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Mitochondrion quality control for longevity promotion 

Aging is a complex process that involves a number of mechanisms, 
including deregulated autophagy, telomere shortening, oxidative stress, 
systemic inflammation, and metabolic dysfunction [1]. Mitochondria 
play a vital role in cell physiology, but it is still unclear how their 
functions are affected during aging and which cell types specifically 
relate to pro-longevity through mitochondrial states. 

It has been previously reported that PARP1 acts in several aging 
mechanisms, functioning as a longevity assurance factor at a younger 
age [2] and as an aging-promoting factor at an older age [3]. Currently, 
PARP1 inhibitors are being used as antitumor drugs in clinical settings 
[4]. However, it is still necessary to clarify whether the reduction of 
PARP1 can delay the aging process and what role of the PARP1-linked 
signaling network plays in the aging process. Recently a research 
article published in Proceedings of the National Academy of Sciences of 
the United States of America titled “Muscle PARP1 inhibition extends 
lifespan through AMPKα PARylation and activation in Drosophila”, Guo 
et al. elucidated the function of PARP1 in longevity through AMPKα, 
providing a theoretical basis for drug development and application [5]. 
Moreover, the authors also unveiled that PARP1 could interact with 
AMPKα and then regulate it via PARylation and the inhibition of PARP1 
increases the activity of AMPKα, mitochondrial turnover and promote 
longevity. 

Previous study has demonstrated that the activation of AMP- 
activated protein kinase (AMPK) exerted pro-longevity effects in 
diverse species, including C. elegans and Drosophila [6,7]. Pharmaco-
logical activation via metformin treatment promoted health span in mice 
[8,9]. AMPK has been explored for its involvement in controlling 
mitochondrial biogenesis and dynamics [10,11], as well as energy 
expenditure through modifying NAD + metabolism [12], but its 

requirment for regulating mitochondrial homeostasis during aging is 
still unknown. 

In this new study, the authors first observed that PARP1 activity is 
induced in the skeletal muscle of different species, including mice, 
Drosophila, and human, during aging. To investigate the role of PARP1 in 
aging and longevity in vivo, Guo et al. generated PARP1 global knock-
down in Drosophila, which has a longer lifespan and better climbing 
ability, suggesting that PARP1 may be involved in the muscle during 
aging process. To this end, PARP1 specific knockdown in Drosophila 
muscle was generated, which demonstrated that it increases lifespan by 
preserving mitochondrial biogenesis and function during aging. Further 
studies suggested that PARP1 could interact with AMPKα, and then 
regulate it via PARylation at residues E155 and E195, as well as inhibit 
its phosphorylation. The PARP1 and AMPKα double knockdown 
Drosophila proved that AMPKα is the cause of PARP1 inhibition-induced 
longevity. PARP1 and AMPKα double knockdown Drosophila also 
showed impaired mitophagy functions for mitochondrial turnover. 
Moreover, the authors demonstrated that the maintenance of mitophagy 
is necessary for PARP1 inhibition-mediated lifespan because the effects 
of knocking down the mitophagy-regulating gene PINK1 were reversed. 

Taken together, this study identifies that the knockdown of PARP1, 
specifically in muscle, extended the lifespan of Drosophila. In addition, 
AMPKα and dynamic mitochondrial homeostasis were required to show 
the effects of PARP1 inhibition. Biochemical analysis indicated that 
muscle PARP1 exerted pro-aging effects on Drosophila through the 
regulation of AMPKα PARylation and activity, followed by manipulation 
of mitochondrial homeostasis. Findings in this research may contribute 
to the development of new therapeutic approaches for anti-aging.  
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Summary scheme: Model depicting that the inhibition of PARP1 in-
duces activation of AMPKα and then regulates mitochondrial biogenesis 
and PINK1-mediated mitophagy in aged flies, eventually manipulating 
longevity. 
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