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Lung adenocarcinoma (LUAD) is one of the major causes of cancer death in the world. Studies show that the effective anticancer
component in blister beetles is cantharidin, which can improve chemotherapy efficacy, median survival, and prognosis of LUAD.
However, the antitumor mechanism of blister beetles has not been fully clarified./is study aimed to identify the key targets of the
treatment of LUAD by blister beetles based on the principle of network pharmacology. An integrated approach including network
pharmacology and a molecular docking technique was conducted, which mainly comprises target prediction, weighted gene
correlation network analysis (WGCNA) analysis, network construction, gene ontology, and pathway enrichment analysis. 35 key
targets were obtained and significantly associated with response to external stimuli, collagen binding, cyclin binding, organic acid
binding, pyruvate metabolism, glycolysis, and amino acid biosynthesis pathways. Both LASSO regression and the RF model had a
high predictive ability, and 9 candidate genes were screened, among which BIRC5 and PLK1 were the key targets for the treatment
of LUAD by using blister beetles and showed significant survival significance. Cantharidin exerts its antitumor effects through 8
targets in 32 pathways, while BIRC5 and PLK1 have obvious survival significance.

1. Introduction

Lung cancer is the most common malignant tumor in
clinical practice, and its mortality and morbidity rank first in
malignant tumors [1]. Moreover, the incidence has been
increasing in recent years. According to data released by
China’s National Cancer Center in 2019, there were about
787,000 new cases of lung cancer and 631,000 deaths in
China in 2015. Lung cancer is roughly divided into two
categories: non-small-cell lung cancer (NSCLC) and small-
cell lung cancer (SCLC). Non-small-cell lung cancer
(NSCLC) accounts for about 80% of all lung cancers, mainly
including large cell carcinoma, squamous cell carcinoma,
and adenocarcinoma [2–4]. Chemotherapy is currently one
of the main methods for the treatment of advanced lung
adenocarcinoma, but the quality of life of patients has not
been significantly improved due to the available drug

resistance of tumor cells and severe adverse reactions of
chemotherapy drugs [5, 6]. /erefore, it is of great signifi-
cance to study the molecular mechanism of the occurrence
and progression of lung cancer and to find new therapeutic
methods and strategies for the clinical diagnosis and
treatment of lung cancer.

/e blister beetle is a famous Chinese medicine and has
been demonstrated in vitro to have significant antitumor
effects in cancer cells such as lung, breast, gastric, hepato-
cellular, and ovarian cancers [7–12]. In China, drugs from
blister beetles include Aidi injection (an injection mainly
composed of blister beetles), compound cantharidin capsule,
sodium cantharidate vitamin B6 injection, and methyl-
cantharidine tablets, which are used in clinical antitumor
therapy [13]. Studies show that the effective anticancer
component in blister beetles is cantharidin, which has no
obvious immunosuppressant effect on the body while
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inhibiting tumor cells, including cantharidin and its
dimethycantharidin, sodium cantharidate, and sodium
methyl cantharidate [14, 15]. Clinical practice has proved
that the chemotherapy efficacy, median survival, and
prognosis of lung cancer patients are improved by drugs
derived from blister beetles. For example, compared with
platinum-based chemotherapy alone, the clinical efficacy of
stage IIIB/IV NSCLC patients was improved by Aidi in-
jection combined with platinum-based chemotherapy, in-
cluding reduced chemotherapeutic toxicity [1]. In vitro
studies have shown that cantharidin (CTD) inhibits cell
growth and migration and promotes autophagy and apo-
ptosis by inhibiting the PI3K/Akt/mTOR signaling pathway
in non-small-cell lung cancer [16]. Although these studies
reported part of the molecular mechanism of cantharidin
against tumors, the antitumor mechanism of blister beetles
has not been fully elucidated due to the multiactive com-
ponent, multi-target, and multipathway nature of herbal
medicine.

Nowadays, network pharmacology integrates network
biology and polypharmacology on the basis of existing
databases to provide a new approach to explore the
mechanisms and synergistic effect of TCM formulas for the
treatments of diseases [17–19]. For example, Li et al. [20]
combined network pharmacology, machine learning, and
molecular dynamics simulation methods to identify two key
genes, insulin-like growth factor 1 receptor (IGF1R) and
insulin receptor (IR), and three potential longevity-related
herbs from established TCM databases [20]. Tang et al. [21]
integrated network pharmacology with molecular docking
to unravel the active compounds and potential mechanism
of the simiao pill in treating rheumatoid arthritis [21]. Many
studies attempting to combine network science with ancient
Chinese medicine to study multiple molecular mechanisms
have been successful [22–24].

In order to systematically explore the targets of blister
beetles in inhibiting LUAD, we integrated complex phar-
macology and molecular docking experiments based on four
databases to obtain the key chemical components and their
targets, which not only provided a new direction for the
mechanism of action of LUAD inhibition by blister beetles,
but also identified clinically relevant biomarkers that could
be used to monitor the treatment of blister beetles.

2. Materials and Methods

2.1. Weighted Gene Correlation Network Analysis. TCGA
database (https://portal.gdc.cancer.gov/) was used to down-
load transcriptomic data of TCGA-LUAD. In this study,
WCGNA was used to screen for key modules associated with
LUAD [25]. TCGA mRNA expression data profiles were
normalized using the “normalizeBetweenArrays” function of
the R package./e coexpression network of genes with mean
expression values greater than 1 in LUAD samples (n� 535)
andnormal samples (n� 59)wasused tofilter outkeymodules
and genes associated with LUAD. First, the samples were
clustered and the outlier samples were deleted to ensure the
accuracy of the subsequent analysis./en, the soft threshold is
determined and the coexpression network is constructed by

using the dynamic tree cutting algorithm. /e minimum
number of genes per gene module was set to 50 and MEDi-
ss/reswas set to0.2./eLimmapackage (version3.46.0) [26]
was used to compare the difference in gene expression levels
between the LUAD/normal sample groups (log2FC/≥ 1,
p< 0.05). Ggplot2 (version 3.3.3) was used to map volcano
plots to show differentially expressed genes, /e VennDia-
gram package (Version 1.6.20) was used for differentially
expressed genes between LUAD and the control with inter-
section of key module genes associated with LUAD obtained
by WGCNA. /e TCMSP (https://tcmspw.com/tcmsp.php)
database and the DrugBank (https://go.drugbank.com/) da-
tabase were used to obtain the active ingredients of blister
beetles and their drug targets; the Genecards (https://www.
genecards.org/) databasewas used to predict disease targets in
LUAD, retaining only genes with a category of protein coding
(category� protein coding and relevance score ≥1). /e
VennDiagrampackagewasused to intersect keymodule genes
obtained fromWGCNAwith drug targets and LUAD disease
targets from the database to screen for key targets.

2.2.GeneOntologyFunctionalEnrichmentAnalysis andKyoto
Encyclopedia of Gene and Genomes Analysis. GO stands for
Gene Ontology, which is an international standard classi-
fication system for gene function. It aims to establish a
linguistic vocabulary standard for qualifying and describing
gene and protein functions that are applicable to various
species. /e GO system consists of three components: bi-
ological process (BP), molecular functions (MF), and cellular
components (CC). Using the GO database, we can obtain
what our target genes are mainly related to at the CC, MF,
and BP levels. Enrichment analysis of KEGG and GO da-
tabases was used to find common functions and related
pathways of a large number of genes within the module key
genes. In this study, the VennDiagram package was used to
obtain key targets by taking intersections of differentially
expressed key module genes, drug targets, and LUAD dis-
ease targets. /e clusterProfiler package [27] was used for
GO and KEGG enrichment analysis (P< 0.05 and COUNTS
≥2). /e enrichplot package (Version 1.10.2) was used to
draw bar and bubble graphs to show GO enrichment and
KEGG pathway enrichment results.

2.3. Network Construction. /e key targets of GO_BP,
GO_CC, and GO_MF were presented to construct a key
target-function regulatory network. /e top 50 pathways of
KEGG and their corresponding key targets were presented
to construct a key target-pathway regulatory network map
and were visualized using Cytoscape (version 3.8.2) [28]. To
investigate whether there are interactions between key
targets, the STRING (https://string-db.org) website was used
to construct a PPI network map of 35 key targets with
confidence� 0.4 and remove discrete proteins.

2.4. LUAD Diagnostic Model Construction. /e LASSO re-
gression model and RF algorithm were used to construct a
diagnostic model to determine the predictive power of the
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model constructed based on candidate genes for LUAD./e
LASSO analysis tool is a glmnet package (Version 4.1-1)
[29]. All TCGA samples (n� 594) were used as the training
set, and GSE10072 was used as the verification set (n� 107)
to construct and verify the diagnostic model. /e pROC
(Version 1.17.0.1) package is used to draw the receiver
operating characteristic curve (ROC) of the training set and
verification set, and to calculate the area under curve (AUC)
value. /e higher the AUC value is, the more accurate the
prediction is. When the RF algorithm was used to construct
the optimal diagnostic model, the expression values of each
sample of 35 key targets in TCGA database were combined
with the grouping information of the samples, and the RF
model was constructed by using the Caret package (Version
6.0-86)./en, the EXPLAIN function of the DALEX package
(Version 2.3.0) was used for explanatory analysis of the RF
model, and the plot function was used to visualize the
distribution of model representation; then, the cumulative
residual distribution and boxplot distribution were drawn.

2.5. Gene Expression Analysis. /e VennDiagram package
(Version 1.6.20) was used to take the intersection of the
genes obtained by LASSO and the RF algorithm./e ggpubr
R package (Version 0.4.0) and the ggplot2 package were used
for scatter plotting and visualization to study the expression
of nine biomarkers in LUAD samples and normal samples.
/e test was a rank sum test.

2.6. Construction of a Pharmacological Regulatory Network
Map and Molecular Docking. /e active components cor-
responding to 9 biomarkers were extracted to construct the
drug-active component-key target gene network map, and
Cytoscape was used for visual analysis. /e protein structure
of the key target was obtained from the PDB (https://www1.
rcsb.org/) database, and the small molecules and water
molecules were removed. Molecular docking is used to
determine the presence of interactions between biomarkers
and molecules, and to predict their binding patterns and
affinities. /e AutoDock tools (version 1.5.6) were used to
complete protein hydrogenation and charge calculation./e
active ingredient structures were downloaded from the
PubChem (https://pubchem.ncbi.nlm.nih.gov/) database.
Charge balanced and rotatable bond checking for small
molecules was performed using AutoDock tools. /en,
AutoDock Vina was used to calculate the receptor-ligand
docking according to the range of docking boxes selected by
the receptor-active center. /e structure with the lowest
binding free energy in the output results was selected. Fi-
nally, PyMol (Version 2.5) software is used for visualization
and beautification.

2.7. Function Prediction, Prognostic Analysis, and Clinical
Correlation Analysis of Biomarkers. GO and KEGG were
used for functional and pathway analysis of biomarkers.
Kaplan–Meier survival analysis of the biomarkers was
performed using R language’s survival (Version 3.2-3) and
survMiner (Version 0.4.8) packages, and P< 0.05 indicated

that the genes had a significant survival significance. Sub-
sequently, the correlation between biomarkers and clinical
factors (age, sex, TNM stage, and stage stage) was studied.

3. Results

3.1. Active Drug Ingredients of Blister Beetles and Corre-
sponding Targets. To obtain key targets for the interaction
between blister beetles and LUAD disease, a total of 27 active
drug ingredients and 503 drug targets of the blister beetle
were obtained from the TCMSP database. Furthermore,
1236 drug targets were obtained from the DrugBank da-
tabase and 7031 LUAD disease targets were obtained from
the GeneCards database. Subsequently, these targets and key
module genes were intersected to obtain key targets.

3.2. WGCNA Analysis. We clustered all LUAD samples
(n� 594) and found that there were no outliers, as shown in
Figure 1(a). When the ordinate scale-free R̂2 approaches
0.85 (red line), the soft threshold (β) is equal to 5. At this
time, the network approaches the scale-free distribution, and
mean connectivity also approaches 0. /erefore, we choose
the optimal soft threshold (β) as 5, as shown in Figure 1(b). A
total of 13 modules were obtained, and 11 modules were
obtained after module combination, as shown in Figure 1(c).
In the module-trait correlation heat map, the MEbrown
module had a significant positive correlation with LUAD
(Cor� 0.53, P� 0.003), and the absolute value of the cor-
relation coefficient is the largest, which is the key module of
lung adenocarcinoma, as shown in Figure 1(d). /e cor-
relation coefficient between the MEbrown gene and module
traits was 0.67 (P< 0.05), as shown in Figure 1(e), and there
were 2894 genes in the MEbrown module. A total of 1239
differentially expressed genes were found between LUAD
and normal samples, of which 571 genes were upregulated
and 668 genes were downregulated in LUAD samples, as
shown in Figure 1(f ). /e intersection of the differentially
expressed genes between LUAD, control, and the key
module genes related to LUAD obtained by WGCNA was
conducted to obtain 396 differentially expressed key module
genes, which will be studied in the future, as shown in
Figure 1(g).

3.3. Analysis Results of GO and KEGG. A total of 35 key
targets were obtained by taking the intersection of differ-
entially expressed key module genes (n� 396), drug targets
(n� 1653), and LUAD disease targets (n� 7031), as shown in
Figure 2(a). In terms of biological processes, a total of 50
terms were obtained, and key target genes were significantly
associated with responses to toxic substances, oxidative
stress, and hydrogen peroxide, including response to nu-
trient levels, L-alpha-amino acid transmembrane transport,
oxidative stress, vitamin metabolic process, toxic substance,
reactive oxygen species, cellular response to hydrogen
peroxide, and hydrogen peroxide. In terms of molecular
functions, 12 terms were obtained, and the key target genes
were significantly related to collagen binding, cell cycle
protein binding, and organic acid binding functions,
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Figure 1: Continued.
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Figure 1:WGCNA analysis. (a) Sample clustering and phenotypic heat map. (b) Filtering of soft thresholds. (c)/emerge module. (d) Heat
map of the correlation between modules and LUAD. (e) Correlation between modular genes and LUAD. (f) A volcano map of differentially
expressed genes between LUAD/normal samples. (g) Screening of key genes in modules. Blue represents the differentially expressed genes
between LUAD/control and pink represents the key module genes associated with lung adenocarcinoma acquired by WGCNA.
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including cyclin binding, transferase activity, transferring
nitrogenous groups, long-chain fatty acid binding, collagen
binding, NAD binding, organic acid binding, carboxylic acid
binding, and monocarboxylic acid binding. /e results of the
study were obtained. In terms of cell composition, a total of 1
term was obtained, and key target genes were significantly
associated with spindle microtubules, including spindle mi-
crotubules, as shown in Figure 2(b). KEGG functional en-
richment analysis of 35 key target genes revealed 6 related
pathways, including cysteine and methionine metabolism.
Biosynthesis of cofactors, carbon metabolism, biosynthesis of
amino acids, glycolysis/gluconeogenesis, and pyruvate meta-
bolism, suggest that the key target genes are related to pyruvate
metabolism, glycolysis, and amino acid biosynthesis. Glycol-
ysis and amino acid biosynthesis are shown in Figure 2(c).

3.4. Construction of RegulatoryNetwork Diagram. In the key
target-function network diagram, 21 terms, 26 key targets,
and 78 relationship pairs were included, as shown
Figure 3(a). In the key target-pathway regulatory network
map, 50 KEGG pathways, 100 key targets, and 891 rela-
tionship pairs were included, as shown in Figure 3(b). /e
PPI regulatory network diagram of the key targets showed an
interaction network of 35 proteins, including 35 nodes and
90 edges, as shown in Figure 3(c).

3.5. Construction of the LUAD Diagnostic Model. In this
study, all TCGA samples (n� 594) were used as the training
set, and GSE10072 was used as the verification set (n� 107)

to construct and verify the diagnostic model. /e graph of
the gene coefficient and the error graph of cross validation
were obtained by LASSO regression analysis, and a total of
11 characteristic genes were screened, as shown in
Figure 4(a). /e diagnostic model was constructed from
these 11 genes, and the AUCs of the training set and ver-
ification set were 0.967 and 0.718, respectively, indicating
that the diagnostic model had a high predictive ability for
LUAD, as shown in Figure 4(b). When the RF algorithm is
used to build the optimal diagnostic model, the sample
cumulative residual distribution diagram and boxplot dis-
tribution diagram are drawn, as shown in Figures 4(c) and
4(d). In the sample cumulative residual distribution dia-
gram, the smaller the curve area is, the smaller the sample
cumulative residual value is. In the boxplot distribution, the
smaller the sum of squares of residuals, the better the fitting
effect. Different variables have different degrees of relative
importance to model prediction, as shown in Figure 4(e). In
the RF model, IGHG1, LCN2, MMP7, SLC7A11, CYP27B1,
PAEP, SLC7A7, MMP13, BIRC5, FEN1, ALOX5AP, AXL,
ABCC3, CDK1, EPCAM, GAPDH, CRABP2, PSAT1,
DPYSL2, KAT2A, PLK1, and FABP4 were the predicted
values of the response variable (score� 0.07946986) (genes
above the response variable were selected as characteristic
genes), therefore, these 22 genes were used as diagnostic
markers for the next step of analysis in this study. In the RF
model, the AUCs of the training and validation sets were
0.985 and 0.978, respectively, indicating that the RF model
has high a predictive ability for LUAD, as shown in
Figure 4(f ).
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Figure 2: Enrichment analysis results of GO and KEGG of target genes. (a) Venn diagram of the intersection of genes, drug targets, and
disease targets. (b) GO enrichment bars of key target genes. (c) KEGG pathway enrichment bubble map of key target genes.
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represents GO_BP terms, the green hexagon represents GO_CC Terms, and the blue dot represents the key target. (b) Regulatory network
diagram of key targets and pathways. /e pink hexagons represent KEGG pathways and the blue dots represent key targets. (c) Protein
interaction networks of key targets. /e lines represent the interaction between them, the color indicates their degree value; the darker the
color, the higher the degree value and the higher the core position.
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Figure 4: Continued.
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Figure 4: Construction of the LUAD diagnostic model and screening of biomarkers. (a) /e characteristic genes were screened by LASSO
regression analysis. Deviance on the horizontal axis represents the proportion of residual explained by the model, showing the relationship
between the number of characteristic genes and the proportion of residual explained by the model (Dev), and the coefficient of genes on the
vertical axis (left)./e x-coordinate is log (Lambda), and the y-coordinate represents the error of cross-validation (right). (b) Evaluation and
validation of the diagnostic model by the ROC curve. (c, d)/e cumulative residual distribution diagram of the sample (left) and the boxplot
of the sample residual (right). /e curve area indicates the cumulative residual value of the whole sample. /e smaller the curve area is, the
smaller the cumulative residual value of the sample is. /e red dot represents the root mean square of the residual. (e) Importance of genetic
variables in the RF models. (f ) Evaluation of the RF model by the ROC curve.
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3.6. Genes Expression Analysis. 8 candidate genes (CRABP2,
KAT2A, BIRC5, ABCC3, PLK1, FABP4, IGHG1, and
EPCAM) were obtained from the intersection of genes
obtained by the LASSO model and RF model, as shown in
Figure 5(a). In this study, single-gene ROC curves were
plotted for eight genes, and AUC values were calculated and
validated at GSE10072. /e AUC values of all the inter-
secting genes in the TCGA dataset and the GSE10072 val-
idation set were above 0.8, as shown in Figure 5(b). CRABP2,
KAT2A, BIRC5, ABCC3, IGHG1, EPCAM, and PLK1 were
upregulated in the LUAD samples, while FABP4 was
downregulated in the LUAD samples, as shown in
Figure 5(c), and there was a strong correlation between these
biomarkers, as shown in Figure 5(d). In addition, the ex-
pression and correlation of biomarkers were validated at
GSE10072, and the results were consistent with TCGA, as
shown in Figure S1.

3.7. Construction of a Pharmacological Regulatory Network
MapandMolecularDocking. /edrug-active ingredient-key
target gene network diagram contains 1 drug (blister bee-
tles), 7 drug-active ingredients, 8 biomarkers, and 32 rela-
tionship pairs, as shown in Figure 6(a). According to the
molecular docking results of the 3D conformer structure of
cantharidin, as shown in Figure 6(b), and the crystal
structure of BIRC5 with PDB ID 3UEH, there are hydrogen
bond interactions between residues of SER-81, ASN-111,
CYS-60, and cantharidin molecules. /e docking affinity
between the active molecule and the protein was −5.2 kcal/
mol, as shown in Figure 6(c). According to the molecular
docking results of the 3D conformer structure of oleic acid,
as shown in Figure 6(d), and the crystal structure of KAT2A
with PDB ID 5TRM, there are hydrogen bond interactions
between residues of TRP-519, ARG-515, and oleic acid
molecules. /e docking affinity between the active molecule
and the protein was −5.9 kcal/mol, as shown in Figure 6(e).
According to the molecular docking results of the 3D
conformer structure of 3-Phenyl-4-azafluorene, as shown in
Figure 6(f), and the crystal structure of PLK1 with PDB ID
1Q40, the TRP-414 residue has hydrogen bonding inter-
actions with the 3-phenyl-4-azafluorene molecule. /e
docking affinity between the active molecule and protein was
−8.4 kcal/mol, as shown in Figure 6(g). According to the
molecular docking results of the 3D conformer structure of
3-phenyl-4-azafluorene, as shown in Figure 6(h), and the
crystal structure of BIRC5 with PDB ID 3UEH, there are
hydrogen bond interactions between residues of ALA-109,
LYS-112, PHE-61, ILE-44, and 3-phenyl-4-azafluorene
molecules. /e docking affinity between the active molecule
and the protein was −6.8 kcal/mol, as shown in Figure 6(i).
All have a strong affinity.

3.8. Potential Function, Prognostic Significance, and Clinical
Relevance of Biomarkers. GO function analysis was per-
formed on the biomarkers, and the biomarkers were mainly
enriched into two functional categories of CC and MF
(P< 0.05 and count≥ 2). In terms of cell composition,
biomarkers were associated with the STAGA complex,

dihydro lipid-based dehydrogenase complex, concentrated
chromosome, centromere central centromere concentrated
chromosome, centromere concentrated spindle microtu-
bules, etc. In terms of molecular function, biomarkers were
associated with retinal binding, H4 histone acetyltransferase
activity, long-chain fatty acid transporter activity, retinol
binding, long-chain fatty acid binding, microtubule binding,
organic acid binding, carboxylic acid binding, lipid trans-
porter activity, and monocarboxylic acid binding, as shown
in Figure 7(a). /en, KEGG pathway enrichment analysis
was performed on the biomarkers (P< 0.05 and count≥ 1),
and the biomarkers were mainly enriched into CC and MF
functional categories. /e results showed that biomarkers
were associated with PPAR signaling pathway, platinum
resistance, notch signaling pathway, lipolysis regulation of
adipocytes, ABC transporter, apoptosis, and antifolic acid
resistance, as shown in Figure 7(b). Finally, we explored the
prognostic significance of biomarkers. Only BIRC5 and
PLK1 were found to have significant survival significance, as
shown in Figure 7(c), while the remaining genes were not
significant, as shown in Figure S2. We also studied the
correlation between biomarkers and clinical factors (age, sex,
TNM stage, and stage stage). /e results showed that BIRC5
and PLK1 were strongly correlated with clinical factors. In
addition, IGHG1 was significantly negatively correlated with
T staging and stage staging, as shown in Figure 7(d).

4. Discussion

In China, blister beetles and their derivatives are used
clinically, especially in antitumor therapy, which has been
proven to have good effects. However, blister beetles and
their derivatives exhibit cardiac, liver, and urinary system
toxicity, which limits their clinical application and dose
setting [30]. In addition, the application of raw materials of
blister beetles leads to high poisoning, including abuse,
unreasonable processing, dosage, and accumulation of
toxicity [31]. /erefore, the analysis of pharmacodynamic
constituents and target of cantharidin, and the molecular
mechanism of blister beetles against tumor are helpful to the
development of new antitumor drugs.

/is study reveals that the main pharmacodynamic
components of blister beetles are related to the 8 targets in
lung adenocarcinoma. Among them, CRABP2, KAT2A,
BIRC5, ABCC3, PLK1, IGHG1, and EPCAM were upre-
gulated in lung adenocarcinoma samples, while FABP4 was
downregulated in lung adenocarcinoma samples. Further
survival analysis showed that BIRC5 and PLK1 had sig-
nificant survival significance. /e baculoviral inhibitor of
apoptosis protein repeat-containing 5 (BIRC5), also known
as survivin, is a member of the inhibitor of apoptosis protein
(IAP) family and also a target for cancer therapy [32] which
exists at the crossroads of many cancer cell signaling net-
works. Survivin is not only involved in the progression of
NSLC, but also related to the development of drug resis-
tance. For instance, reduced survivin expression is a key
marker for evaluating prognosis and survival in stage III
NSCLC patients who receive platinum-based radiotherapy
after surgery [33]. Survivin silencing resensitized A549/VCR
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Figure 5: Screening and expression analysis of characteristic genes. (a) Intersection of the LASSO diagnostic model gene and RF model
gene. Pink represents the LASSO diagnostic model genes and blue represents the RFmodel genes. (b) ROC curves for candidate biomarkers.
(c) Expression of biomarkers. (d) Correlation of biomarkers. Blue is negative and red is positive.
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Figure 6: Continued.
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cells to vincristine and methotrexate in vitro [34]. Inhibition
of survivin expression by the short hairpin RNA expression
vector significantly reduced the growth of lung cancer cells
in vivo and in vitro [35]. In addition, studies have shown that
the polymorphisms of survivin-31 G/C and 9194 A/G are
related to the risk of lung cancer. Carriers of CGGC and
GCAT haplotypes are more likely to develop lung cancer
[36]./ese studies suggest that inhibition of survivin is likely
to be a major way for cantharidin to inhibit LUAD.

Polo-like kinase 1 (PLK1) is a highly conserved silk/
threonine protein kinase that plays an important role in cell
cycle regulation and DNA damage repair [37]. Current
studies have found that PLK1 is highly expressed in a variety
of tumors, including breast cancer, colorectal cancer, en-
dometrial cancer, ovarian cancer, pancreatic cancer, and

non-small-cell lung cancer [38]./e PLK1 expression level is
related to the degree of malignancy and prognosis of patients
[39–42]. Cao et al. [43] found that the downregulation of
Mir-886-3p in small-cell lung cancer is closely related to the
shorter survival of patients, and Mir-886-3p can inhibit the
expression of target genes PLK1 and TGF-β1, thus inhibiting
the proliferation, migration, and invasion of small-cell lung
cancer. Reda et al. [44] found that the application of
C-SiPLK1-NP reduced tumor growth and led to prolonged
survival. /erefore, PLk1 may be a new prognostic marker
and a good target for chemotherapy intervention.

In this study, we obtained the key targets of blister beetles
treating LUAD and the biomarkers related to LAUD by
using network pharmacology and molecular docking
methods based on four databases, indicating that the

(e) (f )

(g) (h)

(i)

Figure 6: Construction of the pharmacological regulatory network map of Chinese medicine with biomarkers and results of molecular
docking. (a) Network diagram of pharmacological regulation of biomarkers in traditional Chinese medicine. (b) 3D conformer structure
schematic of cantharidin. (c) Docking result diagram of 3UEH and cantharidin. /e green double-ring stick model is the active molecule
cantharidin. (d) 3D conformer structure schematic of oleic acid. (e) Docking result diagram of 5TRM and oleic acid. /e green double-ring
stick model is the active molecule oleic acid. (f ) 3D conformer structure schematic of 3-phenyl-4-azafluorene. (g) Docking result diagram of
1Q40 and 3-phenyl-4-azafluorene. /e green double-ring stick model is the active molecule 3-phenyl-4-azafluorene. (h) 3D conformer
structure schematic of 3-phenyl-4-azafluorene. (i) Docking result diagram of 3UEH and 3-phenyl-4-azafluorene. /e green double-ring
stick model is the active molecule 3-phenyl-4-azafluorene. Dotted gray/yellow lines represent hydrophobic bonds formed between active
ingredients and amino acid residues. Each dotted gray/yellow line represents a hydrophobic bond.
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application of network pharmacology is a scientific and
feasible method. However, these results need to be verified in
more cell experiments to be better applied in clinical
treatment and drug development, including the potential
pathway of the Blister beetle antilung cancer activity, the
mechanism of action in treating lung cancer, and in vivo
experiments to confirm its activity are further needed.

5. Conclusions

In conclusion, we screened the key targets of cantharidin for
the treatment of LUAD and the biomarkers in LUAD based
on network pharmacology and bioinformatics gene analysis.
/e results revealed that the 7 active compounds exert their
antitumor effects via 8 targets in 32 pathways, and BIRC5 and
PLK1 had a significant survival significance./is is consistent
with the TCM concept of “multiple compounds, multiple
targets, and multiple effects.” /is provides a systematic view
of the potential anticancer mechanism of cantharidin.
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