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Abstract

Genomic loci with regulatory potential can be annotated with various properties. For exam-
ple, genomic sites bound by a given transcription factor (TF) can be divided according to
whether they are proximal or distal to known promoters. Sites can be further labeled accord-
ing to the cell types and conditions in which they are active. Given such a collection of
labeled sites, it is natural to ask what sequence features are associated with each annota-
tion label. However, discovering such label-specific sequence features is often confounded
by overlaps between the labels; e.qg. if regulatory sites specific to a given cell type are also
more likely to be promoter-proximal, it is difficult to assess whether motifs identified in that
set of sites are associated with the cell type or associated with promoters. In order to meet
this challenge, we developed SeqUnwinder, a principled approach to deconvolving inter-
pretable discriminative sequence features associated with overlapping annotation labels.
We demonstrate the novel analysis abilities of SeqUnwinder using three examples. Firstly,
SeqUnwinder is able to unravel sequence features associated with the dynamic binding
behavior of TFs during motor neuron programming from features associated with chromatin
state in the initial embryonic stem cells. Secondly, we characterize distinct sequence proper-
ties of multi-condition and cell-specific TF binding sites after controlling for uneven associa-
tions with promoter proximity. Finally, we demonstrate the scalability of SeqUnwinder to
discover cell-specific sequence features from over one hundred thousand genomic loci that
display DNase | hypersensitivity in one or more ENCODE cell lines.

Author summary

Transcription factor proteins control gene expression by recognizing and interacting with
short DNA sequence patterns in regulatory regions on the genome. Current genomics
experiments allow us to find regulatory regions associated with a particular biochemical
activity over the entire genome; for example, all regions where a particular transcription
factor interacts with the genome in a given cell type. Given a collection of regulatory
regions, we often aim to discover short DNA sequence patterns that are more common in
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the collection than in other regions. Performing such “DNA motif-finding” analysis can

give us hints about the patterns that determine gene regulation in the analyzed cell type.
Here we describe a new method for DNA motif-finding called SeqUnwinder. Our

approach analyzes collections of regulatory regions where each has been labeled according
to various biological properties. For example, the labels could correspond to various cell
types in which the regulatory region is active. SeqUnwinder then performs machine-
learning analysis to unravel DNA sequence features that are characteristic of each label
(e.g. features that distinguish regulatory regions in each cell type from other cell types).
SeqUnwinder is the first method to enable analysis of regulatory region collections that
contain several overlapping labels.

Introduction

Many regulatory genomics analyses focus on finding DNA sequence features that are charac-
teristic of a biological property. Given a set of sequences that are bound by a particular tran-
scription factor (TF), for example, we typically aim to discover short, degenerate DNA
patterns that may represent the DNA binding preferences of the TF itself, the binding prefer-
ences of coincident TFs, or general properties of the regions that make them favorable for
binding.

The de novo DNA motif-finding problem is typically cast in the context of two mutually
exclusive sequence sets. Most popular motif-finding methods use unsupervised machine-
learning approaches to discover motifs in ‘foreground’ input sequences that are over-repre-
sented with respect to a set of ‘background’ sequences (e.g. “bound” vs. “unbound”, respec-
tively) [1,2]. Several other methods explicitly solve a two-class classification problem, where
the goal is to find sequence features that discriminate between two mutually exclusive class
labels [3-6].

Current characterizations of regulatory sites move beyond binary labels such as “bound”
and “unbound”. For example, in a given cell type, each regulatory element could be labeled as
bound or unbound by each of several TFs and enriched or depleted for several chromatin
states [7-9]. As we add more regulatory class labels, it becomes difficult to define mutually
exclusive sets of sequences that are representative of each label. Relatedly, our analyses may
become confounded by uneven degrees of overlap between the class labels, leading to incorrect
associations between sequence features and regulatory activities. Therefore, a simple recasting
of discriminative motif-finding as a multi-class classification problem (where classes are
required to be mutually exclusive) is not always appropriate.

As an example, consider the hypothetical scenario presented in Fig 1A. In this example, a
given TF’s binding sites have been profiled in types A, B, and C. Thus, each TF binding event
can be labeled as specific to a cell type or common to all or a subset. Let’s assume that after fur-
ther labeling the sites as being proximal or distal to promoters (Pr and Dj, respectively), we
find that the TF’s binding sites in cell A are more likely to be promoter proximal than sites in
other cell types. Promoter regions have sequence features that are distinct from distal regions
(e.g. the presence of core promoter elements and distinct GC-content patterns). Therefore, if
we search for sequence features that are discriminative of cell A’s sites without accounting for
the uneven overlaps with other labels, it is likely that some discovered features will actually be
generic properties of proximal regions. Such results could in turn affect our conclusions
regarding the biological mechanisms of TF binding in cell A. To resolve DNA features

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005795 October 19, 2017 2/22


https://doi.org/10.1371/journal.pcbi.1005795

.@' PLOS COMPUTATIONAL
Z) ) BIOLOGY Discriminative sequence features for overlapping regulatory annotations

A ) (B c )
Regulatory sites Site labels . Label-specific w,
k-mer models ATGCC 1.2
ATAT 0.9
1 1 | | | I I I Wa
¥ U mEEE | - -
o o 4 B cassirer B4 GATAA 0
& - - @B @ C i . .
| | T ‘B TTAA -0.8
1 I ‘A‘ | II I d
: . e - E . Scany
1 | [ T T T e Hills
A Cm | ol : o
A || G g
I I I I I I
R Nt Y
1 I | | | I I I
: ! : ! : Lo \ Focused MEME search /
1 I | | | I I I
1 I | | | I I I
I I I I I I
: . : vt (D Discovered label- )
I 1 1 1 || 'DI' . .
: . pOERE specific motifs
1 I | | | I I I —
H . - S A R CIHPr i CTAGT _CTAGT
1 1 [ T T T . H
! : bob o CAGGAA, Score motifs CAGCAAA
‘ ! | [ N N | . (— .
\ ' || 1 DI kT'T.T'I - )
! ' oo r et ~TGACTCA. _TaTCT.T
: :
ATTGTT-
A, B, and C :- Cell types ; \m ~TGACTCA
Pr, Di :- Proximal and Distal from TSS :

N ) \_ Di ATTCTT. )

Fig 1. Overview of SeqUnwinder, which takes an input list of annotated genomic sites and identifies label-specific discriminative motifs. (A)
Schematic showing a typical input instance for SeqUnwinder: a list of genomic coordinates and corresponding annotation labels. (B) The underlying
classification framework implemented in SeqUnwinder. Subclasses (combination of annotation labels) are treated as different classes in a multi-class
classification framework. The label-specific properties are implicitly modeled using L1-regularization. (C) Weighted k-mer models are used to identify 10-
15bp focus regions called hills. MEME is used to identify motifs at hills. (D) De novoidentified motifs in C) are scored using the weighted k-mer model to
obtain label-specific scores.

https://doi.org/10.1371/journal.pcbi.1005795.g001

associated with each cell type’s label from those associated with confounding labels (e.g. pro-
moter proximity), we need motif-finders that are able to analyze multiple labels in parallel.
Almost all existing discriminative motif-finders assume that the class labels are mutually
exclusive, and therefore cannot appropriately handle scenarios such as that outlined in Fig 1A.
For example, the multi-class discriminative sequence feature frameworks proposed by Tava-
zoie and colleagues [3,10,11] are limited to analysis of mutually exclusive classes. A few existing
methods do allow a limited analysis of datasets where annotation labels partially overlap, but
these approaches were designed for two-class classification problems where the multi-task
framework enables modeling of the “common” task in addition to the two classes. For exam-
ple, Arvey, et al. [4] used a multi-task SVM classifier to learn sequence features associated with
cell type-specific TF binding across two cell types, along with features shared by TF binding
sites in both cell types. The group lasso based logistic regression classifier SeqGL [5] also
implements a similar multi-task framework to identify features that are discriminative between
two classes and features that are common to both. No existing discriminative feature discovery
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method is applicable to multi-label classification scenarios where a set of genomic sequences
contains several annotation labels with arbitrary rates of overlap between them.

In this work, we present SeqUnwinder, a hierarchical classification framework for charac-
terizing interpretable sequence features associated with overlapping sets of genomic annota-
tion labels. We demonstrate the unique analysis abilities of SeqUnwinder using both synthetic
sequence datasets and collections of real TF ChIP-seq and DNase-seq experiments. In each
demonstration, SeqUnwinder cleanly associates interpretable sequence features with various
cell- or condition-specific annotation labels, while simultaneously removing the effects of con-
founding signals. SeqUnwinder scales effectively to large collections of genomic loci that have
been annotated with several overlapping labels, and is thus designed to deal with the complex-
ity of modern data sets.

Results
SeqUnwinder overview

The intuition behind SeqUnwinder is that sequence features associated with a particular anno-
tation label should be similarly enriched across all subclasses spanned by the label (regardless
of how the subclasses have been defined). SeqUnwinder’s analysis begins by defining genomic
site subclasses based on the combinations of labels annotated at these sites (Fig 1B). The site
subclasses are treated as distinct classes for a multi-class logistic regression model that uses k-
mer frequencies as predictors. At the same time, k-mer models are also learned for each label
by incorporating them in an L1 regularization term (see Methods). In other words, while the
k-mer weight parameters for each subclass are learned directly from the data, the weight
parameters for the labels are learned exclusively through the regularization constraint. The
regularization encourages each label’s model to take the form of the features that are consis-
tently enriched across the subclasses spanned by that label (Fig 1B). The trained classifier
encapsulates weighted k-mer models specific to each label and each subclass (i.e. combination
of labels). The label- or subclass-specific k-mer model is scanned across the original genomic
sites to identify focused regions (which we term “hills”) that contain discriminative sequence
signals (Fig 1C). Finally, to aid interpretability, SeqUnwinder identifies over-represented
motifs in the hills and scores them using label- and subclass-specific k-mer models (Fig 1D).

SeqUnwinder is easy to use, taking as input a list of DNA sequences or genomic coordinates
that are each annotated with a set of user-defined labels. The labels can come from any source,
enabling a high degree of analysis flexibility. SeqUnwinder implements a multi-threaded ver-
sion of the ADMM [12] framework to train the model and typically runs in less than a few
hours for most datasets. Output includes both k-mer models and position-specific scoring
matrices and weights associating these motifs with each subclass and label.

SeqgUnwinder deconvolves sequence features associated with
overlapping labels

To demonstrate the properties of SeqUnwinder, we simulated 9,000 regulatory regions and
annotated each of them with labels from two overlapping sets: A, B, Cand X, Y (Fig 2A). We
assigned a different motif to each label. At 70% of the sequences associated with each label, we
inserted appropriate motif instances by sampling from the distributions defined by the posi-
tion-specific scoring matrices of label assigned motifs (Fig 2A). We used this collection of
sequences and label assignments to compare SeqUnwinder with a simple multi-class classifica-
tion approach (MCC). In MCC training, each label was treated as a distinct class and therefore
each regulatory sequence is included multiple times in accordance with its annotated labels.
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Fig 2. Performance of SeqUnwinder on simulated datasets. (A) 9000 simulated genomic sites with corresponding motif associations. (B) Label-
specific scores for all de novo matifs identified using MCC (left) and SeqUnwinder (right) models on simulated genomic sites in “A”. For consistency across
figures, we fix the color saturation values to -0.4 and 0.4 (C) Schematic showing 100 genomic datasets with 6000 genomic sites and varying degrees of
label overlap ranging from 0.5 to 0.99. (D) Performance of MCC (multi-class logistic classifier), DREME, and SeqUnwinder on simulated datasets in “C”,
measured using the F1-score, (E) true positive rates, and (F) false positive rates.

https://doi.org/10.1371/journal.pcbi.1005795.9002

SeqUnwinder and the MCC model correctly identify motifs similar to all inserted motifs
(Fig 2B). However, the MCC approach makes several incorrect motif-label associations, poten-
tially due to high overlap between labels. In contrast, the label-specific scores of the identified
motifs in the SeqUnwinder model are not confounded by overlap between annotation labels.
For example, even though labels X and A highly overlap, SeqUnwinder correctly assigns each
motif to its respective label.

Next, we assessed the performance of SeqUnwinder at different levels of label overlaps. We
simulated 100 datasets with 6000 simulated sequences, varying the degree of overlap between
two sets of labels ({A, B} and {X, Y}) from 50% to 99% (Fig 2C). We then compared SeqUnwin-
der with MCC and DREME [1], a popular discriminative motif discovery tool. Since DREME
takes only two classes as input: a foreground set and a background set, we ran four different
DREME runs for each of the four labels. We calculated the true positive (discovered motif
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correctly assigned to a label) and false positive (discovered motif incorrectly assigned to a
label) rates based on the true label assignments. We used these measures to calculate the F1
score (harmonic mean of precision and recall) at different overlapping levels (Fig 2D).

Fig 2D demonstrates the range of label overlap rates in which SeqUnwinder outperforms
the alternative approaches. When the labels are uncorrelated (i.e. low or random overlap), the
sequence features associated with each label do not confound one another and thus all meth-
ods perform similarly well in characterizing label-specific motifs. On the other hand, when the
labels are highly correlated (i.e. high overlap), it becomes impossible for any method to cor-
rectly assign sequence features to the correct labels. SeqUnwinder performs better than the
other approaches in the intermediate range of label overlaps, and accurately characterizes
label-specific sequence features even when the simulated labels overlap at 90% of sites. More
specifically, SeqUnwinder consistently has a false positive rate (incorrectly assigning motifs to
labels) of zero at the cost of a modest decrease in true positive rates (recovering all motifs
assigned to a label) (Fig 2E and Fig 2F).

SeqUnwinder uncovers co-factor driven TF binding dynamics during iMN
programming

To demonstrate its unique abilities in a real analysis problem, we use SeqUnwinder to study
TF binding during induced motor neuron (iMN) programming. Ectopic expression of Ngn2,
Isl1, and Lhx3 in mouse embryonic stem (ES) cells efficiently converts the resident ES cells
into functional spinal motor neurons [13,14]. We recently characterized the dynamics of
motor neuron programming by studying TF binding, chromatin dynamics, and gene expres-
sion over the course of the 48hr programming process [14]. We found that two of the ectopi-
cally expressed TFs, Isl1 & Lhx3, bind together at the vast majority of their targets during the
programming process. Using MultiGPS [15], we also found that this cooperative pair of TFs
shifted their binding targets during programming, and we used three mutually exclusive
labels—early, shared, and late-to annotate Isl1/Lhx3 binding sites according to their observed
dynamic occupancy patterns. Early sites were bound by Isl1/Lhx3 only during earlier stages of
programming, shared sites were constantly bound over the entire programming process, and
late sites were only bound during the final stage of programming.

In our previous work, we demonstrated that the early Is11/Lhx3 sites were more accessible
in the initial pluripotent cells, and we suggested that some early sites are the result of opportu-
nistic Isl1/Lhx3 binding to ES enhancer regions [14]. However, this raises a question that was
not addressed in our earlier work: if we discover sequence features at early sites, how can we
tell if those features are specifically associated with Isl1/Lhx3 as opposed to reflecting on coin-
cident properties of ES enhancers?

In order to assess the potential confounding effects of ES regulatory sites, we trained a ran-
dom forest classifier to further categorize all Isl1/Lhx3 bound sites using two additional labels:
“ES-active and “ES-inactive” (see Methods). Annotating Isl1/Lhx3 sites using both sets of
labels (Isl1/Lhx3 binding dynamics and ES activity) results in six different subclasses. As can
be seen from Fig 3A, early sites have a higher propensity to also be active prior to ectopic TF
expression in the starting ES cells. Conversely, the late sites are more likely to be inactive in ES
cells.

We next trained SeqUnwinder on the multi-label Isl1/Lhx3 dataset, and compared the
results with those of DREME and the simple MCC approach described in the previous section
(Fig 3B, S1 Fig, S2 Fig, S1 Table). All methods discover similar sets of motifs. For example,
both the SeqUnwinder and MCC approaches find motifs corresponding to the binding prefer-
ences of Oct4, Zfp281, Onecut-family TFs, and homeodomain TF motifs corresponding to the
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https://doi.org/10.1371/journal.pchi.1005795.g003

cognate Isl1/Lhx3 binding preference (Fig 3B). However, the different approaches produce dif-
ferent associations between motifs and labels. For example, the MCC approach associates the
Oct4 motif with both the “early” and “ES-active” labels, and it associates the Onecut motif with
both “late” and “ES-inactive” labels (S1 Fig). DREME similarly makes ambiguous associations
(S2 Fig). SeqUnwinder, in contrast, makes much cleaner associations; the Oct4 motif is only
associated with the “early” label, and the Onecut motif is only associated with the “late” label,
suggesting that these motifs are not merely coincidental features due to the ES activity status of
the binding sites.

The SeqUnwinder motif-label associations suggest that Isl1/Lhx3 bind cooperatively with
Oct4 and Onecut TFs at subsets of early and late binding sites, respectively. As described in
our earlier work, we characterized Onecut2 binding to be highly enriched at late Isl1/Lhx3
sites during iMN programming [14]. We also found that late sites are not bound by Isl1/Lhx3
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(and iMN programming does not proceed) in cellular conditions under which Onecut TFs are
not expressed [14], supporting a model in which late Isl1/Lhx3 binding is dependent on One-
cut TFs. Analysis of motif log-odds scores and Onecut2 ChIP enrichment further support
SeqUnwinder’s prediction that the Onecut motif is not merely a general feature of ES-inactive
sites (Fig 3C).

Conversely, Oct4 is predicted by SeqUnwinder to be a specific feature of “early” binding
sites, and not merely an artifact associated with “ES-active” sites. Using ChIP-seq, we profiled
the binding of Oct4 immediately before NIL induction. As shown in Fig 3D, Oct4 motif log-
odds scores and ChIP-seq tags show a preferential enrichment at early Isl1/Lhx3 sites, in line
with SeqUnwinder’s prediction.

Interestingly, the motif features that are most highly associated with shared binding sites all
correspond to homeodomain TF motifs of the type bound by Isl1/Lhx3 (Fig 3B and S1 Fig).
One possible explanation is that there are stronger or more frequent cognate motif instances at
sites bound by a given TF across multiple timepoints, or indeed across multiple unrelated cell
types. We further assess this hypothesis in the following section.

Our analysis of Isl1/Lhx3 binding during iMN programming thus serves as an example
analysis scenario in which SeqUnwinder identifies motif features associated with multiple
overlapping labels, leading to testable hypotheses about co-factors that serve mechanistic roles
at subsets of binding sites.

Multi-condition TF binding sites are characterized by stronger cognate
motif instances

The sequence properties of tissue-specific TF binding sites have been extensively studied
[4,5,16]. As might be expected, sites that are bound by a given TF in only one cell type are
often enriched for motifs of other TFs expressed in that cell type. Therefore, a given TF’s cell-
specific binding activity is likely determined by context-specific interactions with other
expressed regulators.

Most TFs also display cell-invariant binding activities; each TF typically has a cohort of sites
that appear bound in all or most cellular conditions in which that TF is active. Despite the
potential regulatory significance of such multi-condition binding sites, little is known about
the sequence properties that enable a TF to bind them regardless of cellular conditions. Studies
of individual TFs suggest that binding affinity to cognate motif instances may play a role in dis-
tinguishing multi-condition binding sites from tissue-specific sites [15,17].

In order to characterize sequence discriminants of multi-condition TF binding sites across
a wider range of TFs, we curated multi-condition ChIP-seq experiments from the ENCODE
project. We restricted our analysis to the 17 sequence-specific TFs profiled in all 3 primary
ENCODE cell-lines (K562, GM12878, and H1-hESC; see Methods) [18]. For each TF, we used
MultiGPS analysis to curate sets of tissue-specific sites in each cell type, and a further set of
sites that are “shared” across all three cell types (see Methods).

For most examined TFs, the majority of shared binding sites were located in promoter
proximal regions (S3 Fig). As outlined in the Introduction, promoter proximal sites are known
to have distinct sequence biases, which could confound the discovery of sequence features
associated with shared sites. We therefore further labeled each TF’s binding sites as being
located proximal or distal to annotated TSSs. Introducing the proximal and distal labels should
marginalize the proximal bias at shared sites, as the sequence features learned by SeqUnwinder
at shared sites must be consistently enriched at both proximal and distal sites. Each examined
TF’s binding sites is thus categorized into eight subclasses, each of which is composed of com-
binations of six distinct labels.
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We applied SeqUnwinder to each labeled sequence collection in order to characterize label-
specific sequence features (see S2 Table for cross-validation classification performance values).
We illustrate the process with SeqUnwinder’s results for YY1. We started with a total of
~35,000 YY1 binding events called by MultiGPS across the three cell types, categorized into
the eight aforementioned subclasses (Fig 4A). SeqUnwinder identifies several de novo motifs
in this collection (Fig 4B). Interestingly, SeqUnwinder predicts that a motif matching the cog-
nate YY1 motif is strongly associated with the “shared” label. The cell-type specific, proximal
and distal labels had low or negative scores for this cognate motif. Note here that a non-posi-
tive label-specific score for a motif does not necessarily imply complete absence of instances of
that motif. A significant depletion of motif instances at sites annotated by a label compared to
other labels can very likely result in non-positive scores. Cell-type specific sites had higher
scores for co-factor motifs. For example, H1-hESC specific sites were enriched in instances of
a TEAD-like motif, while K562-specific sites and GM12878-specific sites were enriched for a
GATA-like motif and an IRF-like motif, respectively. In fact, GATA2 ChIP-seq reads in K562,
IRF4 ChIP-seq reads in GM12878, and TEAD4 ChIP-seq reads in HIhESC showed striking
enrichment at corresponding cell-specific YY1 binding sites (Fig 4A).
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Fig 4. SeqUnwinder analysis of sequence features at multi-condition TF binding sites for ENCODE YY1 datasets. (A) Heatmaps showing the
YY1 ChIP-seq reads at curated YY1 binding sites, stratified based on binding across cell-lines and distance from annotated mRNA TSS. The order of
subclasses is: Shared and Proximal, Shared and Distal, K562 and Proximal, K562 and Distal, GM12878 and Proximal, GM12878 and Distal, H1-hESC
and Proximal, and H1-hESC and Distal. (B) De novo motifs and corresponding label-specific scores identified using SeqUnwinder at events defined in
A). For consistency across figures, we fix the color saturation values to -0.4 and 0.4.

https://doi.org/10.1371/journal.pcbi.1005795.9004
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Analogous results were observed for many of the examined factors. For 13 out of the 17
examined factors, SeqUnwinder predicts that the cognate motif is highly associated with the
“shared” label (Fig 5A). Despite significant overlaps between shared sites and promoter proxi-
mal sites (S3 Fig), the cognate motifs were not found to be predictive of any TF’s “proximal”
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Fig 5. SeqUnwinder analysis of sequence features at multi-condition TF binding sites for 17 ENCODE TFs. (A) Label-specific scores of de novo
discovered cognate motifs across all 17 ENCODE TF datasets. SeqUnwinder did not discover a cognate motif for ZNF143. GM12878-enriched sites for
NRF1 and H1-hESC-specific sites for SRF were excluded because of low number of binding sites. (B) Label-specific scores of de novo discovered GATA-
like, IRF-like, RUNX-like and TEAD-like motifs. (C) Collective degree distributions at distal shared and cell-specific sites further stratified based on presence
of cognate motif. For consistency across figures, we fix the color saturation values to -0.4 and 0.4.

https://doi.org/10.1371/journal.pchi.1005795.g005
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label (Fig 5A). Furthermore, the cognate motif was not specifically predictive of cell-type-spe-
cific labels for the examined TFs, with the exception of H1-hESC-specific sites for CEBPB,
NRSF and SRF. An orthogonal analysis of log-odds motif scoring distributions across each
TF’s labels is consistent with the SeqUnwinder results (S4 Fig). When we ran DREME on the
same datasets for comparison, the association of cognate motif to shared sites was less clear.
For 9 of the tested factors, DREME results associated the cognate motif with more than one
label (S5 Fig).

We also examined the motifs that SeqUnwinder predicts to be associated with cell-type-spe-
cific binding labels. Interestingly, we found IRF and RUNX motifs enriched at GM12878-spe-
cific binding sites for 11 and 7 of the 17 examined TFs, respectively. Similarly, the GATA motif
was predictive of K562-specific binding for 14 of the 17 examined TFs. A TEAD-like motif was
predictive of H1-hESC specific sites for 11 of the 17 TFs (Fig 5B). The observation that cell-
type-specific sites are depleted for cognate motif instances but are enriched for motif instances
of other lineage-specific regulators is consistent with the “TF collective” model proposed by
Junion and colleagues [19]. Under this model, the cooperative binding of large numbers of
TFs is driven by the presence of motifs for a subset of lineage-specific factors that drive recruit-
ment of the rest (i.e. the motifs for some TFs need not always be present).

To further support the “TF collective” interpretation of SeqUnwinder’s results, we tested
the degree to which TSS-distal cell-type-specific sites are bound by numerous other TFs. We
first defined a binding site’s “collective degree” as the number of distinct TFs with nearby
ChIP-seq peaks. To calculate collective degree, we used a total of 158, 102, and 202 ChIP-seq
datasets in GM 12878, H1-hESC, and K562 cell-types, respectively. From Fig 5C, it is clear that
distal K562- and GM12878-specific sites lacking a cognate motif instance have higher collec-
tive degrees. Similar findings were previously identified at the “high occupancy of transcrip-
tion-related factors (HOT)” regions [20].

SeqUnwinder identifies sequence features at shared and cell-specific
DHS in six different ENCODE cell-lines

Finally, we aim to demonstrate the utility of SeqUnwinder in identifying sequence features at
large numbers of genomic loci annotated with several labels. We first annotated a large collec-
tion of DNase I hypersensitive (DHS) sites with six cell-line labels depending on the enrich-
ment of DNase-seq reads (Fig 6A). If we had used analysis methods that rely on mutually
exclusive categories, we would need to restrict analysis to ~97,000 sites labeled as either shared
or exclusive to one of the six cell types [21]. Indeed, these strict category definitions may intro-
duce sequence composition biases into each category. However, by taking advantage of
SeqUnwinder’s unique framework to pool information from all subclasses, we can analyze
~140,000 DHS sites that we annotate into 22 subclasses as shared (i.e. enriched in 5 or more
cell types) or specific to one or two cell types (Fig 6A, S3 Table).

SeqUnwinder identifies several motifs in this large collection of DHS sites, including those
previously associated with specific cell-types [22-24] (Fig 6B). For example, components of the
CTCF motif were highly predictive of shared DHS sites. This result is consistent with previous
findings suggesting relatively invariant CTCF binding across cellular contexts [25,26]. RUNX,
IRF and NF-kB motifs were enriched at GM12878-specific DHS sites. These motifs were also
discovered by others at GM12878-specific DHS sites [5,23]. Motifs corresponding to GATA
TFs, key regulators of erythroid development [27-29], were enriched at K562-specific DHS
sites. SNAI and TEAD motifs were enriched at H1-hESC sites, consistent with previous obser-
vations [5]. JUND and FOS motifs were enriched at HeLa-S3-specific DHS sites. Motifs for
HNF4A and FOX TFs, known master regulator of hepatocytes [30-33], were enriched at
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Fig 6. Discriminative sequence feature analysis at DHS sites in 6 different ENCODE cell-lines using SeqUnwinder. (A) ~140K DHS sites
annotated with 6 different cell-line labels used to identify cell-line specific and shared sequence features. (B) Label-specific scores of all the de
novo motifs identified at DHSs sites in “A”. For consistency across figures, we fix the color saturation values to -0.4 and 0.4.

https://doi.org/10.1371/journal.pchi.1005795.g006

HepG2-specific DHS sites. Finally, motifs belonging to the ETS class of TFs were enriched at
HUVEC-specific DHS sites (Fig 6B). ETS factors have been shown to directly convert human
fibroblasts to endothelial cells [34]. Interestingly, some of the motifs associated with cell-type
specific DHS sites were also found in our analyses of cell-type specific TF binding sites above
(Fig 5B). For example, IRF, GATA, and TEAD motifs associated with GM 12878, K562, and
H1-hESC specific DHSs were also predictive of corresponding cell-type specific binding for
many of the analyzed TFs.

These results demonstrate that SeqUnwinder scales effectively in characterizing sequence
features at thousands of regulatory regions annotated by several different overlapping labels.

Discussion

Classification models have shown great potential in identifying sequence features at defined
genomic sites. For example, Lee et al. [3] trained an SVM classifier to discriminate putative
enhancers from random sequences using an unbiased set of k-mers as predictors. The choice
of kernel function is key to the performance of an SVM classifier. Several variants of the basic
string kernel (e.g. mismatch kernel [35], di-mismatch kernel [4], wild-card kernel [5,35], and
gkm-kernel [36]) have been proposed and have been shown to substantially improve the classi-
fier performance. Several complementary methods using DNA shape features in a classifica-
tion framework have also provided insight on the role of subtle shape features that distinguish
bound from unbound sites [37-39]. More recently, deep learning models have also been har-
nessed to predict TF binding sites from unbound sites [6].

In this work, we focus not on the form of the training features, but rather on the tangential
problem of identifying sequence features that discriminate several annotations applied to a set
of genomic locations. Most existing methods have been developed and optimized to identify
sequence features that discriminate between mutually exclusive classes (e.g. bound and
unbound sites). However, when considering different sets of genomic annotation labels, over-
laps between them are very likely and can confound results. To systematically address this, we
developed SeqUnwinder.

Using three analysis scenarios based on real ChIP-seq and DNase-seq datasets, we have
demonstrated that SeqUnwinder provides a unique ability to deconvolve discriminative
sequence features at overlapping sets of labeled sites. Our applications are chosen to demon-
strate that SeqUnwinder has the ability to predict the identities of TFs responsible for particu-
lar regulatory site properties, while accounting for potential sources of bias.

For example, in our previous characterization of Isl1/Lhx3 binding dynamics during motor
neuron programming, we discovered motifs that were enriched at early and late binding site
subsets [14]. However, our analyses were potentially confounded by a correlation between
TF binding dynamics and the chromatin properties of the sites in the pre-existing ES cells.
Therefore, the motifs that we previously assigned to early or late TF binding behaviors could
have been merely associated with ES-active and ES-inactive sites, respectively. By implicitly
accounting for the effects of overlapping annotation labels, SeqUnwinder can deconvolve
sequence features associated with motor neuron programming dynamics and ES chromatin
status. Our analyses support an association between Oct4 binding and early Isl1/Lhx3 binding
sites, along with our previously confirmed association between Onecut TFs and late Isl1/Lhx3
binding sites [14].
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Our analyses of ENCODE ChIP-seq and DNase-seq datasets demonstrate the flexibility and
scalability of SeqUnwinder. In analyzing TF binding across multiple cell types, we used SeqUn-
winder to account for promoter proximity as a potential confounding feature. Our results add
to the growing evidence that multi-condition TF binding sites tend to be distinguished by bet-
ter quality instances of the primary cognate motif [15,17]. For example, Gertz et al., showed
that ER (estrogen receptor) binding sites bound in both ECC1 and T4D7, two human cancer
cell lines, had higher affinity instances of EREs (estrogen response elements) compared to cell-
specific binding sites. Indeed, even the “shared” binding sites for Isl1/Lhx3 in our first demon-
stration are characterized by stronger instances of the Isl1/Lhx3 cognate binding motifs (Fig
3B). These results suggest that many TFs have a set of binding sites that are bound across a
broad range of cellular contexts, and which are characterized by better quality cognate motif
instances. Furthermore, our results support a model in which cell-type-specific sites lacking
cognate motif instances are bound in a “TF collective” fashion [19].

Interestingly, SeqUnwinder discovers consistent motif features to be predictive of cell-spe-
cific binding sites across several examined TF ChIP-seq collections. For example, SeqUnwin-
der discovers GATA, IRF and TEAD motifs at K562-, GM12878- and H1hESC-specific TF
binding sites, respectively. These same motifs are also discovered by SeqUnwinder to be pre-
dictive of appropriate cell-specific DNase I hypersensitivity in a large collection of DHS sites
across 6 different cell types. SeqUnwinder’s characterization of cell-specific motif features in
collections of DNase-seq datasets may therefore serve as a source of predictive features for
efforts that aim to predict cell-specific TF binding from accessibility experimental data alone
[39-41].

There remain several areas of possible future improvement within SeqUnwinder’s hierar-
chical multi-label classification approach to discriminative motif-finding. SeqUnwinder does
not currently model any relationships or correlations between class labels. For example, we
might expect similar cell types to have similar cell-specific motif features within their regula-
tory regions. Incorporating graphs defined by label similarities [42,43] may thus be productive
in the context of analyses across cell lineages or developmental time-series. SeqUnwinder may
also be easily extended to incorporate different kinds of sequence kernels and DNA shape fea-
tures [35,36,44].

In summary, SeqUnwinder provides a flexible framework for analyzing sequence features
in collections of related regulatory genomic experiments, and uniquely enables the principled
discovery of sequence motifs associated with multiple overlapping annotation labels.

Methods
SeqUnwinder model

The core of SeqUnwinder is a multi-class logistic regression classifier trained on subclasses of
genomic sites. The training features for the classifier are based on k-mer frequencies in a fixed
window around input loci. The value or range of k is user-definable in the SeqUnwinder soft-
ware, but all analyses in this work use models based on all 4-mers and 5-mers. When counting
frequencies, we map each k-mer to the same entry as its reverse complement. To account for
differences in the ranges of k-mer frequencies, we standardize the feature vectors such that
each k-mer has a zero mean and unit variance across the entire training dataset.

The parameters of SeqUnwinder are k-mer weights for each subclass (combination of
annotation labels). In addition, SeqUnwinder also models the label-specific k-mer weights by
incorporating them in the L1 regularization term. Briefly, label-specific k-mer weights are
encouraged to be similar to k-mer weights in all subclasses the label spans by regularizing on
the differences of k-mer weights. Note that our approach is conceptually similar to hierarchical
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classification approaches such as that described by [45], although we use L1 regularization as
opposed to L2.
The overall objective function of SeqUnwinder is: -

exp(w x,
_Zﬁ1znerbi}’m log {Zp(n!)

A _ 1
na“M%%J+ ZnerEpeninlI¥n = Wl (1)

In the above equation; M is the total number of genomic loci in all subclasses, T is the set of all
subclasses, b; is the weight given to the genomic site 7, w,, is the k-mer weight vector for sub-
class n, x; is a vector of k-mer counts for the genomic site i, y;, is a binary indicator variable
denoting the subclass of genomic site i, 4 is the regularization co-efficient, II(n) is the set of all
labels spanning the subclass 1, and w,, is the k-mer weight vector for label p. Values for b; are
chosen to account for class imbalances. Hence, the value of b; for a genomic site i belonging to
class n is defined as |#1,,,,,|/|11], where |n| denotes the number of genomic sites in subclass n and
|11,4x| denotes the number of genomic sites in the subclass with maximum sites.

Training the SeqUnwinder model

The w, and w, update steps separate out and are iteratively updated until convergence. The w,,
update step has a simple closed form solution given by the equation:

w) = median(c;); where ¢; = {w}|j € C(p)}

Where w’; is the k™ term of the label-p weight vector. c'; is a set of the k™ terms of the weight

vectors of all the subclasses the label p spans.
The w,, update step is: -

w, = argmlnl ZZb,ymlog< exi(xp W x) > Z Z lw, —w,ll,

i=1 neT neT pell(n)

The above equation is solved using the scaled alternating direction method of multipliers
(ADMM) framework [12]. Briefly, the ADMM framework splits the above problem into 2
smaller sub-problems, which are much easier to solve. ADMM introduces an additional vari-
able z,,, initialized as follows
Zyy =W, — W,
w, and z,,, are iteratively estimated until convergence of the ADMM algorithm.
Sub-problem 1.

witt = argmm l ZZb,ymlog( exig(p o) ) pz Z w, =z, —w, +u,ll, ]

i=1 neT neT pell(n

Where u,,, is the scaled dual variable. The above sub-problem is solved using the LBFGS (lim-
ited-memory Broyden Fletcher Goldfarb Shanno) algorithm [46].
Sub-problem 2:
. 2
Zt = argmin |2z, + S 11w, = z,, = w, + i ]

np
Zyp
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The solution to the above equation is given by the shrinkage function defined as follows: -

t+1 5 [ gt t t
z,, = 5%(% +z,, wp—l—unp)

a—k, ifa>k
ola)=1q 0, if [lall <k
a+k, ifa<—k

The update step for the scaled dual variable u,, is: -

t+1 ot 1l
U, =u, +w, Z,, —W,

W, Z,,» and u, are iteratively estimated until convergence. The stopping criteria for the
ADMM algorithm is:

old

lo(z,, =z )I” < €% K + € x [ pxas,, |

and
2 2 2 2
[w, = 2,, = w,II” < e x K+ s max(||w,|I", ||z, [, [[w,]")

Where € and ¢’ are the absolute and relative tolerance, respectively. Of note, to speed up
the implementation of SeqUnwinder, a distributed version of ADMM was implemented. Intu-
itively, the w'"' update step is distributed across multiple threads by splitting the M training
examples into smaller subsets. The z,/* and the u/" update steps act as pooling steps where the

estimates of different threads are averaged. To further speed up convergence, a relaxed version
of ADMM was implemented as described in [12]. In the relaxed version, w''" is replaced by
aw' ™+ (1 — oc)zzp for the zqul and ugl update steps, where o is the over-relaxation parameter
and is set to 1.9 as suggested in [12].

Converting weighted k-mer models into interpretable sequence features

While SeqUnwinder models label-specific sequence features using high-dimensional k-
mer weight vectors, it is often desirable to visualize these sequence features in terms of a
collection of interpretable position-specific scoring matrices. To do so, we use a combina-
tion of k-mer model scanning and local motif-finding in an approach similar to that used
by SeqGL for producing interpretable motifs [5]. Specifically, we first scan the k-mer mod-
els learned during the training process across fixed-sized sequence windows around the
input genomic loci to identify local high-scoring regions called “hills”. Label-specific hills
are focused regions ranging from 10 to 15bp and are composed of high scoring k-mers. We
use a threshold of 0.1 to define hills. Next, we cluster the hills using K-means clustering
with Euclidean distance metric and k-mer counts as features. To speed-up implementation,
we restrict the unbiased k-mer features to only those k-mers that are present in at least 5%
of the hills. We use silhouette index [47] to choose the appropriate value for K. Briefly, we
test a range of K values from 2 to 6. For each value of K, we calculate the silhouette index
on 30 bootstrap samples. The value of K with highest median silhouette index is chosen as
the best value for K. Finally, any clusters with membership size (i.e. numbers of clustered
hills) less than 10% of the largest cluster’s membership size are merged with their next clos-
est cluster.
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MEME [48] is used to identify motifs in different clusters resulting in label-specific discrim-
inative motifs. Each k-mer model further scores MEME-identified motifs as follows:

Score,, (motif,) = Z w)

JjEmotif,

where j € motif, is the set of all k-mers that belong to motif “motif,”. Note that the heatmaps in
each figure which display these label-specific discriminative scores have been generated with a
shared color scheme; i.e., the maximum shade of yellow is defined to correspond to a model-
specific score of +0.4, while the maximum shade of blue is set to a score of -0.4. In each figure,
individual motifs sometimes have scores outside of these bounds, but we chose to use a shared
color scheme for consistency of interpretation across figures.

In our experience, the above “hill-finding” method provides a convenient way to convert
high-dimensional k-mer models into interpretable position-specific scoring matrices, and is
less error-prone than alternative k-mer clustering or assembly approaches. One advantage of
the “hill-finding” approach is that it implicitly takes into account positional relationships
between high-scoring k-mers on the genome; short stretches that contain multiple high-scor-
ing k-mers will form larger “hills”. Focused motif searches in the hills thus can find motifs that
are longer than the longest k-mers in the underlying SeqUnwinder model.

Generation of synthetic datasets

To test SeqUnwinder in simulated settings, we generated various synthetic datasets. The sizes
of simulated datasets (6,000-9,000 sequences) were chosen to roughly reflect the number of
peaks in a typical ChIP-seq dataset. First, we generated 150bp sequences by sampling from a
2"_order Markov model of the human genome. Our use of a 2™%-order Markov model is moti-
vated by a desire to capture typical di- and tri-nucleotide compositional biases of vertebrate
genomes (e.g. CG dinucleotide depletion and poly-A tracts). The exact choice of order of the
background Markov model (i.e. 2™-order versus a higher order) is arbitrary, but should not
be expected to affect the relative performances of the methods in correctly associating embed-
ded motifs with correct labels.

Next, we randomly assigned labels to the simulated sequences at different frequencies. The
overlap between the labels at the sequences was varied from 0.5 to 0.99. Arbitrarily chosen TF
binding motifs were assigned to labels. Each motif instance was sampled from the probability
density function defined by the PWM of the motif. Sampled motif instances were inserted at
labeled sites at a frequency of 0.7.

Processing iMN programming data-sets

Defining early, shared and late binding labels. MultiGPS was used to call Isl1/Lhx3
binding sites at 12 and 48hrs (datasets were obtained from GSE80321). A g-value cutoff
<0.001 was used to call binding sites. All sites with significantly greater Isl1/Lhx3 ChIP enrich-
ment at 12h compared to 48h (q-value cutoff of <0.01) were labeled as “early”. Isl1/Lhx3 bind-
ing sites called in both 12 and 48h datasets with a further filter of not being differentially
bound (g-value cutoff of <0.01), were assigned as “shared” sites. Finally, all sites with signifi-
cantly greater Isl1/Lhx3 ChIP enrichment at 48h compared to 12h (q-value cutoft of <0.01)
were labeled as “late”.

Defining active and inactive mES annotation labels. A random forest classifier (see
below for implementation details) was trained to classify every Isl1/Lhx3 binding site as either
being in accessible/active or inaccessible/unmarked mouse ES chromatin. The classifier was
trained using 95 mouse ES ChIP-seq datasets with windowed read-enrichment as predictors.
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A union list of 1million 500bp regions comprising the enriched domains (see below) of DNa-
sel, H3K4me2, H3K4mel, H3K27ac, and H3K4me3 was used as the positive set for training
the classifier. An equal number of unmarked 500bp regions were randomly selected and used
as the negative set for training the classifier. Every binding site that was predicted to be in
accessible/active ES chromatin with a probability of greater than 0.6 was placed in the “ES-
active” class, while the remaining sites were placed in the “ES-inactive” class.

Enriched domains for DNasel, H3K4me2, H3K4mel, H3K27ac, and H3K4me3 were iden-
tified using the DomainFinder module in SeqCode (https://github.com/seqcode/seqcode-
core/blob/master/src/org/seqcode/projects/seed/DomainFinder.java). Contiguous 50bp geno-
mic bins with significantly higher read enrichment compared to an input experiment were
identified (binomial test, p-value < 0.01). Further, contiguous blocks within 200bp were
stitched together to call enriched domains.

Weka’s implementation of Random Forests was used to train the classifier (https://github.
com/seqcode/seqcode-core/blob/master/src/org/seqcode/ml/classification/BaggedRandomForest.
java). Briefly, the forest contained 10,000 trees. Each tree was trained with 10 randomly sampled
features on 1% bootstrapped samples of the entire dataset.

Processing ENCODE datasets

TF ChIP-seq datasets: We analyzed 17 TF ChIP-seq ENCODE datasets in three primary cell-
lines (GM12878, K562, and H1-hESC). The binding profiles for the factors were profiled using
MultiGPS [15]. All called binding events for TFs were required to have significant enrichment
over corresponding input samples (q-value <0.01) as assessed using MultiGPS’ internal bino-
mial test. For a site to be labeled as “shared”, the binding site was required to be called in all
the 3 cell-lines. Further, binding sites showing significantly differential binding in any of the
possible 3 pair-wise comparisons were removed from the shared set. Binding sites labeled as
cell-type specific sites were required to have significantly higher ChIP enrichment compared
to other cell-lines. All TF binding sites within 5Kbp of a known TSS (defined using UCSC
hg19 gene annotations) were labeled as “promoter proximal”, while all sites that were more
than 5Kbp from known TSSs were labeled as “distal”.

DNase-seq datasets: We analyzed the DHS sites at 6 different tier 1 and 2 ENCODE cell-
lines (GM12878, K562, H1-hESC, HeLa-S3, HepG2, HUVEC). The DHS sites were called
using in-house scripts. Briefly, contiguous 50bp genomic bins with significantly higher read
enrichment compared to an input experiment were identified (binomial test, p-value < 0.01).
Further, contiguous blocks within 200bp were stitched together to call enriched domains. A
150bp window around the maximum point of read density at enriched domains was consid-
ered as the DHS.

Annotation of de novo identified motifs

All de novo motifs identified using SeqUnwinder were annotated using the cis-bp database.
Briefly, de novo motifs were matched against the cis-bp database using STAMP [49]. The best
matching hit with a p-value of less than 10e-6 was used to name the de novo identified motifs.

Availability and reproducibility

SeqUnwinder is freely available under the MIT open source license from: https://github.com/
seqcode/sequnwinder. Complete output files produced by the SeqUnwinder runs described in
this work, along with scripts and data for reproducing all analysis figures, are available from:
https://github.com/ikaka89/sequnwinderPaper.
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