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ABSTRACT: Previous research indicated that fine particulate matter (PM2.5) exposure
affected both offspring neurodevelopment and the colonization of gut microbiota (GM), while
the underlying mechanism remained unclear. Our study aimed to evaluate the impacts of
prenatal PM2.5 exposure on child cognitive development and investigate the role of neonatal
GM colonization in the association. Based on the Shanghai Maternal−Child Pairs Cohort, 361
maternal−child pairs were recruited. Prenatal PM2.5 exposure concentrations were estimated
using a high-spatial-resolution prediction model, and child neurodevelopment was assessed by
the Ages and Stages Questionnaire. Multivariable linear regression models, logistic regression
models, linear discriminant analysis effect size, and random forest model were applied to
explore the associations among PM2.5 exposure, GM colonization, and children’s neuro-
development. The present study revealed a negative correlation between PM2.5 exposure
throughout pregnancy and child neurodevelopment. Prenatal PM2.5 exposure was associated
with an increased risk of suspected developmental delay (SDD) (OR = 1.683, 95% CI: 1.138,
2.489) in infants aged 2 months. Additionally, potential operational taxonomic unit markers
were identified for PM2.5-related neurotoxicity, demonstrating promising classification potential for early SDD screening (AUC =
71.27%). Prenatal PM2.5 exposure might disrupt the composition, richness, and evenness of meconium GM, thereby influencing
cognitive development and the occurrence of SDD in offspring. Seven PM2.5-related genera, Ruminococcus gnavus group, Romboutsia,
Burkholderiaceae Caballeronia Paraburkholderia, Blautia, Alistipes, Parabacteroides, and Bacteroides, were validated as correlated with
prenatal PM2.5 exposure and the occurrence of SDD. Moreover, alterations of GM related to PM2.5 exposure and SDD might be
accompanied by changes in functional pathways of amino acid, lipid, and vitamin metabolism as indicated by differentially enriched
species in the Kyoto Encyclopedia of Genes and Genomes.
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1. INTRODUCTION
Outdoor air pollution has long been a significant environmental
health concern in China, resulting in an estimated 1.4 million
deaths attributable to it in 2019.1 In response, China formally
announced the Nationally Determined Contribution (NDC) in
2020, and China pledged to take substantial measures to reduce
carbon dioxide emissions by 2030 and achieve carbon neutrality
by 2060.2 However, based on the official observation network,
the national mean annual fine particulate matter (PM2.5)
concentration of China in 2020 was 33 μg/m3,3 6.6 times
higher than the standard in the the latest World Health
Organization (WHO) guideline.4 Even with the implementation
of carbon neutrality policies to reduce PM2.5 pollution ideally,
China still fell short of meeting air quality standards. Thus, more
attention and efforts were required to address PM2.5 pollution
both presently and in the future.

The establishment of the infant intestinal microbiota in
parallel with a crucial period in early brain development, but few
studies had explored their association with developmental and
behavioral performance.5 Several longitudinal studies had

reported that other genera within the Bacteroidetes phylum
(i.e., Prevotella), depleted in late pregnancy, were linked to
internalizing behaviors at 2 years old.6 However, little
association was found between Bacteroides-predominant micro-
biome at 2 months and character in 6-month-old children.7

Moreover, a cross-sectional survey containing 77 toddlers aged 2
years revealed that increased intestinal bacterial diversity and
relative abundance of the Bacteroidetes phylum (i.e., Para-
bacteroides) were related to infant temperament according to
their parental report.8 Similarly, a cohort study recruiting 89
infants indicated that an abundance of Bacteroides in gut
microbiota (GM) at 12 months of age was associated with
enhanced cognitive development at 2 years of age.9 Additionally,
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a study involving 309 children revealed that a Bacteroides-
predominant intestinal microbiome at 3−6 months of age was
related to increased risk of a delayed fine motor domain
evaluated by the Ages and Stages Questionnaire, Third Edition
(ASQ-3), a prevalent screening tool, used to monitor child
development across five domains.10 Overall, these findings
highlighted the importance of further investigation into the
function of the intestinal microbiome in promoting healthy
neurological development in children.

Epidemiological literature has reported the adverse effects of
prenatal exposure to PM2.5 on brain development, increasing the
risk of cognitive impairment, neurodevelopment delay, and
behavior disorders in children.11−13 An animal experiment
demonstrated that prenatal PM2.5 exposure during pregnancy
induced autism-like behavioral disorders in offspring during
adulthood.14 A study conducted in the U.S. reported that
prenatal PM2.5 exposure was significantly linked with an
increased risk of neurological development delay in domains
of problem solving and communication.15 However, some
studies had reported insignificant association between prenatal
PM2.5 exposure and child neurological development.16,17 More
comprehensive studies are required to validate the interrelation-
ship.

A study, profiling microbiome across fetal organs, demon-
strated direct spatial colonization of microbial entities, localized
with the lumen of growing fetal intestine during the second
trimester of pregnancy.18 Furthermore, the colonization and
composition of children’s intestinal flora in early life were shaped
by prenatal environment exposure, host genetics, and delivery
mode, etc.19−21 A review reported that outdoor air pollution was
related to reduced intestinal microbial biodiversity in the
population.22 An investigation on the American population
found an association between outdoor air pollution and
increased relative abundance of Coriobacteriaceae and reduced
Bacteroidaceae in fecal samples.23 Moreover, an animal experi-
ment revealed that exposure to PM2.5 pollution induced
increased abundance of the Bacteroidetes phylum and a higher
alpha diversity in the colon.24 More studies indicated that
particulate matter, particularly PM2.5, was able to alter intestinal
microbiota.25−27 PM2.5 reached the lungs after initial inhalation
and then phagocytized into alveolar and bronchioles spaces.28,29

Subsequently, these PM2.5 were retained within macrophages
and could quickly access the mucus layer, reaching the
oropharynx and eventually being swallowed into the intestine.
Overall, this process might contribute to the improvement of
intestine permeability and alterations in the composition of GM.

Previous studies investigated the effect of air pollution on
microbiota, as well as the association between air pollution and
offspring neurodevelopment. However, studies on the relation-
ship among prenatal air pollution, neonatal microbiota, and
children’s neurodevelopment were limited, especially lacking
sufficient evidence from human epidemiological studies. In this
study, 361 mother−child pairs from Shanghai MCPC were
included to explore the association between prenatal PM2.5
exposure and childhood neurodevelopment, as well as to assess
the role of intestinal microbial dysbiosis in this association.

2. MATERIAL AND METHODS

2.1. Study Population
Participants in this study were maternal−infant pairs recruited from the
Shanghai Maternal−Child Pairs Cohort (MCPC), a prospective birth
cohort aiming to estimate the multifaceted impacts of prenatal and
maternal environmental and sociopsychological factors, particularly

their interactions, on offspring development and growth. More details
of the cohort have been published previously.30 The eligibility criteria
were as follows: (1) maternal age ≥18 years; (2) free from specific
severe chronic diseases (e.g., hypertension, diabetes, and neurological
disorders); (3) no alcohol consumption or smoking during pregnancy;
(4) residency in Shanghai for more than one year and delivered in a
local hospital. To explore the role of neonatal GM in the association
between prenatal PM2.5 exposure and children’s neurodevelopment,
361 mother−child pairs were enrolled for whom they had collected
neonatal feces and completed the neurodevelopment assessment before
24 months of age. Ethical approval of this study was granted by Fudan
University’s Institutional Review Boards (IRB#2016-04-0587;
IRB#2015-TYSQ-12-1). The gestational women and guardians of the
infants had signed informed consent of this study, in accordance with
the strengthening reporting guideline of the Reporting of Observational
Studies in Epidemiology (STROBE).
2.2. Demographic Characteristics
Professional nurses administered a standard structured questionnaire to
collect socioeconomic information (e.g., maternal education, annual
family income), residential address, and lifestyle (e.g., physical activity,
alcohol consumption, smoking). Physical state and medical history
information, such as gestational weight gain, maternal age, prepreg-
nancy body mass index (BMI), parity, last menstrual period (LMP, the
first day of the last menstrual period before pregnancy), pregnancy
complications, and delivery mode were obtained from medical records.
Prepregnancy BMI (weight in kilograms divided by height in meters
squared) was calculated based on prepregnancy weight and height, and
gestational age was determined in weeks using the mother’s LMP.
Infant developmental indices such as birth length, birth weight, infant
gender, and gestational age were also retrieved from medical histories.
2.3. Assessment of PM2.5 Personal Exposure
The residential addresses of all participants were geocoded, and
individual daily mean PM2.5 concentrations were estimated by a
machine-learning-based prediction approach with 1 km × 1 km
resolution. Details of the prediction model development process and
exposure estimation could be found in previous publications.31 In brief,
PM2.5 concentration was predicted by integrating land cover
information, the aerosol depth (AOD), meteorological conditions,
Normalized Difference Vegetation Index (NDVI), road networks, and
other relevant factors. The model provided daily PM2.5 concentration
predictions at a resolution of 1 km × 1 km with complete temporal and
spatial coverage. This method cross-validation R2 between ground
measurement and daily model prediction was 0.88. Exposure data were
categorized into trimester 1 (from 1 to 13 gestational weeks), trimester
2 (from 14 to 26 gestational weeks), trimester 3 (gestational weeks 27
to delivery), and the whole pregnancy (from LMP to delivery). The
subjects were stratified into high- and low-exposure groups based on the
median level of PM2.5 exposure. Ambient humidity and temperature
were estimated by daily mean relative humidity (%) and daily mean
temperature (°C) obtained from the Shanghai Meteorological Data
Sharing Service System (http://www.cnemc.cn/).
2.4. Childhood Neurological Development Measurements
Infant neurocognitive development was assessed using the Ages and
Stages Questionnaire, Third Edition (ASQ-3), Chinese version, at ages
2, 6, 12, and 24 months. The ASQ-3 includes 30 items representing
neurofunction across five domains: problem-solving, communication,
gross motor, fine motor, and personal−social behavior. The
questionnaire was completed by parents, and each domain was scored
on a scale of 0−60,32 with higher scores reflecting better neuro-
development in the corresponding domain. Suspected developmental
delay (SDD) in children was defined as scores in any domain less than
two standard deviations (SD) from the mean (mean-2SD) at the follow
up time point. Additionally, if the score in any of the five domains or the
ASQ-T (the total ASQ score of the child) was below the threshold, the
child was considered to manifest SDD.33,34 The outcomes of child
cognition development assessment are presented in Tables S2 and S3.
Further details of this questionnaire and the criteria have been
published previously.35
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2.5. DNA Extraction and Sequence of the 16s rRNA Gene

Each fecal sample was collected from all newborn infants within 24 h
after delivery (mean 6.5 h) via professional staff using commercial
collection kits purchased from Second Genome, San Francisco, CA.
These samples were gathered in a sterilized polypropylene tube through
wooden depressors and a sterilized swab and immediately saved at −20
°C for less than 6 h. Finally, they were transferred to −80 °C within an
average of 2 days after collection until analysis. Using the FastDNA Spin
Kit for Stool from MP Biomedicals, Santa Ana, CA, all DNA extractions
from the 200 mg of neonatal meconium samples were processed

according to the manufacturer’s instructions. Subsequently, at Jiangnan
University of Wuxi, China, the State Key Laboratory of Food Science
and Technology amplified the 16s rRNA gene’s hypervariable region
V3−V4. After extraction from 2.0% agarose gel, the polymerase chain
reaction (PCR) products were further purified through a TIANgel Mini
Purification Kit bought from TIANGEN, Beijing, China. Then the
productions were quantified using a Qubit dsDNA HS Assay Kit from
Life Technologies Corporation, Carlsbad, CA. Based on TruSeq DNA
LT Sample Preparation Kit from Illumina, Santiago, CA, library

Table 1. Study Characteristics of the Mother−Child Pairs (N = 361)a

variable total subjects (N = 361) boys (N = 196) girls (N = 165) P value*
Maternal Characteristics

age of pregnancy, years 29.15 ± 4.20 29.08 ± 4.29 29.24 ± 4.10 0.723
prepregnancy BMI, kg/m2 21.58 ± 3.06 21.52 ± 3.06 21.65 ± 3.08 0.674
educational level 0.529

junior high school or below 24 (6.65%) 11 (5.61%) 13 (7.88%)
senior high school or junior college 190 (52.63%) 101 (51.53%) 89 (53.94%)
college degree or higher 147 (40.72%) 84 (42.86%) 63 (38.18%)

annual family income, yuan 0.072
<100 000 95 (26.31%) 43 (21.94%) 52 (31.52%)
100 000−300 000 239 (66.20%) 135 (68.88%) 104 (63.03%)
>300 000 27 (7.48%) 18 (9.18%) 9 (5.45%)

passive smoking status 0.929
yes 90 (24.93%) 48 (24.49%) 42 (25.45%)
no 271 (75.07%) 148 (75.51%) 123 (74.55%)

physical activityb 0.97
low 142 (39.34%) 78 (39.80%) 64 (38.79%)
moderate 201 (55.69%) 108 (55.10%) 93 (56.36%)
high 18 (4.99%) 10 (5.10%) 8 (4.85%)

energy intake in pregnancy, kcal 2236.44 ± 1080.32 2136.41 ± 1068.65 2355.28 ± 1084.25 0.055
GWG, kg 13.53 ± 5.67 13.72 ± 5.39 13.31 ± 5.98 0.503
mode of delivery (%) 0.499

vaginal 159 (44.04%) 90 (45.92%) 69 (41.82%)
Caesarean 202 (56.96%) 106 (54.08%) 96 (58.18%)

parity (%) 0.415
primipara 202 (56.96%) 114 (58.16%) 88 (53.33%)
multipara 159 (44.04%) 82 (41.84%) 77 (46.67%)

pregnancy syndromec 0.508
no 220 (60.94%) 123 (62.76%) 97 (58.79%)
yes 141 (39.06%) 73 (37.24%) 68 (41.21%)

gestational age, weeks 39.32 (1.26) 39.21 ± 1.29 39.47 ± 1.22 0.045
Child Characteristics

preterm birth (%) 0.473
no 346 (95.84%) 10 (5.10%) 5 (3.03%)
yes 15 (4.16%) 186 (94.90%) 160 (96.97%)

birth season (%) 0.123
cold-season 168 (46.54%) 99 (50.51%) 69 (41.82%)
warm-season 193 (53.46%) 97 (49.49%) 96 (58.18%)

feeding patterns 0.575
breast feeding 182 (50.41%) 97 (49.49%) 85 (51.52%)
mixed feeding 99 (27.42%) 58 (29.59%) 41 (24.85%)
artificial feeding 80 (22.16%) 41 (20.92%) 39 (23.64%)

birth weight, g 3344.60 ± 446.14 3362.60 (475.60) 3323.21 (407.57) 0.397
birth length, cm 50.06 ± 0.94 50.08 ± 1.19 50.02 ± 0.49 0.538

Ages and Stages Questionnaire, Third Edition (ASQ-3)
ASQ-Ta-2M 235.53 ± 38.18 233.19 ± 38.43 238.30 ± 37.82 0.205
ASQ-Ta-6M 220.70 ± 46.81 218.02 ± 50.73 223.87 ± 41.70 0.345
ASQ-Ta-12M 240.67 ± 41.51 236.84 ± 42.28 245.44 ± 40.19 0.099
ASQ-Ta-24M 246.80 ± 41.45 245.96 ± 40.44 247.87 ± 42.89 0.731
aAbbreviations: GWG, gestation weight gain; BMI, body mass index. bPhysical activity was assessed by the International Physical Activity
Questionnaire-Short Form. cPregnancy syndrome included anemia, hypertension, diabetes, and thyroid disease.
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preparation was performed and sequencing was carried out through the
Illumina MiSeq PE300 platform.36

2.6. Bioinformatics Pipeline

Utilizing QIIME2, paired-end sequenced data derived from the MiSeq
run were merged through FLASE and pooled,37 demultiplexed, and
assigned operational taxonomic units (OTUs) at a 97% similarity
threshold.38 Subsequently, in the aggregate of 520 5433 (min 1783,
mean 24 908, max 138 828) sequences still existed, and samples were
normalized based on the overall sun scaling approach for further
analysis. Alpha diversity, assessed at the OTU level, was calculated in R
(“vegan” package). Moreover, the Chao richness estimator was
employed to estimate microbial richness, indicating the number of
different taxa in every sample. Evenness, an estimation of the relative
abundance of diverse taxa in each sample, was estimated through the
Simpson diversity index, Shannon diversity index, and phylogenetic
diversity (PD) index. Abundance data for each OTU from the genus to
phylum levels were summarized using packages of R (“phyloseq”
package). Furthermore, the 16S rRNA gene sequence from each sample
was mapped to the KEGG database (https://www.kegg.jp/) for
annotation, and the abundance of metabolic functional pathways was
predicted through the Phylogenetic Investigation of Community
through Reconstruction of Unobserved States 2 (PICRUSs 2)
(https://github.com/picrust/picrust2/wiki).

2.7. Statistical Analysis
Descriptive data for lifestyle variables and demographic characteristics
were presented as mean ± SD for continuous variables and frequency
(%) for categorical variates. Comparisons between groups, including
the boys−girls and low−high groups, were made using the t test and
Wilcoxon test for continuous statistics, depending on the distribution of
the statistics, and the Chi-Squared test for categorical data. Multi-
variable linear regression models were utilized to assess the association
between prenatal personal PM2.5 exposure and ASQ scores, as well as
alpha diversity indices in various domains, with adjustment for
confounders. Logistic regression models were applied to evaluate the
interrelationship between individual PM2.5 exposure during pregnancy
and SDD in diverse domains, with adjustment for confounders.
Additionally, two-pollutant models were employed, with each model
further adjusted for one of the four gaseous pollutants (O3, SO2, NO2,
CO) or inhalable particles (PM10), to estimate the association of PM2.5
concentration with ASQ scores in diverse domains and the risk of SDD.
Two-pollutant models were conducted to validate the robustness of
such associations. Linear Discriminant Analysis Effect Size (LEFSe)
estimation, calculated on the Galaxy Web site (http://huttenhower.
sph.harvard.edu/galaxy/, v1.0), was utilized to identify characteristic
microbial taxa between low and high groups divided by median
exposure level over the entire pregnancy. Moreover, Multivariate
Analysis by Linear Models (MaAslin 2) was performed to verify the gut
microbial KEGG functional pathways related to prenatal PM2.5

Figure 1. PM2.5 exposure during the entire pregnancy (each SD) was associated with the neurodevelopment of children. (A) Association between
prenatal PM2.5 exposure and ASQ scores at 2, 6, 12, and 24 months of age. (B) Association of prenatal PM2.5 exposure and ASQ scores at 2 months of
age in a two-pollutant model. (C) Association of prenatal PM2.5 exposure and SDD at 2, 6, 12, and 24 months of age. (D) Association of prenatal PM2.5
exposure and SDD at 2 months of age in a two-pollutant model. Results were presented as calculated values β, odds ratio (OR), and 95% confidence
intervals (CI), and the highlighted associations in red are at P value <0.05. These models were adjusted for confounders of parental characteristics
(parity, maternal age, maternal pregravid BMI, maternal physical activity, maternal educational level, annual family income, pregnancy syndrome,
passive smoking status, season of conception, delivery mode, paternal age, premature birth, gestational weight gain (GWG), temperature, and relative
humidity) and child characteristics (child age at ASQ test, birthweight, feeding patterns, and child sex).Abbreviations: BMI, body mass index; ASQ,
Ages and Stages Questionnaire; SDD, suspected developmental delay at followup point.
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exposure. A random forest model incorporating gut microbes at the
genus level was trained to predict the occurrence of SDD and identify
SDD-related genera. A sparse model containing the related taxa was
then trained on the set to predict the occurrence of SDD. To address
data skewness, the relative abundance of the genus was subjected to
natural log transformation. The association between genera and KEGG
was estimated through Spearman’s correlation analysis.

Underlying confounders were selected according to existing
literature and expert knowledge. Variables including child sex, maternal
age, and child age known to be associated with children’s neurological
development were identified as potential confounders.39−41 In the
present study, maternal age, parity, maternal prepregnancy BMI,
maternal physical activity, maternal education level, passive smoking
states, season of conception, annual family income, child age, paternal
age, child gender, premature birth, gestational weight gain (GWG), and
feeding patterns were included in the primary analysis model.
Moreover, according to the International Physical Activity Question-
naire (IPAQ), maternal physical activity was assessed during early and
late pregnancy.42 The distribution of individual temperature, humidity,
PM10, and other four pollutants exposure levels during pregnancy based
on fixed-site monitoring stations in Shanghai is presented in Table S1.
All analysis and calculations, except for LEFSe analysis, were performed
using R, version 4.2.0.

3. RESULT

3.1. Characteristics of Study Population

A total of 361 mother−child pairs were enrolled in this study,
and the characteristics of participants are summarized in Table 1.
Notably, over 40% of mothers had completed at least a college
education, with the average maternal age recorded as 29.15 ±
4.20 years. Detailed distributions of individual PM2.5 and five
other air pollutants exposures throughout the entire pregnancy
are presented in Table S1. The median individual PM2.5
exposure concentration over the entire pregnancy period was
43.37 μg/m3. Although girls generally exhibited higher ASQ
scores across most domains than boys (except for the personal−
social domain aged 12 months), the differences were not
statistically significant. Meanwhile, there was no significant
difference in SDD incidence between girls and boys. Further
details regarding children’s neurodevelopment assessments are
provided in Tables S2 and S3.
3.2. Association of Prenatal Individual PM2.5 Exposure and
Early Child Neurodevelopment

Figure 1A illustrates the association of individual PM2.5 exposure
during the entire pregnancy with children’s ASQ scores at 2, 6,
12, and 24 months of age. Each SD μg/m3 increase in prenatal
PM2.5 exposure was negatively linked with ASQ-T scores, the
communication domain, problem-solving domain, and person-
al−social developmental domain (βAQT‑T‑2M = −6.717, 95% CI:
−11.530, −1.904; βcommunication‑2M = −1.595, 95% CI: −3.136,
−0.053; βproblem‑solving‑2M = −1.771, 95% CI: −3.481, 0.060;
βpersonal−social‑2M = −2.074, 95% CI: −3.348, −0.800), respec-
tively. In two-pollutant models (Figure 1B), these associations in
infants aged 2 months remained robust after adjustment for
gaseous pollutants and PM10.

Figure 1C demonstrates a significant association between
PM2.5 exposure throughout the pregnancy and the incidence of
SDD in children at 2, 6, 12, and 24 months of age. Each SD μg/
m3 increase in PM2.5 exposure during pregnancy was positively
related to SDD incidence (ORentire‑pregnancy = 1.683, 95% CI:
1.138, 2.489). In two-pollutant models (Figure 1D), the
magnitude (i.e., the size of the evaluated effect) of the
association of individual prenatal PM2.5 exposure with SDD

aged 2 months remained significant after adjustment for other
pollutants.
3.3. PM2.5 Exposure throughout Pregnancy and
Neurodevelopment Associated with Neonatal Microbial
Alpha Diversity
Given the observed interrelationship of PM2.5 exposure during
the entire pregnancy with the ASQ scores and the incident of
SDD mainly at 2 months old in children, the meconium samples
were applied to estimate the effect of prenatal PM2.5 exposure on
GM and the difference in microbial alpha diversity between
SDD and non-SDD infants. Table 2 presents the association

between PM2.5 exposure during the entire pregnancy and GM
alpha diversity. Per SD μg/m3 increase in PM2.5 exposure
exhibited a negative association with the Shannon (β = −0.367,
95% CI: −0.543, −0.192), Chao1 (β = −9.381, 95% CI:
−14.416, −4.347), phylogenetic diversity (PD) (β = −30.904,
95% CI: −46.362, −15.446), and Simpson (β = −0.054, 95% CI:
−0.090, −0.017) indices.

The association between PM2.5 exposure during different
trimesters and the incidence of SDD at 2, 6, 12, and 24 months
of age is depicted in Figure S1. The microbiome structures of
neonatal feces samples from the low- and high-prenatal PM2.5
exposure groups are illustrated in Figure S2. Notably, children
with SDD exhibited lower microbial richness (Chao1 index, P =
0.042) and lower bacterial evenness (PD index, P = 0.045) than
neonates in the non-SDD group, suggesting an association
between child cognitive development and neonatal feces alpha
diversity.
3.4. Individual PM2.5 Exposure throughout Pregnancy
Associated with Neonatal Bacterial Taxa Colonization and
Neurodevelopment in Children
3.4.1. Association between Prenatal PM2.5 Exposure

and the Colonization of Microbial Genera. LEFSe analysis
was conducted on the relative abundance of neonatal feces to
identify differential abundant taxa between the low- and high-
PM2.5 exposure groups. The results, depicted in Figure 3,
revealed 102 microbial taxa exhibiting differential abundance
(Table S4) between the two groups (linear discriminant analysis
(LDA) score >2, P <0.05). Particularly, 45 bacterial genera,
including Ruminococcus gnavus group, Romboutsia, Burkholder-
iaceae Caballeronia Paraburkholderia, Blautia, Alistipes, Para-
bacteroides, and Bacteroides, displayed differential abundance
between the low- and high-PM2.5 exposure groups at the genus
level (Figure 3A). Taxonomic representation of biological and
statistically consistent diversity between neonatal feces from the
low- and high-exposure group is illustrated in Figure 3B.

Table 2. Association of PM2.5 Exposure during the Entire
Pregnancy (Each SD) and the Alpha Diversity of Neonatal
Fecesa

alpha diversity β upper lower P value

Shannon −0.367 −0.543 −0.192 <0.001
Chao1 −9.381 −14.416 −4.347 <0.001
PD −30.904 −46.362 −15.446 <0.001
Simpson −0.054 −0.090 −0.017 0.004

aAdjustment for parental characteristics (parity, maternal age,
maternal pregravid BMI, maternal physical activity, maternal educa-
tional level, annual family income, passive smoking status, season of
conception, paternal age, premature birth, GWG, temperature, and
relative humidity) and child characteristics (feeding patterns,
birthweight, and child sex).
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3.4.2. Recognition and Validation of Neonatal Feces
Bacterial OTUs-Based Markers for SDD. The microbiota
structures of neonatal meconium samples between the SDD
group and non-SDD group are shown in Figure S3. To estimate
the classification potential of neonatal feces bacteria markers for
SDD, a random forest model was constructed. Initially, the
entire included population was segregated into training and
validation sets. The training set, encompassing 80% of the
samples (included 53 SDD and 235 non-SDD) underwent 10-
fold cross-validation for training and modeling. During this
cross-validation phase, the data set was systematically divided
into 10 equivalent segments, adhering to a conventional
protocol, where nine segments were cyclically utilized for
training and one for validation. In the final phase, the model,
refined through 10-fold cross-validation, underwent a further
validation within the total population’s validation subset to
evaluate its robustness and accuracy. The top 20 (at least 10%
samples detected) differential abundant taxa were then verified
as crucial markers between 53 SDD and 235 non-SDD (Figure
4A). Utilizing these 20 taxa, the model achieved an area under
the curve (AUC) value of 89.50% and 71.27% in distinguishing
between children with SDD and non-SDD in the training and
testing phase, respectively (Figure 4B). Specifically, considering
the previously identified 45 PM2.5 exposure-related genus and
the validated 20 neurodevelopment OTU markers, seven genus,
namely Ruminococcus gnavus group, Romboutsia, Burkholder-
iaceae Caballeronia Paraburkholderia, Blautia, Alistipes, Para-
bacteroides, and Bacteroides were validated as PM2.5-related
neurotoxicity markers, denoted by “*” in Figure 4A.
3.4.3. Association between PM2.5 Exposure during the

Entire Pregnancy with KEGG Functional Pathways and
the Identified Seven Microbial Taxa. The outcomes of
functional analysis, elucidating the interrelationship between
prenatal PM2.5 exposure throughout pregnancy and the relative
abundance of the KEGG level 3 pathways, are presented in
Figure 5A. A comprehensive summary of analysis outcomes
using multivariate linear regression analysis is provided in Table
S5. After adjusting for potential confounders, 24 different KEGG
level 3 functional pathways were found to be statistically
associated with prenatal PM2.5 exposure (q-value >0.25
considered significant). Furthermore, the association between

these seven differentially abundant taxa and PM2.5-related
KEGG functional pathways is depicted in a heatmap (Figure
5B). The results demonstrated that the reduced level of KEGG
functional pathways derived from low prenatal PM2.5 exposure,
including “Ascorbate and aldarate metabolism”, “Arachidonic
acid metabolism”, “Secretion system”, and “Ubiquinone and
other terpenoid quinone biosynthesis”, which were negatively
associated with the relative abundance of certain genera
enriched in non-SDD children. Additionally, the increased
level of KEGG functional pathways including “Alanine aspartate
and glutamate metabolism”, “Steroid biosynthesis”, and “Steroid
hormone biosynthesis” was positively related to the abundance
of taxa enriched in the low-prenatal PM2.5 exposure group.
Therefore, the results indicated that alterations in KEGG
functional pathways were associated with changes in the GM in
neonatal feces. Meanwhile, these combined analyses might
partially explain the potential pathogenesis of SDD. Additional
details of the analysis results are presented in Table S6.

4. DISCUSSION
The current birth cohort study observed that PM2.5 exposure
throughout pregnancy was associated with a reduction in ASQ
scores in the problem-solving, communication, and personal−
social developmental domains, as well as a higher risk of SDD at
2 months in offspring. Meanwhile, prenatal PM2.5 exposure
exhibited a negative association with the alpha diversity indices
of neonatal feces and 45 microbial genera associated with PM2.5
exposure. Based on the random forest model for predicting early
SDD, the optimal 20 specific OTUs markers linked with SDD
were identified. Seven genera (Ruminococcus gnavus group,
Romboutsia, Burkholderiaceae Caballeronia Paraburkholderia,
Blautia, Alistipes, Parabacteroides, and Bacteroides) exerted an
effects on the association between prenatal PM2.5 exposure and
the occurrence of SDD, suggesting their potential as early
biomarkers of PM2.5-related neurotoxicity.

Available research studies indicated that in developing
countries, approximately 10%−20% of children suffer from
neurodevelopmental disorders.43 Our findings align with
previous studies, indicating that prenatal PM2.5 exposure was
related to early children’s neurodevelopmental delay, partic-
ularly in the problem-solving, communication, and personal−

Figure 2. Comparison of neonatal meconium bacterial alpha diversity between SDD and non-SDD groups. Comparisons of alpha diversity indices
between SDD and non-SDD groups using the t test (P value <0.05 was considered significant).
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social domains.11,12,15 However, a meta-analysis study including
six European cohorts found no significant relationship between
prenatal exposure to PM2.5 and offspring’s psychomotor and

cognition development.39 Similarly, a cohort study consisting of
1109 mother−child pairs in America reported no significant
association between PM2.5 exposure during pregnancy and

Figure 3. LEFSe analysis for characteristic microbial genus in low- and high-individual PM2.5 exposure groups. Only microbial genera with LDA score
>2 (P < 0.05). (A) The differently enriched taxa from low- and high-prenatal PM2.5 exposure groups are presented in the cladogram. (B) Genus, family,
order, class, and phylum that were diversely presented between low- and high-prenatal PM2.5 exposure groups, as indicated by relative abundance using
LEFSe analysis, are shown in Table S4.
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cognition performance decline.44 The inconsistency in findings
might derive from discrepancies among studies including

various confounders (e.g., infant feeding patterns and gestational
age), methods of exposure estimation, outcome assessment

Figure 4. Classifiers derived from GM, verifying specific OTU markers, to predict the occurrence of SDD. (A) In the training phase, a 10-fold cross-
validation was conducted on the random forest model, and the estimated top 20 differentially abundant markers were chosen as the optimal marker set
according to the random forest model between 53 SDD and 235 non-SDD. (B) The AUC value between SDDs and non-SDD in the train and test set.
The x-axis reflected the mean decrease accuracy to each microbial taxa, which presents the contribution to the accuracy of the model. “*” indicates the
relative abundance difference originating from LEFSe analysis of 16s rRNA gene sequencing at the genus level in SDD-T versus non-SDD.
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(e.g., tools for neurodevelopment evaluation, age of neuro-
development evaluation, and the definition of cases).

The mechanism underlying the effects of prenatal PM2.5
exposure on childhood neurodevelopment remains unclear.
Some studies suggested that the intestinal flora may influence
both neurodevelopmental disorders and neural behaviors via the
gut−brain axis through immune, neuronal, and endocrine/
systemic pathways, leading to cognitive and neurological
alterations.45−49 Epidemiology evidence supported the role of
GM in neurodevelopmental disorders, including anxiety, autism,
and depression.50 According to the DOHaD hypothesis, the first
1000 days of life, from conception to 2 years after birth, are
crucial for neurodevelopment and growth.51 During this period,
fine particulate matter can enter systemic circulation and then
penetrate into the gut epithelia through microfold cells on
Peyer’s patches and via enterocytes due to immature barriers.52

Ambient particulate matter might reach the gut through the
ingestion of inhaled particulate matter after mucociliary removal
in the airway.25 Particulate matter could impair intestinal barrier
integrity and enhance bacterial translocation, which leads to
systemic and intestinal inflammatory reactions and oxidative
stress,23,25 resulting in changes of short-chain fatty acids
(SCFAs) production and hence may influence psychological
functioning, including their neurol basis and cognitive processes

through the gut−brain axis.53,54 The current study found that
PM2.5 exposure was negatively linked with alpha diversity indices
of the GM, as well as lower Simpson and Chao1 indices in the
SDD group compared to the non-SDD group. This suggested
that alpha diversity of GM may play a critical role in the
interrelationship between prenatal PM2.5 exposure and SDD.
This finding was consistent with previous research from the
FinnBrain Birth Cohort Study, demonstrating a negative
association between alpha diversity and fear reactivity as well
as passive emotionality.7 Additionally, a previous study involving
410 child−mother pairs reported mediating effects of neonatal
feces bacterial richness in the association between maternal
emotional symptoms and an infant’s personal−social behav-
ior.55

Seven genera were associated with both PM2.5 exposure
throughout pregnancy and the risk of neurodevelopmental delay
and were considered as predictive markers for SDD occurrence.
Previous studies had linked these signature genera to neuro-
development and neurological diseases.56,57 For instance, an
animal experiment found that gut Ruminococcus affected the
neonatal development, as reflected by brain N-acetylaspartate
(NAA), medicated by serum cortisol.58 Epidemiological
evidence indicated thatRomboutsiawas identified at significantly
lower abundance in the optical spectrum disorders (NMOSD)

Figure 5. Differential KEGG functional pathways and genus related to PM2.5 exposure during the entire pregnancy. (A) Differential KEGG functional
pathways related to prenatal PM2.5 exposure. The association of KEGG functional pathways (KEGG level 3, using phylogenetic investigation of
communities by reconstruction of unobserved states (PICRUSt) data sets) and gestational PM2.5 exposure was assessed by Multivariate Analysis by
Linear Models (q-value <0.25 was considered significant). (B) Association between seven differentially abundant taxa and PM2.5-related KEGG
functional pathways. The “black hole” indicates P value >0.05.
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patients, suggesting that the dysbiosis of GM contributes to the
onset and progression of neurological diseases.59 Besides,
certain association existed between intestinal microbiome,
including Burkholderia Caballeronia Paraburkholderia, and
neuroinflammation, which exerted adverse influence on child
neurodevelopment.60 Blautia, a well-known advantageous
genus, produces butyric acid,61 which serves as a primary energy
source for colonocytes.62 Studies claimed that a lower
abundance of Blautia was related to compromised practical
reasoning ability in toddlers.63 Averina et al. reported a
significant decrease in the abundance of genes-encoding
proteins involved in melatonin, GABA, and butyric acid
production in the GM of individuals with autism spectrum
disorder (ASD), most of which belong to Alistipes.64 Moreover,
a case-control study revealed that the ASD group displayed a
depletion of Bacteroides which may be involved in the
pathogenesis of ASD through regulation of the DOPA signaling
pathway.65 However, the function of Parabacteroides is still
unknown. Some studies considered that Parabacteroides might
be putative probiotics, negatively associated with major
depressive disorder (MDD), and that the Parabacteroides
genus produces SCFA.66,67 Nevertheless, a systematic review
revealed that children with ASD present a significantly higher
abundance of the Parabacteroides taxa, warranting further
investigation into the function of Parabacteroides.

In the present study, KEGG pathways were applied to identify
specific metabolic pathways related to the GM in offspring
following prenatal PM2.5 exposure, aiming to elucidate the
interrelationship between alterations in neonatal feces and
influenced neurodevelopment. The association analysis revealed
that prenatal PM2.5 exposure was linked to gene replication and
repair, amino acid metabolism, and alterations of lipid
metabolism. One experiment reported that PM2.5 exposure
induces disrupted the microbiome in Alzheimer’s Disease (AD)
mice, significantly associated with dysregulation of fundamental
metabolic processes such as amino acid metabolism, lipid
metabolism, carbohydrates, digestive system, and dysbiosis of
the endocrine and neurodegenerative diseases, particularly
AD.68 The analysis of KEGG pathways related to the seven
signature genera in this study also indicated that the disturbance
in the GM in SDD children was closely correlated with the
alterations of several basic physiological metabolism processes,
primarily involving amino acid, lipid, and vitamin metabolism.
Moreover, some studies had found that these abnormal
alterations further indicate changes in potential metabolic,
environmental information processing, and genetic information
processing in SDD children. For instance, the altered
metabolism pathways (N-glycan biosynthesis and alanine
aspartate and glutamate metabolism) in SDD children could
affect the accumulation of lipopolysaccharides, metabolic
disturbance, depletion of hormones, neurotransmitters (espe-
cially serotonin), and immune system modulators, which were
linked to neurodegenerative disorders.69,70 The significant
degradation of amino acids such as glutamate in the high-
exposure group could induce an increase in neurotransmitter
levels related to neurological diseases.71 Glutamate serves as a
significant source of α-ketoglutarate (α-KG), which is involved
in the metabolic process following isocitrate dehydrogenase
(IDH) 1/2 mutation and is related to DNA methylation.72

Furthermore, alterations in nicotinate and nicotinamide
metabolism affected the concentration of nicotinate in the gut,
eliciting antioxidant and anti-inflammatory activity and
displaying protective effects against neurodegenerative mecha-

nisms associated with neurological problems.73 Changes in
arachidonic acid metabolism with prenatal PM2.5 exposure
might influence the production of arachidonic acid, crucial for
brain development as it regulates ion channel activity, cell
membrane fluidity, and optimal cognitive function, consistent
with improved behavioral performance.74,75 Interventions
targeting the microbiome might offer new preventive and
therapeutic options for neurological disorders by modulating
mediators of microbiome−gut−brain communication influ-
enced by microbiome metabolism, including serotonin and
SCFAs.76

Overall, this study possessed several advantages that
substantiate the reliability and robustness of the current analysis.
To our knowledge, this study was the first to evaluate the impact
of prenatal PM2.5 exposure on meconium GM within a birth
cohort and to explore the role of GM in the interrelation
between prenatal PM2.5 exposure and childhood neurodevelop-
ment. Second, repeated estimations of child neurodevelopment
allowed us to determine the crucial window of susceptibility for
PM2.5 exposure. Third, the validation of GM markers by the
random forest model suggested that the altered intestinal
microbiota may provide an underlying target to predict and
prevent PM2.5-related neurological impairment via the gut−
brain axis. Nevertheless, there are also some limitations to the
present study. First, prenatal PM2.5 exposure estimation did not
consider the individual spatial and temporal activity patterns,
which might cause underlying exposure misclassification derived
from outdoor and indoor variations. Moreover, due to a lack of
sufficient fecal samples at 2 months of age, temporal changes in
the gut microbiome of participants were not fully investigated.
Finally, although this study provided an underlying therapeutic
target based on epidemiological evidence, more conclusive and
direct evidence is required. Further research studies are
warranted to confirm our findings in toxicological and
epidemiological studies in vivo and in vitro.

5. CONCLUSION
The current study was the first to demonstrate that prenatal
PM2.5 exposure could induce dysbiosis in the neonatal gut
microbiota, affecting bacterial composition, richness, and
evenness of GM involved in various biological pathways. It
also suggested an underlying association of prenatal PM2.5
exposure with the early life neurodevelopment in offspring.
Additionally, the neonatal gut microbiome may play a role in
children’s neurodevelopmental delays resulting from prenatal
PM2.5 exposure, particularly involving genera including
Ruminococcus gnavus group, Romboutsia, Burkholderiaceae
Caballeronia Paraburkholderia, Blautia, Alistipes, Parabacteroides,
and Bacteroides. Our findings suggested that the neonatal gut
microbiome may serve as an early biomarker to predict
neurodevelopmental toxicity associated with prenatal PM2.5
exposure. These results, including altered microbial colonization
and KEGG functional pathways, provided novel insights into
understanding the influence of prenatal PM2.5 on child
neurodevelopment and potential directions for elucidating the
underlying mechanism and therapeutic intervention for air
pollution-related neurological toxicity effects. Furthermore,
these results further support the prospective development of
evidence-based intervention strategies targeting the GM to
prevent or cure neurological developmental problems in early
life. Overall, it is essential to further validate our conclusions
through additional in vitro and in vivo research.
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