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ABSTRACT

Cardiovascular magnetic resonance (CMR) is the current gold standard for imaging cardiac 
anatomy, function, and advanced myocardial tissue characterization. After cine, late 
gadolinium enhancement (LGE), and perfusion imaging, parametric mapping is widely 
regarded as the 4th era of myocardial CMR development. In contrast to conventional CMR 
tissue characterization techniques, which rely on relative variations in image intensities 
to highlight abnormal tissues, parametric mapping provides direct visualization of tissue 
MR properties such as T1, T2 and T2* in absolute denominations (e.g. in milliseconds). 
Presentation as pixel-wise parametric maps adds spatial information for a more complete 
assessment of the myocardium. Advantages of parametric mapping include direct, 
quantitative comparisons inter- and within-individuals, as well as detection of diffuse 
disease not evident on conventional CMR imaging, without the need for contrast agents. 
CMR parametric mapping methods have matured over the past decade into clinical tools, 
demonstrating not only clinical utility but added value in a wide range of cardiac diseases. 
They are particularly useful for the evaluation of acute myocardial injury, suspected 
infiltration and heart failure of unclear etiology. This review discusses the background of 
parametric mapping, particularly T1-, T2- and ECV-mapping, general magnetic resonance 
physics principles, clinical applications (including imaging protocols, image analysis and 
reporting guidelines), current challenges and future directions. CMR parametric mapping 
is increasingly available on routine clinical scanners, and promises to deliver advanced 
myocardial tissue characterization beyond conventional CMR techniques, ultimately helping 
clinicians to benefit patients in their clinical management.
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INTRODUCTION

Cardiovascular magnetic resonance (CMR) is the current non-invasive imaging gold standard 
for assessing cardiac anatomy, function and, importantly, myocardial tissue characterization. 
Over the past 2 decades, CMR technology had advanced in important developmental stages 
in clinical applications.
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Firstly, CMR cine imaging can accurately determine cardiac anatomy, allowing quantification of 
chamber volumes, cardiac mass and function. Secondly, late gadolinium enhancement (LGE) imaging 
allowed the non-invasive visualization of areas affected by myocardial fibrosis, conferring clinicians the 
unique ability to differentiate ischemic from non-ischemic pathologies based on typical LGE patterns. 
Thirdly, CMR perfusion imaging allowed the assessment of impaired myocardial perfusion in high 
spatial resolution as a means of detecting significant coronary artery disease (CAD).

CMR parametric mapping is widely regarded as the 4th era of myocardial CMR development, 
which include T1-, T2- and extracellular volume (ECV)-mapping. The European Society of 
Cardiology has named T1 and T2-mapping as one of six most innovative imaging methods in 
the evaluation of heart failure patients,1) and the most recent expert consensus statement on 
CMR in Nonischemic Myocardial Inflammation (2018) had updated the Lake Louise Criteria 
to include parametric mapping as diagnostic criteria for myocarditis.2)

This review will focus on the principles and clinical applications of T1-, T2- and ECV-mapping, 
including challenges and future directions.

PARAMETRIC MAPPING

Parametric magnetic resonance (MR) relaxometry mapping methods (such as T1- and T2-
mapping) are quantitative magnetic resonance imaging (MRI) techniques that provide a pixel-
by-pixel representation of absolutely denominated numerical T1 or T2 properties, expressed in 
units of time (e.g. milliseconds). T1 and T2 relaxation times can be used to infer tissue type and 
composition in view of the surrounding environment. This is in contrast to conventional T1- or 
T2-weighted MRI methods, which rely on the relative image signal intensities to highlight and 
label areas deemed abnormal, compared to areas deemed normal. Traditional MRI is subject 
mainly to visual assessment, but allows semi-quantitative analysis in terms of signal intensity 
ratios or differences. In this regard, conventional MR images are not ideal to detect diffuse 
and homogenous disease presentations. The advantages of directly quantitative parametric 
mapping include that they can detect diffuse disease by comparing to previously established 
normal ranges. This also allows direct quantitative comparison of maps within individuals 
longitudinally over time, and between individuals.

It is important to distinguish “mapping” from “relaxometry” or “quantification”. T1/T2 
relaxometry or quantification refers to the overall numerical value (of T1, T2), obtained from 
either individual images or maps, without necessarily presenting them in the form of the 
pixel-by-pixel maps. A good example is the current clinical practice of using T2* relaxometry to 
detect myocardial iron overload. This uses a series of T2* weighted images with different echo 
times (TEs), and drawing a region of interest (ROI) in the septum of a mid-ventricular slice, to 
assess signal decay and produce a single T2* value for that region in a patient (Figure 1)3); it does 
not present the findings in a pixel-by-pixel T2* “map”. This is in contrast to the use of a map to 
display the spatial information (Figure 2).4) Mapping is often used for regional quantification, 
by averaging pre-quantified pixel values - this process is different from relaxometry, and 
produces different numerical results. So in our previous example, the T2* relaxometry value 
(derived from a septal ROI) will be different from the T2* value derived from a septal ROI on a 
T2* “map”; this is because the T2* map already has pre-quantified T2* values for each pixel, 
and the ROI represents an average of these individual pixels. This is analogous to the difference 
between average of ratios and ratio of averages.5)
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T1-MAPPING

T1 (or spin-lattice) relaxation time is the characteristic decay constant governing the recovery 
of longitudinal magnetization (Mz) back towards its thermal equilibrium after perturbation 
of nuclear spins by a designated electromagnetic pulse in very simple materials. The T1 time 
depends on the physical composition of a material sample; in living tissue, this is deemed 
to depend on tissue type and its physical and biochemical milieu. In reality, living tissue is 
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Figure 1. T2* imaging to assess myocardial iron overload. (A) T2* scan of a normal heart showing slow signal loss with increasing TE. (B) Decay curve for 
normal heart (T2*=33.3 ms). (C) Heavily iron overloaded heart. Note there is substantial signal loss at TE = 9.09. (D) Decay curve for heavily iron overloaded 
heart showing rapid signal loss with increasing TE. The curve plateaus as myocardial signal intensity falls below background noise. (E) Values for higher TEs are 
removed (truncation method) resulting in a better curve fit and a lower T2* value. As originally published by BioMed Central in Schulz-Menger et al. Journal of 
Cardiovascular Magnetic Resonance 2013;15:35.3) 
TE = echo time.
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a complex, compartmentalized system. In vivo, the Mz recovery depends on magnetization 
exchange between visible and invisible tissue compartments, T2 and characteristic tissue 
resonance frequencies, so different types of MR experiments show different recovery 
profiles.6)7) Thus, the Mz recovery is more complex than can be described by a single 
constant, which makes using a single T1 measurement a bold approximation in vivo.

MR sequences for cardiac T1-mapping are wide ranging, with the most common variants 
based on inversion-recovery, saturation-recovery or their hybrid combinations.8) Inversion-
recovery based T1-mapping techniques are the most commonly-used, since the modified 
Look-Locker inversion recovery (MOLLI) method was first proposed in 20049) for cardiac 
T1-mapping (Figure 3).10) MOLLI-based sequences have many variants, starting from the 
shortened MOLLI (ShMOLLI 2009, Figure 3),10) which was designed to measure short and 
long T1s within a single sequence. Subsequently, many MOLLI variants have emerged, with 
different sampling schemes. Some are optimized for measuring selected short or long T1 and 
selected heart rate ranges, where the radiographer is required to select the most appropriate 
method at the time of scanning.

Each T1-mapping method has its own metrological properties, and may have its own normal 
range different from any other T1 mapping method. This is because in vivo T1 values of any 
organ depend on a vast number of factors that can affect their measurement, from technical 
(such as the choice of sequence as explained above, its parameters, software version), MR 
hardware (such as field strength, gradients, etc), and physiologic factors (such as sex, age, 
heart rate, and temperature).
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Figure 2. T1-maps using incremental thresholds demonstrate the predominantly non-ischemic pattern of injury across a spectrum of acute myocarditis. Red 
indicates areas of myocardium with a T1 value above the stated threshold of at least 40 mm2 in contiguous area. T1 threshold of 990 ms was previously validated 
for the detection of acute myocardial edema; other thresholds were selected for illustrative purposes. As originally published by Biomed Central in Ferreira et al. 
Journal of Cardiovascular Magnetic Resonance 2014;16:36.4) 
LGE = late gadolinium enhancement; SD = standard deviation.
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Native T1-mapping
Native T1-mapping refers to T1-mapping at rest and before the administration of any contrast 
or stress agents, including exercise stress. Native T1 represents a composite signal from both 
the intracellular and extracellular compartments. Each tissue type has a specific normal 
range of T1 values, deviation from each may indicate disease or change in physiology. Native 
T1-mapping methods are characterized by a relatively narrow normal range of myocardial 
T1 with a small standard deviation,11)12) and have been demonstrated in multiple studies 
to be sensitive to changes in a wide range of common myocardial diseases.8)13) Native T1 
values increase with free water content in tissue, and T1-mapping is particularly useful for 
detecting acute myocardial inflammation/edema,4)14-16) or in chronic pathologies in which 
the myocardium has an expanded interstitial space where free water can accumulate, such 
as in areas of chronic fibrosis or infiltration of the ECV by amyloidosis.8)17) Native T1 values 
are lowered by iron or fat content within the myocardium, and are also useful to detect 
myocardial siderosis and Anderson-Fabry disease.18-21)

The biggest advantage of native T1-mapping is myocardial tissue characterization without the 
need for contrast agents. It readily detects changes in acute myocardial infarction,16)22-25) acute 
myocarditis,4)15) and cardiac amyloidosis17)26-28)—these typically lead to very high native T1 values 
(Figures 4 and 5).17)29) In cardiomyopathies, T1-mapping have been shown to detect abnormalities 
not detectable by LGE, such as in dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy 
(HCM), in which “apparently-normal” myocardial segments with normal wall thickness and without 
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Figure 3. ECG-gated pulse sequence schemes for simulation of (A) MOLLI and (B) ShMOLLI at a heart rate of 60 bpm. SSFP readouts are simplified to a single 35° 
pulse each, presented at a constant delay time TD from each preceding R wave. The 180° inversion pulses are shifted depending on the IR number to achieve the 
desired first TI of 100, 180 and 260 ms in the consecutive IR experiments. The plots below represent the evolution of longitudinal Mz for short T1 (400 ms, thin 
lines) and long T1 (2,000 ms, thick lines). Note that long epochs free of signal acquisitions minimise the impact of incomplete Mz recoveries in MOLLI so that all 
acquired samples can be pooled together for T1 reconstruction. In ShMOLLI the validity of additional signal samples from the 2nd and 3rd IR epochs is determined by 
progressive nonlinear estimation. As originally published by BioMed Central in Piechnik S et al. Journal of Cardiovascular Magnetic Resonance 2010;12:69.10) 
IR = inversion recovery; MOLLI = modified Look-Locker inversion recovery; Mz = longitudinal magnetisation; ShMOLLI = shortened modified Look-Locker inversion 
recovery; SSFP = steady-state free precession; TD = trigger delay.
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LGE also demonstrate abnormally increased T1 values (Figure 6).8)30) Native T1-mapping appears to 
be more sensitive to myocardial iron content than conventional T2* relaxometry, demonstrating low 
T1 in cases with normal T2* values,18) although how this may affect clinical decision-making awaits 
further research. Native T1-mapping can also differentiate Anderson-Fabry disease (characterized by 
genetic alpha-galactosidase deficiency and accumulation of sphingolipids within the myocardium) 
from other phenotypes of left ventricular hypertrophy (LVH), most notably HCM. In Anderson 
-Fabry disease, T1-mapping also adds value to conventional to LGE imaging, able to demonstrate 
different populations of abnormal myocardial areas with low T1, but also high T1 (typically in 
the basal inferolateral wall characterized by a broad midwall band of LGE).19)21) These examples 
exemplify that T1-mapping adds incremental value to conventional CMR methods like cine and LGE 
in the assessment of cardiac diseases.

Post-contrast T1-mapping and ECV
Myocardial T1 is relatively long, and is potently shortened by administration of modest 
amounts of extravascular gadolinium-based contrast agent (GBCA). The post-contrast T1 
measurement by itself (or isolated post-contrast T1) changes dynamically with time as GBCA 
is cleared from the body, and is affected by many other factors (such as renal function, age, 
hematocrit) to serve as a reliable biomarker; the preferred outputs are native T1 and ECV.31)

There is significant interest in the non-invasive assessment of the ECV in various cardiac 
conditions, especially as a surrogate marker of diffuse myocardial fibrosis (DMF), as this may 
provide insights into the pathophysiology of a condition, and may even be a novel therapeutic 
target, such as in non-ischemic cardiomyopathy and heart failure.
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Figure 4. CMR mapping and LGE imaging in acute myocardial pathologies. (Top row) CMR (3 Tesla) images of a patient with an acute myocardial infarction in 
the inferior septum. (A) Native T1-map (ShMOLLI) showing significantly increased T1 values in the inferior septum (1,407 ms vs. 1,159 ms in remote myocardium 
in the anterior wall; normal ShMOLLI T1 at 3T = 1,166±60 ms). (B) T2-map showing increased T2 values in the inferior septum (arrow, 55 ms vs. 39 ms in remote 
myocardium in the anterior wall). (C) Post-gadolinium contrast T1-map. (D) ECV map showing significantly increased ECV in the inferior septum (59% vs. 30% 
in remote myocardium in the anterior wall). (E) LGE imaging showing transmural enhancement with a core area of microvascular obstruction in the inferior 
septum (arrow). (Bottom row) CMR (1.5 Tesla) images of a patient with acute myocarditis. (F) Native T1-mapping using the ShMOLLI method showed significantly 
increased global myocardial T1 values (1,060 ms; normal ShMOLLI T1 at 1.5T = 962±25 ms). (G) T2-map showed increased global myocardial T2 values (59 ms), 
consistent with edema. (H) Post-gadolinium contrast T1-map. (I) ECV mapping showed increased global ECV of 36% (normal 27±3%). (J) LGE imaging showed 
small areas of patchy enhancement in a non-coronary distribution. 
CMR = cardiovascular magnetic resonance; ECV = extracellular volume; LGE = late gadolinium enhancement; ShMOLLI = shortened modified Look-Locker 
inversion recovery.
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The theory of how to measure ECV using CMR is reviewed in detail elsewhere.32) Briefly, the 
myocardial ECV is estimated by measuring the pre- and post-contrast relaxivity changes 
(R1=1/T1) of myocardium and blood, adjusting the ratio by the known extracellular volume of 
blood (i.e. 1-Hematocrit). ECV of the myocardium is calculated as follows:

	
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∆𝑅𝑅𝑅𝑅1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∗(1−𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻)

∆𝑅𝑅𝑅𝑅1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑏𝑏
=

( 1
𝑇𝑇𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏

− 1
𝑇𝑇𝑇𝑇1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

� 1
𝑇𝑇𝑇𝑇1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑏𝑏𝑏𝑏

− 1
𝑇𝑇𝑇𝑇1𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�
𝑥𝑥𝑥𝑥(1 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 

Like native T1, the measurement of ECV comes with several caveats. Firstly, ECV is calculated 
using T1, and thus depends on the chosen T1-mapping method. Most critically, the formula 
above depends on an equilibrium distribution of GBCA being achieved between the blood 
and myocardial interstitial compartments. Initially, an equilibrium-CMR (EQ-CMR) 
technique, based on a prolonged infusion of GBCA in excess of 30 minutes outside the 
scanner, assured the steady state.32) However, this is very time-consuming and not practical 
for routine clinical applications.

Since then, it has been found that, instead of using a prolonged infusion of GBCA, a bolus 
injection of GBCA, followed by much shorter wait time, is adequate for estimating ECV in 
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AL = amyloid light chain; CMR = cardiovascular magnetic resonance; ED = end diastolic; LGE = late gadolinium 
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most conditions.33) This is called dynamic-equilibrium (DynEq) CMR, which is significantly 
shorter and more practical. Native T1-mapping is acquired before administration of any 
GBCA, and post-contrast T1-mapping is acquired after a minimum of 10 minutes post 
injection of GBCA. However, DynEq-CMR may not be as accurate for very expanded ECVs 
(e.g. >40%), or conditions characterized by large myocyte volumes or areas with high 
concentration of GBCA.34)

It must be noted that myocardial ECV consists of the interstitial space between myocytes 
and also within the blood vessels between cells (the intravascular compartment).34) ECV 
may be expanded due to diffuse interstitial fibrosis, but also cardiac amyloidosis, edema 
and expansion of the intravascular compartment by coronary vasodilation, such as in 
ischemia.8)35)36) An expanded ECV has been reported to confer poor prognosis especially in 
patients with heart failure,37)38) and cardiac amyloidosis.26) It should be emphasized that an 
increased ECV is only a surrogate imaging marker of diffuse interstitial fibrosis, and only if 
confounders (such as edema, amyloidosis, expansion of the intravascular compartment) have 
been ruled out.8)31)35)36)39)

Stress T1-mapping
A novel application of T1-mapping is to acquire T1-maps at rest and during stress conditions 
(pharmacological or exercise), as a way to assess coronary vasodilatory reserve, which may be 
impaired in obstructive CAD or non-ischemic pathologies.35)36)39) The basic principle is that, 
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under normal conditions, vasodilatory or exercise stress will cause coronary vasodilation 
and so an increase in myocardial blood volume, characterized by long T1, to drive up the 
overall measured T1 in the myocardium. Studies have demonstrated a normal myocardial 
stress T1 response to be around 6–7%.35)40) In patients with severe aortic stenosis and chronic 
left ventricular (LV) pressure overload, there exists resting coronary vasodilation even in the 
absence of obstructive CAD; the coronary vasodilatory reserve is thus diminished, resulting 
in a blunted stress T1 response.36) Similarly, downstream of a significantly obstructed 
coronary artery, there will likely be full compensatory resting coronary vasodilation, 
leading to an elevated resting myocardial T1, which will have little or no capacity to be 
augmented with further stress, resulting in a significantly abolished stress T1 response.35) 
Initial studies have demonstrated that rest and stress T1-mapping can differentiate between 
normal myocardium from ischemic and infarcted myocardium according to distinct T1 
profiles of these tissue classes (Figure 7).35) This is a new area of research that may provide 
a way to assess for ischemia without the need for GBCA, but requires further validation to 
demonstrate its utility in real-life clinical settings.39)

T2-MAPPING

T2 (or spin-spin) relaxation time is the basic MR constant governing the dephasing of 
transverse magnetization (Mx,y) after an MR excitation. There are various sequence designs 
for T2-mapping, including the use of single-shot balanced steady-state free precession 
(bSSFP) acquisitions with different T2 prep times,41) gradient and spin echo (GraSE)42)43) 
or fast spin echo (FSE)-based pulse sequences. The Society for Cardiovascular Magnetic 
Resonance (SCMR) Mapping Consensus Statement (2017) recommends T2-prepared bSSFP 
or gradient echo pulse sequences with a minimum of three differently T2-weighted images; 
GraSE or FSE approaches may also be used if there is good published evidence on accuracy 
and precision suitable for clinical applications.8)
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Like native T1, the T2 time is an MR property of a tissue, affected by the tissue type and 
its surrounding physical and biochemical milieu. It is a composite signal from both 
the intracellular and extracellular compartments. The normal range of myocardial T2 
values also depends on the choice of the technique, including hardware, software, and 
physiologic factors, especially sex and age, and most T2-mapping methods exhibit heart rate 
dependencies. In theory, T2 is also affected by GBCA, but unlike T1, post-contrast myocardial 
T2 is too short for these changes to be of clinical use.

T2 values are sensitive to free water content in tissue, and T2-mapping is considered 
particularly useful for detecting acute myocardial inflammation/edema. For clinical 
applications, T2-mapping is commonly used to detect acute myocardial injury or 
inflammation, such as in acute MI, myocarditis other causes of myocardial infarction with 
non-obstructive coronary arteries (MINOCA) such as Takotsubo cardiomyopathy, and 
cardiac transplant rejection.8) Compared to conventional T2-weighted CMR imaging, T2-
mapping obviates some of the limitations, particularly the ability to directly quantify tissue 
T2 without relying on a reference ROI for comparison as a presumed area of normality—this 
is particularly relevant in global myocardial edema where there are no unaffected areas 
within the myocardium, and in systemic inflammatory diseases where even extra-cardiac 
reference ROIs like skeletal muscle (as needed for dark-blood T2-weighted CMR), may also 
be inflamed, which can lead to false negatives in detecting myocardial inflammation.2)15)44) 
The updated Lake Louise Criteria (2018) now includes T2-mapping, in addition to T1-based 
mapping methods, in the use of CMR for detecting myocardial inflammation.2)

IMAGING PROTOCOL

SCMR periodically publishes updates to recommendations on standardized imaging 
protocols, and these should be consulted when implementing parametric mapping 
techniques, in conjunction with the SCMR Mapping Consensus papers.8)31) Currently, 
parametric mapping is not standardized and is an evolving field; thus, it is crucial to ensure 
that any chosen method is implemented correctly, with quality assurance, at a local CMR site, 
especially before use for diagnosis and clinical applications. Knowledge of and establishment 
of a local normal range in groups of volunteers is paramount, and where available, the local 
normal range should be benchmarked against published normal ranges for a chosen mapping 
method to ensure consistency, both in terms of the mean value and standard deviation. Local 
manual shimming is especially important for high field strength (3T).8)

The following incorporates recommendations from the SCMR Standardized CMR imaging 
protocols: 2020 update,45) SCMR Mapping consensus papers8)31) and the authors' own expertise:

T1-mapping
1) Native T1 mapping is performed in the absence of contrast or stress agents, at rest
2) Look Locker imaging (MOLLI or ShMOLLI10) or equivalent) should be used.
3) �Diastolic acquisition is best with the exception of atrial fibrillation in which systolic 

acquisition may be preferred. In patients with higher heart rates, specific sequences 
designed for these heart rates should be used.

4) �Source images should be checked for motion/artefact and imaging repeated if this 
occurs. If motion correction is used, this needs to be carefully checked for introduction 
of any new artefacts.46)
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5) Slice thickness: 6–8 mm, in-plane resolution ~1.6–2.0 mm
6) �The number and orientation of slices obtained will depend upon the indication. At least 

one short-axis (SA) map should always be obtained.
7) �For extracellular volume measurements, T1 mapping should be performed prior to 

contrast and at least 1 time point between 10 and 30 minutes post contrast bolus. Post-
contrast T1-maps should match native T1-maps in slice position and other prescribed 
imaging parameters (such as field of view and cardiac phase).

8) �The hematocrit should be measured just before the scan and, ideally within 24 h of 
imaging, for the accurate ECV fraction measurement.

T2-mapping
1) �Multiple alternatives exist, such as T2-prepared single-shot bSSFP sequence acquired with 

different T2 prep time, GraSE or FSE-based pulse sequences.
2) Slice thickness: 6–8 mm, in plane-resolution ~ 1.6–2.0 mm
3) Diastolic acquisition is recommended
4) �The number and orientation of slices obtained will depend upon the indication. SA maps 

should always be obtained.
5) �Source images should be checked for motion/artefact, including in motion-corrected 

images, and imaging repeated if this occurs.

Example CMR parametric mapping protocol
• Localizers
• Pilot scouts
• �Cine imaging (horizontal long-axis [HLA], vertical long-axis [VLA], left ventricular outflow 

tract [LVOT])
• Native T1 mapping
• T2 mapping
• T2* imaging
• Injection of gadolinium-based contrast agents for LGE imaging
• Cine imaging (SA stack)
• LGE (HLA, VLA, LVOT, SA stack)
• Wait at least 10 minutes post-GBCA to acquire post-contrast T1-maps for ECV quantification

IMAGE POST-PROCESSING AND ANALYSIS

Currently, there is no standardized approach to the image post-processing and analysis of 
parametric maps, but there are general consensus guidelines based on the SCMR Mapping 
Consensus statements.8)31)47)

In general, it is important to ensure that parametric maps are acquired correctly to ensure 
the best image quality, including T1/T2 curve-fitting. Parametric maps may be processed 
using commercially-available software packages dedicated for this purpose, or in-house 
software that has been validated to ensure accurate reporting of T1 and T2 values. Parametric 
maps may be affected by motion (cardiac, respiratory or body), mistrigerring, susceptibility 
and many other artefacts. Maps should first be assessed for quality before using for further 
diagnosis or research purposes, and this may be achieved by examining the T1/T2 curve-fit 
and/or any accompanying quality control maps. Quality control maps may take the form of 
maps of R-squared (square of Pearson correlation, i.e. coefficient of explained variance)14) or 
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estimated T1 standard deviation maps, both of which can provide a visual guide as to whether 
the parametric map is reliable for clinical diagnosis (Figure 8).29)

Once it is determined that the map is of good quality, further image analysis may include 
visual analysis and more advanced analysis using computer-assisted post-processing. Visual 
analysis may present the parametric map on a colour scale using look-up tables (LUT) 
dedicated to highlighting areas of normality versus abnormality, although there is currently 
no standardized approach for displaying coloured parametric maps. Ideally, the quantitative 
analysis of parametric maps should employ validated diagnostic thresholds for that mapping 
method to highlight areas of abnormality (Figure 2),4) but until standardization is achieved, 
semi-quantitative approaches based on multiples of standard deviations compared to 
reference ROI or reference cohorts are also used.

For advanced quantitative analysis using dedicated software, ROIs are first placed onto the 
parametric maps; this may involve placing endo- and epi-cardial contours to segment the 
LV myocardial ring in SA, which can then be divided into segments (e.g. 6 segments), for 
global and segmental T1/T2/ECV values. Image analysts should be trained to apply the same 
standards for image post-processing,48) as the myocardial T1 clearly depends on the partial 
volume.11) Diagnostic thresholds may then be prescribed to highlight pixels that are above or 
below a certain T1/T2 value, to give a percent area of abnormality on an image slice (Figure 2).4)  
Advanced analyses may provide parameters such as measures of tissue heterogeneity, 
maximum-minimum pixel T1/T2 value differences, or standard deviation (SD) measures 

669https://e-kcj.org https://doi.org/10.4070/kcj.2020.0157

CMR Mapping for Tissue Characterization

4,096

0 ms

4,096

0 ms

A

D

B

E

C

F

Figure 8. Image analysis of T1-maps. (A) Native T1-map (ShMOLLI at 1.5 Tesla). The acquisition of this T1-
map suffered from breathing motion, resulting in (B) an R2 map that showed poor T1 fit (black pixels within 
the LV myocardium) and (C) underestimated average LV myocardial T1 values (T1=928 ms) after myocardial 
segmentation using epi- and endo-cardial contours (blue and magenta lines). Guided by the suboptimal R2 
map, the operator repeated the acquisition with the patient performing a good breath-hold, which produced 
(D) A good quality native T1-map, as indicated by (E) an R2 map that showed good T1 fit (pixels within the LV 
myocardium are white), and (F) accurate average LV myocardial T1 values (T1=943 ms). Ensuring good data fit 
during image acquisition and analysis is paramount in the clinical application of mapping techniques. 
LV = left ventricular; ShMOLLI = shortened modified Look-Locker inversion recovery.

https://e-kcj.org


within an ROI.49) Depending on the number of slices of maps available covering the LV, these 
may be averaged to provide a global LV myocardial T1/T2 value or % area of abnormality 
per subject. Separately, manual ROIs may be placed into an area of interest within the 
myocardium to provide an average T1/T2 value. A septal ROI drawn conservatively only on 
the mid-ventricular SA slice is sometimes used for diseases expected to be homogenous, but 
this approach does not maximize the use of these pixel-wise parametric maps, particularly 
the spatial information and potential regional variations,48) to the full extent. Very small ROIs 
(e.g. <40 mm2) should be avoided.

On the contrary, it is important to note that, for T2* relaxometry, the recommended 
approach is to use a conservative septal ROI placed in the mid-ventricular SA slice, to 
avoid any susceptibility artefacts in the lateral wall, and also contamination from the right 
ventricular (RV) and LV blood pools and epicardial vessels at the superior RV-LV junction that 
may lead to errors in T2* measurements. To curve-fit the T2*measurements obtained, the 
truncation method should be used, which excludes T2* samples acquired at longer TEs to 
provide accurate T2* estimates (Figure 1).3)

For ECV calculation, it is important that the pre-contrast and post-contrast T1-maps are 
acquired properly and are matching in position and other image parameters (such as field-of-
view, cardiac position and phase).50) Given the time gap between acquiring pre- and post-
contrast T1-maps, ECV quantification cannot be considered as a single acquisition. Endo- and 
epicardial contours are typically placed to segment the LV myocardium, and an ROI also needs 
to be placed in the LV blood pool (avoiding papillary muscles and trabeculae) to provide pre- 
and post-contrast blood T1 values. Alternatively, contours may be placed in specific regions 
of interest (e.g. septum or other segments), matching on the pre- and post-contrast T1-maps, 
to generate region-based ECV estimates. Producing an ECV map is possible to provide 
spatial information and visualization, subject to successful image co-registration between 
the pre- and post-contrast T1-maps with potentially differing breath-holds (Figure 9).51) The 
hematocrit should ideally be drawn from blood on the same day before the CMR scan. If the 
lab hematocrit is not available, this may be replaced with a “synthetic hematocrit” derived 
from the native blood T1 values for the particular technique used.52)

REPORTING

As with scanning protocols, reporting of CMR parametric mapping currently is not 
standardized but there are general consensus recommendations published by SCMR.8)31)47) The 
standardized image interpretation and post-processing in cardiovascular magnetic resonance - 
2020 update recommends at least the following when reporting mapping for clinical use47):

1) �For clinical reports, the type of pulse sequence, reference range, and type/dose of 
gadolinium contrast agent (if applied) should be quoted.

2) �Mapping results should include the numerical absolute value, the Z-score (number of 
standard deviations by which the result differs from the local normal mean; if available), 
and the normal range of the CMR system.

3) �Local results should be benchmarked against published reported ranges, but a local 
reference range should be primarily used.

4) �Reference ranges should be generated from data sets that were acquired, processed, and 
analyzed in the same way as the intended application, with the upper and lower range of 
normal defined by the mean ±2 SD of the normal data, respectively.
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5) �Parameter values should only be compared to other parameter values if they are obtained 
under similar conditions. In other words, the acquisition scheme, field strength, contrast 
agent and processing approach should be the same, and the results should be reported 
along with corresponding reference ranges for the given methodology.

In addition to the above, the authors also recommend including the following:
6) �Recording the quality of T1/T2 maps before using for clinical diagnosis, via assessment of 

T1/T2 curve-fits and/or quality controls maps (such as R2 or residual maps)
7) �Report the number of slices obtained and their imaging plane prescription (e.g. 3 SA slices 

covering the LV)
8) �Consistent and standardized training of image analysis and post-processing of parametric 

maps48)
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9) �In additional to global T1/T2 values, the extent of any regional abnormalities based on 
segmental analysis, and the range of these values (e.g. “The basal-mid inferolateral 
segments have areas with significantly elevated T1 values, ranging from 1,000–1,050 ms”)

10) �An interpretation or differential diagnosis of the imaging findings within the clinical 
context of the referral (e.g. “…which may be consistent with acute myocardial inflammation 
in these areas”)

CHALLENGES AND FUTURE DIRECTION

The clinical CMR community has a strong desire to implement parametric mapping for 
widespread clinical use, but the main challenge is the lack of standardization. Currently, 
there are many different T1- and T2-mapping techniques, each with their own metrological 
properties, normal ranges, sensitivity to disease and varying degrees of clinical validation 
and evidence-base. For an individual MRI centre that would like to implement parametric 
mapping, it is often confusing to know which T1- or T2-mapping method to use, and how to 
ensure that the method has been installed correctly before using it for systematic research 
or clinical applications. Additionally, the establishment of a local normal range is required 
according to current consensus, with each centre having to scan up to 50 normal volunteers.8) 
This is time-consuming and costly for individual MRI centres, especially clinical or private 
centres that are not focussed primarily on research. Establishing the local normal range 
needs to be repeated when there are major scanner upgrades or changes in the hardware or 
software platforms, which makes this prohibitive for many centres. Clearly, a better, more 
efficient and economical solution is required, such as the use of dedicated phantoms trialled 
since 2013 as part of the large, multicentre international Hypertrophic Cardiomyopathy 
Registry (HCMR).53)

CONCLUSION

CMR parametric mapping is widely regarded as the 4th era of myocardial CMR after cine, 
LGE and perfusion imaging. The derived T1-, T2- and ECV relaxometries are in prime 
time for advanced quantitative myocardial tissue characterization. Myocardial T1 and T2 
relaxation times correlate to histopathology in a range of myocardial diseases, and are 
especially useful in the evaluation of myocarditis or acute myocardial injury, suspected 
infiltration (amyloidosis, Anderson-Fabry disease, iron overload), and heart failure of 
unclear etiology. Parametric mapping techniques demonstrate narrow normal ranges and are 
very reproducible when the method is kept stable. Importantly, parametric mapping show 
sensitivity to a wide range of cardiac diseases, and may be used to track disease progression, 
response to therapy, and are increasingly included as endpoints for clinical trials. Parametric 
mapping adds incremental diagnostic and prognostic value to conventional tissue 
characterization techniques in the evaluation of myocardial diseases, and holds promise to 
offer contrast-free protocols in the future. Further progress hinges on standardization of 
acquisition methods, image post-processing and interpretation, which will allow widespread 
clinical use and the construction of large clinical databases to answer important clinical 
questions that smaller datasets cannot. CMR parametric mapping is expected to occupy an 
important role in the work-up of many cardiac diseases, optimizing clinical management 
pathways, and ultimately benefitting patients.
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