 185 (71.15) 0.0724 

Dyspnea, n (%) 236 (58.13) 129 (49.62) 0.0313 

Sputum, n (%) 175 (43.10) 93 (35.77) 0.0597 

Fatigue, n (%) 167 (41.13) 105 (40.38) 0.8480 

Diarrhea, n (%) 108 (26.60) 71 (27.31) 0.8409 

Myalgia, n (%) 91 (22.41) 52 (20.00) 0.4593 

Oxygen supply durationa, days, median (IQR) 26 (17–32) 14 (6–18) <0.0001 

Hospitalization timea, days, median (IQR) 33 (28–38) 20 (17–24) <0.0001 

Abbreviation: IQR, interquartile ranges; CHD, coronary heart disease; COPD, chronic obstructive 
pulmonary disease; CKD, chronic kidney disease. 
Footnote: aWe excluded dead patients when calculated the Oxygen supply duration and Hospitalization 
time of Non-responders and Responders. 


