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A B S T R A C T   

Introduction: Air pollution is speculated to increase the risk of Coronavirus disease-2019 (COVID- 
19). Nevertheless, the results remain inconsistent and inconclusive. This study aimed to explore 
the association between ambient air pollution (AAP) and COVID-19 risks using a meta-analysis 
with meta-regression modelling. 
Methods: The inclusion criteria were: original studies quantifying the association using effect sizes 
and 95 % confidence intervals (CIs); time-series, cohort, ecological or case-crossover peer- 
reviewed studies in English. Exclusion criteria encompassed non-original studies, animal studies, 
and data with common errors. PubMed, Web of Science, Embase and Google Scholar electronic 
databases were systemically searched for eligible literature, up to 31, March 2023. The risk of bias 
(ROB) was assessed following the Agency for Healthcare Research and Quality parameters. A 
random-effects model was used to calculate pooled risk ratios (RRs) and their 95 % CIs. 
Results: A total of 58 studies, between 2020 and 2023, met the inclusion criteria. The global 
representation was skewed, with major contributions from the USA (24.1 %) and China (22.4 %). 
The distribution included studies on short-term (43.1 %) and long-term (56.9 %) air pollution 
exposure. Ecological studies constituted 51.7 %, time-series-27.6 %, cohorts-17.2 %, and case 
crossover-3.4 %. ROB assessment showed low (86.2 %) and moderate (13.8 %) risk. The COVID- 
19 incidences increased with a 10 μg/m3 increase in PM2.5 [RR = 4.9045; 95 % CI 
(4.1548–5.7895)], PM10 [RR = 2.9427: (2.2290–3.8850)], NO2 [RR = 3.2750: (3.1420–3.4136)], 
SO2 [RR = 3.3400: (2.7931–3.9940)], CO [RR = 2.6244: (2.5208–2.7322)] and O3 [RR = 2.4008: 
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(2.1859–2.6368)] concentrations. A 10 μg/m3 increase in concentrations of PM2.5 [RR = 3.0418: 
(2.7344–3.3838)], PM10 [RR = 2.6202: (2.1602–3.1781)], NO2 [RR = 3.2226: (2.1411–4.8504)], 
CO [RR = 1.8021 (0.8045–4.0370)] and O3 [RR = 2.3270 (1.5906–3.4045)] was significantly 
associated with COVID-19 mortality. Stratified analysis showed that study design, exposure 
period, and country influenced exposure-response associations. Meta-regression model indicated 
significant predictors for air pollution-COVID-19 incidence associations. 
Conclusion: The study, while robust, lacks causality demonstration and focuses only on the USA 
and China, limiting its generalizability. Regardless, the study provides a strong evidence base for 
air pollution-COVID-19-risks associations, offering valuable insights for intervention measures for 
COVID-19.   

1. Introduction 

The Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), 
was declared a pandemic by the World Health Organization (WHO) on March 12, 2020. The disease manifests with a variety of clinical 
presentations, ranging from asymptomatic infection to fatal respiratory failure [1,2]. Significant progress has been made in controlling 
the pandemic with the development of efficacious vaccines and the implementation of vaccination campaigns [3]. Alongside vacci-
nation, COVID-19 control has involved various intervention measures, including diagnostic, pharmacologic treatments, isolation, 
lockdowns, mask-wearing, social distancing, contact tracing, frequent hand washing, and public health messaging [4]. Despite these 
efforts, the disease continues to have a negative impact on global healthcare systems. For example, as of May 8, 2023 a total of 13,350, 
487,934 vaccine doses had been administered worldwide. By 3:49 p.m. CEST, May 11, 2023, approximately 765,903,278 confirmed 
cases and 6, 927,378 deaths had been reported worldwide [WHO Coronavirus (COVID-19) Dashboard; https://covid19.who.int]. To 
date, the pandemic and its implications have had a massive negative impact on the socio-economic status, cultural practices, and 
livelihood of people globally [5–9]. Therefore, there is a need to urgently identify modifiable risk aspects to reduce COVID-19 disease 
burden. 

The common risk factors for adverse COVID-19 outcomes include chronic airway diseases (i.e., asthma and lung cancer), diabetes 
and heart diseases [10]. The hypothesis that air pollution is a potential risk factor for the disease outcome of COVID-19 has been 
proposed recently [11]. This hypothesis is anchored on previous literature that link air pollution exposures to harmful health effects 
[12–20]. Briefly explained, exposure to long-and-short term air pollution may trigger production of free radical in the organism. This 
can exert pressure on the respiratory system, decrease resistance to infections and worsen disease prognosis [21–23]. For instance, PM 
(particulate matter) obstructs the airway [24]. After passing through the lungs’ alveolar sacs and deeper into the blood, PM may induce 
pro-inflammatory and thrombogenic effects by generating chemical compounds and metal-induced-oxidative stress [18,25–27] that 
can trigger and exacerbate COVID-19 [28]. Other air pollution elements, such as sulfur dioxide (SO2), ozone (O3) carbon monoxide 
(CO), and nitrogen dioxide (NO2) may damage lungs, create oxidative stress and endothelial dysfunction [28–32]. Additionally, some 
scholars have hypothesized that air pollution might worsen COVID-19 outcome by causing surfaces of the respiratory tract to over-
express the coronavirus receptor ACE-2 (angiotensin converting enzyme 2) [33]. 

Although epidemiological studies [23,34–43] have reported on the association between AAP exposure and COVID-19 outcomes, 
most of these are individual studies with confounding variables and yield inconsistent conclusions. Such contradictory results reflect 
studies with many biases, which warrant cautiousness in inferring their results. For instance, whereas some scholars have indepen-
dently reported a positive correlation between long-term exposure to PM2.5 and COVID-19 incidences [37,38], others have reported 
contrary results [39]. Elsewhere, a statistically important correlation between PM2.5, NO2, O3, PM10, and COVID-19 cases was 
documented [30], whereas a non-statistically significant correlation between CO, PM10, and COVID-19 cases was reported [44]. 
Contrary to many studies, it was autonomously reported that NO2 was either negatively or not correlated with COVID-19 deaths [45, 
46]. The potential reasons behind inconsistencies in these epidemiological studies are multifaceted and may arise from various factors. 
First, variations in study design can lead to variations in results. Additionally, differences in data collection methods, including the 
measurement of air pollution levels and COVID-19 cases can impact the findings of these studies [47]. Second, failure to adequately 
account for confounding factors such as population density, socio-economic status, access to healthcare, age distribution, and 
comorbidities can lead to biased estimates of the association between air pollution and COVID-19 [48]. Third, variations in air 
pollution levels, climate, healthcare infrastructure, and public health policies across different regions can lead to differences in the 
observed exposure-response association [49]. Fourth, variability in the assessment of air pollution exposure, including the choice of air 
pollution metrics, and the use of satellite-based vs. ground-based monitoring data, can all lead to inconsistencies in study results [50]. 
Finally, methodological flaws that include using inappropriate statistics and emphasizing on statistical significance while ignoring the 
magnitude of the effect have been pointed out in air pollution-COVID-19 association studies [48,51,52]. 

Notably, studies reviewing air pollution-COVID-19 association base their arguments on the pandemic’s very early stages and 
feature geographically scattered evidence [53–55]. While earlier data was crucial and provided significant epidemiological insights 
during the initial days of the pandemic, it would be interesting to understand whether the stage of the pandemic influences the effect 
estimates. Elsewhere, it has been recognized that existing meta-analyses, such as those conducted by Refs. [34,47] did not cover the 
complete body of research on the subject. Given all these, understanding the role of environmental factors, such as air pollution, in 
influencing COVID-19 risk remains crucial. Herein, we aimed to explore the association between ambient air pollution and COVID-19 
incidences and mortality, using a meta-analysis with meta-regression modelling. Results of this study offer insights into the concept of 
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air pollution–COVID-19 association, which forms a basis upon which novel intervention measures for COVID-19, plus future pan-
demics of similar nature, may be formulated. 

2. Methods 

2.1. Research question 

The eligibility criterion for this study was in conformity with the PECO [Population, Exposure, Comparator, and Outcome)] 
framework, which was used to frame the research question for the meta-analysis and establish inclusion criteria during the screening 
process [56]. A summary of the PECO question is presented below. 

P: Among the human population, what is the effect of 
E: Ambient air pollutants (PM2.5, PM10, SO2, CO, NO2, O3) per 
C: Increase in concentration of the pollutants (i.e., 10 μg/m3 increase) on 
O: COVID-19 risk (e.g., incidence and/or mortality) 

2.2. Search strategy 

Electronic databases namely PubMed, Web of Science, Embase and Google Scholar were systemically searched for eligible liter-
ature up to 31, March 2023. The following search queries were used: (“air pollution” OR “air pollutants” OR “particulate matter” OR 
“PM10” OR “PM2.5” OR “SO2 (sulfur dioxide)” OR “NO2 (nitrogen dioxide)” OR “CO (carbon monoxide)" OR “O3 (ozone)") and 
(“COVID-19” OR “SARS-CoV-2” OR “Coronavirus”) (Table S1). Eligible articles published in English were included after full texts, 
titles, and abstracts were carefully screened. Further search for eligible studies was conducted manually in the reference list of the 
retrieved articles. HAM developed the search strategy, which YSH reviewed. Two authors (HAM and YSH) independently selected the 
literature by screening the title and abstract of possibly suitable studies and evaluating the full-article. Any differences between the two 
authors about inclusion were resolved by consulting with a third reviewer (H-FP). 

2.3. Inclusion and exclusion criteria 

After duplicates were eliminated, the title, abstract, and full text of the retrieved items were examined separately. If they conformed 
to the standards, then they were considered for inclusion in the study. The following criteria were considered to include the articles: (1) 
quantitatively measures the association between air pollution exposures and COVID-19 incidence and mortality, their effect sizes [RR 
(relative risk/risk ratio), HR (hazard ratio) or OR (odds ratio)] and corresponding 95 % CIs (confidence intervals); (2) time series, 
cohort, case-crossover, and ecological; (3) studies that focused on ambient air pollution; (4) original and peer-reviewed studies on 
human subject; (5) published in English. The exclusion criteria included: (1) reviews, toxicology studies, letters, opinions, commen-
tary, or summaries, and (2) articles lacking effect size estimates and (or) 95 % CIs on authors’ follow-up. (3) Studies conducted on 
animals and those in which therapeutic gases like O3 were provided in a clinical setting. (4) Data having common errors. A framework 
as suggested by Ref. [57] was adapted, where manifold lag-estimates were described in the papers. Where reported, a single 
lag-estimate for an exposure-response association pair was directly included in the study. Whereas, where manifold lag-estimates were 
described, the commonly used lag in the included studies and (or) single lags, but not distributed lags were considered. The reporting 
conformed to the “Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)” (Table S.3) guidelines [58]. 

2.4. Data extraction and quality (risk of bias) assessment 

Two authors (HAM and YSH) independently retrieved data from all the eligible studies, which comprised: (1) the study features 
[the author(s), year of publication, country, exposure window (long-term or short-term) and study period]; (2) COVID-19 incidence 
and mortality; (4) air pollutants concentration and increment of air pollution (10 μg/m3; 1 μg/m3; 1 ppm/m3;1 ppb/m3 increase) used 
in effect estimates; (5) effect size estimates (ORs, RRs, HRs, IRR) and their 95 % CIs of air pollution-COVID-19 risk relationship. 
Notably, all of the included studies contributed at least one effect size to each exposure-outcome association and where a study 
presented independent data from multiple cities, multiple numbers of effect sizes were used. 

A study with a high conformity to methodological set standards may still have a high risk of bias (ROB) that can influence the 
direction or magnitude of the exposure-response association. The included studies were subjected to the "nine parameters" provided by 
the Agency for Healthcare Research and Quality (AHRQ) to assess the ROB/quality [47,59]. The parameters are: sample acquisition, 
inclusion criteria, study duration, missing data handling, outcome evaluation, uninformed evaluators, exclusion criteria, covariate 
control and information integrity. Every parameter was assessed and scored based on the characteristics of a specific article. The “YES” 
and “NO” scores were awarded one and zero points, respectively. Scores were grouped as high, moderate and low ROB [60] if they 
ranged between 1 and 3, 4–6, and 7–9, correspondingly (Table S. 2). The findings for each parameter were examined separately, 
without taking into consideration a single outcome for the entirety of the article. A dialogue with a third party (H-FP) helped to clarify 
differences and inconsistencies in the quality assessment process. 
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2.5. Statistical analyses 

A meta-analysis was performed on the relationship between air pollution exposures (O3, NO2, PM2.5, SO2, PM10, CO) and COVID-19 
incidence and mortality. Following that the units of measurement for the effect estimates (95 % CIs) in the individual studies were 
different; we transformed them into a standardised format per 10 μg/m3 increases in air pollution [60]. The following conversion 
formulas were used: 1) O3:1 ppb = 48/22.4 mg/m3 2) CO: 1 ppb = 28/22.4 mg/m3 3) NO2: 1 ppb = 46/22.4 mg/m3 4) SO2: 1 ppb =
64/22.4 mg/m3. When case incidence is low IRR OR and HR is fair approximation of RR [61,62]. Thus, in pooled analyses, we used RRs 
as the common relationship metric with small intervals and conditional probabilities in mind [63]. Since most studies employed linear 
models, we determined the standardized relative risk (RR) for each study, assuming a linear exposure-outcome association, using the 
formula below [62,64]. 

RR(standardised) =RRincrement (standardised)/increment (original)
(original)

Where, 10 μg/m3 represents the increment (standardised) for the air pollutants. The RRoriginal represents the effect size of the association 
between air pollutants and COVID-19 risk. The increment (original) represents the increase in air pollutant concentration for the in-
dividual study. A random-effects model was employed to calculate the pooled RRs estimates (95 % CIs) per 10 μg/m3 increase in air 
pollutants concentrations. Following the diverse study designs, analytical techniques, topographies, lag exposures and populations; we 
anticipated a significant heterogeneity between individual studies. Thus, we employed a random-effects model to accommodate the 
variability exhibited by the effect sizes. Heterogeneity among studies was evaluated using I2 statistics. Heterogeneity was considered 
low, moderate and high at the value of I2 ≥25 %, ≥50 % and ≥75 % respectively or the value of Q statistic at P ≤ 0.05 [65]. The 
significance (p ≤ 0.05) of the pooled effect estimates (RR) was determined using the Z test [66]. 

Funnel plots and Egger’s test were employed to determine potential publication bias [67]. Sensitivity analysis for the COVID-19 
outcomes was performed, where the number of studies was ≥5, to test whether the pooled results were affected by a single study. 
The impact of specific publications on the combined effect estimates was assessed by eliminating every study from the analysis one at a 
time. If the effect size obtained after eliminating a study did not differ significantly from the pooled effect sizes, then the influence of a 
specific study on the pooled effect sizes was not statistically significant, therefore the overall finding was robust. We further performed 
a sub-group analysis by exposure period (long term and short term), country of study, and the study design, to evaluate if these aspects 
would influence the significance of the pooled effect estimates. Short-term exposure refers to exposure to air pollution during the 
pandemic whereas long-term exposure refers to exposure that occurs years before the onset of the disease. We further performed a 
meta-regression, with a mixed-effects-model, to evaluate the influence of multiple moderators (year of publication, ROB, and exposure 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow diagram of identification, screening, eligibility and 
inclusion of studies. 
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Table 1 
The study characteristics.  

ID Author(s)/year exposure Period country design COVID-19 
outcome[ESE] 

Air pollutants Risk of 
bias 

1 Adhikari and Yin, 
2020 

short- 
term 

March 1 to April 20, 2020 USA Time series Incidence, 
Mortality [RR] 

PM2.5, O3 Low 

2 Azuma et al., 2020 short- 
term 

March 13 to April 6, 2020 Japan Cohort Incidence [RR] PM2.5, NO2 Low 

3 Berg et al., 2021 long- 
term 

March 1 to August 31, 2020 USA Ecological Incidence, 
Mortality [RR] 

PM2.5 Low 

4 Bonilla et al., 2023 long- 
term 

during 2020 Latin 
America 

Ecological Mortality [RR] PM2.5 Low 

5 Bozack et al., 2022 long- 
term 

March 8, 2020, to August 
30, 2020 

USA Cohort Mortality [RR] PM2.5 Low 

6 Cao et al., 2021 short- 
term 

January 25 to February 29, 
2020 

China Time series Incidence [OR] PM2.5, PM10, 
NO2, SO2,CO, 
O3 

Low 

7 Charlton et al., 2023 long- 
term 

September 1, 2020 to18 
January throughout 2022 

UK Cohort Mortality [HR] PM2.5, PM10, 
NO2, 

Low 

8 Chen et al., 2022 long- 
term 

throughout 2020 Canada Ecological Mortality [OR] PM2.5, NO2, O3 Low 

9 Chen et al., 2022 short 
term 

March 1 to October 31, 2020 USA Cohort Mortality [OR] PM2.5, NO2 Low 

10 Coker et al., 2020 long- 
term 

January 1 to April 30, 2020 Italy Ecological Mortality [RR] PM2.5, O3, 
PM10 

Low 

11 Dales et al., 2021 short- 
term 

March 16 to August 31, 
2020 

Chile Time series Mortality [RR] PM2.5, NO2,CO, 
O3 

Low 

12 De Angelis et al., 
2021 

long- 
term 

Feb 20 to April 16, 2020 Italy Ecological Incidence [IRR] PM10, NO2 Low 

13 Dettori et al., 2021 long- 
term 

Up to 4th -June-2020 Italy Ecological Mortality [RR] PM2.5, PM10, 
NO2 

Low 

14 English et al., 2022 long- 
term 

February 2020 to February 
2021 

USA Ecological Incidence, 
Mortality [OR] 

PM2.5 Low 

15 Fang et al., 2021 long- 
term 

Up to September 12, 2020 USA Ecological Incidence [RR] PM2.5 Low 

16 Fernández et al., 
2020 

short- 
term 

January 21st to May 18th, 
2020 

Spain Time series Incidence [RR] PM10, O3 Low 

17 Fiasca et al., 2020 short- 
term 

March to October 2020 Italy Ecological Incidence [RR] PM2.5, NO2 Low 

18 Garcia et al., 2022 long- 
term 

March 16, 2020 to March 7, 
2021 

USA Ecological Mortality [RR] PM2.5, PM10, 
NO2, O3 

Low 

19 Hadei et al., 2021 short- 
term 

Feb 20th, 2020 to Jan 4th, 
2021 

Iran Ecological Mortality [RR] PM2.5, PM10, 
NO2, O4 

Low 

20 Hassan et al., 2021 long- 
term 

up to 2020 Bangladesh Ecological Incidence [RR] PM2.5, NO2, CO moderate 

21 Hoang et al., 2020 short- 
term 

Feb 24 to Sept 12, 2020 South Korea Time series Incidence [RR] PM2.5, PM10, 
NO2, SO2,CO, 
O3 

Low 

22 Hoang et al., 2020b short- 
term 

Feb 24 to May 5, 2020 South Korea Time series Incidence [RR] SO2, CO, NO2 Low 

23 Huang and Brown, 
2021 

long- 
term 

Up to September 13, 202 German Ecological Incidence [RR] PM10, NO2, 
PM2.5, SO2 

Low 

24 Hutter et al., 2020 long- 
term 

until April 21, 2020 Austria Ecological Incidence, 
Mortality [HR] 

PM10, NO2 Low 

25 Jerrett et al., 2023 long- 
term 

06-01-2020 and 01-31-2022 USA Cohort Mortality [HR] PM2.5, NO2, O3 Low 

26 Jiang and Xiu 2020 short- 
term 

Jan 25 and April 7, 2020 China Time series Mortality [RR] PM2.5 Low 

27 Jiang et al., 2020 long- 
term 

January 25 to February 29, 
2020 

China- 
Wuhan 
China- 
XiaoGan 
China- 
Huanggang 

Cohort Incidence [RR] PM2.5, PM10, 
NO2, SO2,CO, 
O3 

Low 

28 Kim et al., 2022 short- 
term 

up to 28 February 2021 USA case- 
crossover 

Mortality [RR] PM2.5, O3 Low 

29 Koch et al., 2022 long- 
term 

April 16 until May 16, 2020 German Ecological Incidence, 
Mortality [RR] 

PM2.5, NO2, O4 Low 

30 Konstantinoudis 
et al., 2021 

long- 
term 

March 2 to June 30, 2020 UK Ecological Mortality [RR] PM2.5, NO2 Low 

(continued on next page) 
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period) on the effect sizes of the exposure-response association. To have sufficient power, meta-regression was only carried out for 
covariates where more than 10 studies were reported [68]. The findings were presented in the form of tables and figures. The analyses 
were performed using R (4.3.1) software and Review Manager (RevMan) Version 5.4.1, 2020 [http://www.cc-ims.net/revman] (The 
Cochrane Collaboration, Copenhagen, Denmark). In all the analyses, statistical significance was determined at p ≤ 0.05. 

Table 1 (continued ) 

ID Author(s)/year exposure Period country design COVID-19 
outcome[ESE] 

Air pollutants Risk of 
bias 

31 Liu et al., 2023 Short- 
term 

Sep-2020 China Cohort Incidence [OR] PM2.5, PM10, 
NO2, SO2,CO, 
O3 

Low 

32 Lorenzo et al., 2021 short- 
term 

January 23 to April 6, 2020 Singapore Time series Incidence [RR] PM10, SO2, 
PM2.5 

Low 

33 Lu et al., 2021 short- 
term 

January 20 to Feb 29, 2020 China Time series Incidence [RR] NO2, SO2, O3, 
PM2.5 

Moderate 

34 Ma et al., 2021 short- 
term 

January 21 to Feb 29, 2020 China Time series Incidence [RR] NO2, SO2, 
PM10, PM2.5 

Moderate 

35 Ma et al., 2023 short- 
term 

March 2022, June 2022 China Time series Incidence [RR] PM2.5, PM10, 
NO2, SO2,CO, 
O3 

Low 

36 Norouzi and Asadi, 
2022 

long- 
term 

Mar 1, 2019 to Aug 31, 2019 Iran Ecological Mortality [RR] PM2.5, NO2, Low 

37 Perone, 2022 long- 
term 

2019 up to 2021 Italy Ecological Incidence [RR] PM2.5, PM10, 
NO2, 

moderate 

38 Petroni et al., 2020 long- 
term 

Up to July 11, 2020 USA Ecological Mortality [RR] PM2.5, O3 Low 

39 Qeadan et al., 2021 long- 
term 

Up to June 2, 2020 USA Ecological Mortality [RR] PM2.5 Moderate 

40 Sahoo, 2021 short- 
term 

January 30 to April 23, 2020 India Time series Incidence [RR] NO2, SO2, 
PM10, PM2.6 

Moderate 

41 Sanchez-Piedra 
et al., 2021 

long- 
term 

February 3 to July 14, 2020 Spain Ecological Mortality [IRR] PM2.5, NO2 Moderate 

42 Setti et al., 2020 short- 
term 

Feb 24th to March 13th, 
2020 

Italy Time series Incidence [OR] PM10 Moderate 

43 Sheridan et al., 2022 long- 
term 

March–December 2020 UK Cohort Incidence, 
Mortality [OR] 

PM2.5, PM10, 
NO2, 

Low 

44 Shim et al., 2022 long- 
term 

January 2020 and April 
2020. 

South Korea Ecological Incidence [OR] PM2.5, PM10, 
NO2, SO2,CO 

Low 

45 Sidell et al., 2022 long term 03/1/2020 to 02/28/2021. USA Cohort Incidence [RR] PM2.5, NO2, O3 Low 
46 Stieb et al., 2020 long- 

term 
Up to May 13, 2020 Canada Ecological Incidence [RR] PM2.5 Low 

47 Travaglio et al., 
2021 

long- 
term 

Up to Apil 31, 2020 UK Ecological Incidence, 
Mortality [OR] 

NO2, O3, Low 

48 Yu et al., 2022 short- 
term 

May 5, 2020, to March 31, 
2021 

Sweden case- 
crossover 

Incidence [RR] PM2.5, PM10 Low 

49 Valdés Salgado 
et al., 2021 

long- 
term 

throughout 2020 Chile Ecological Incidence, 
Mortality [IRR] 

PM2.5, PM10, Low 

50 Veronesi et al., 2022 long- 
term 

up to March 2021 Italy Cohort Incidence [RR] PM2.5, PM10, 
NO2, O3 

Low 

51 Wang et al., 2020 short- 
term 

January 1 to March 2, 2020 China Time series Incidence [RR] PM2.5, PM10, Low 

52 Wu et al., 2020a long- 
term 

To June 18, 2020 USA Ecological Mortality [RR] PM2.5 Low 

53 Wu et al., 2020b long- 
term 

Up to April 21, 2020 China Ecological Incidence [RR] PM2.5, PM10, 
NO2,O3 

Low 

54 Xu et al., 2022 short- 
term 

March 1st and June 30th, 
2020. 

USA Ecological Incidence [RR] PM2.5, O3 Low 

55 Zhang et al., 2021 short- 
term 

January 1 to April 6, 2020 China Time series Incidence [RR] PM2.5, PM10, 
NO2, SO2,CO, 
O3, 

Low 

56 Zheng et al., 2021 long- 
term 

December 31, 2019 to 3/6/ 
2020 

China Ecological Incidence [RR] PM2.5, PM10, 
NO2 

Low 

57 Zhou et al., 2021 short- 
term 

15 Jan. to 18 Mar. 2020 China Ecological Incidence [RR] PM2.5, NO2, 
SO2,CO,O3, 

Low 

58 Zhu et al., 2020 short- 
term 

January 23 to Feb 29, 2020 China Time series Incidence [RR] PM2.5, PM10, 
NO2, SO2,CO, 
O3, 

Low 

Abbreviation: PM10, particulate matter with diameter <10 μm; PM2.5, particulate matter with diameter <2.5 μm; CO, carbon monoxide; NO2, ni-
trogen dioxide; O3, ozone; SO2, sulfur dioxide; ESE, Effect size estimate; RR, Risk ratio/relative risk; OR, odd ratio; IRR, incidence rate ratio/rate ratio; 
HR, hazard ratio. 
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3. Results 

3.1. Literature search and characteristics of included studies 

A total of 18,029 items were retrieved from PubMed, Web of Science, Embase and Google Scholar electronic databases. Primarily, 
13, 622 duplicates were removed, followed by 4099 non-relevant items, such as books, based on the title and the abstract. The total 
number of full articles assessed for legibility were 310 (308 retrieved full articles plus 2 identified through reference access), and 
finally, 58 articles (Table S4) that met the inclusion criteria were selected. Fig. 1 illustrates the search strategy employed. 

Table 1 is an illustration of the descriptive statistics for the included studies. The articles were published between 2020 and 2023. 
The geographical representation of the studies was as follows: USA (14; 24.1 %), China (13; 22.4 %), Italy (7; 12.1 %), UK (4; 6.9 %), 
and South Korea (3; 5.2 %). Germany, Canada, Chile, Iran and Spain each had two studies (3.4 %). Austria, India, Japan, Singapore, 
Sweden, Bangladesh, and Latin America each contributed one study (1.7 %). Studies reporting on short-term and long-term exposure to 
air pollutants accounted for 25 (43.1 %) and 33 (56.9 %) of the total, in that order. The study design distribution was as follows: 
ecological; 51.7 % (30), time-series; 27.6 % (16), cohorts; 17.2 % (10) and case-crossover 3.4 % (2). Based on the COVID-19 outcome, 
incidence and mortality were reported 36 (55.4 %) and 29 (44.6 %) times in the studies, respectively. The ROB evaluation, as guided by 
the “Agency for Healthcare Research and Quality”, revealed low and moderate ROB at 86.2 % (50) and 13.8 % (8), respectively 
(Table S. 2). 

3.2. Air pollution and COVID-19 incidence 

The number of COVID-19 incidences increased significantly with a 10 μg/m3 increase in the concentrations of PM2.5 [RR = 4.9045, 
95 % CI; 4.1548–5.7895, I2 = 100 %; N = 38], PM10, [RR = 2.9427, 95 % CI; 2.2290–3.8850, I2 = 100 %; N = 28], NO2 [RR = 3.2750, 
95 % CI; 3.1420–3.4136, I2 = 100 %; N = 29], SO2 [RR = 3.3400, 95 % CI; 2.7931–3.9940, I2 = 99 %; N = 15], CO [RR = 2.6244, 95 % 
CI; 2.5208–2.7322, I2 = 100 %; N = 14] and O3 [RR = 2.4008, 95 % CI; 2.1859–2.6368, I2 = 100 %; N = 20], at p = 0.00001. The 
results of the sub-group analysis revealed variation in effect sizes subject to the exposure period. With a 10 μg/m3 increment in 
pollutant concentration, the effect sizes for air pollution and COVID-19 incidence association were higher for long-term than short- 
term exposures (Table 2). There was a statistical significance in the subgroup difference between short term and long term expo-
sure for PM2.5 (I2 = 90.3 %, P = 0.0001: Fig. S.2), NO2 (I2 = 76.6 %, P = 0.01: Fig. S. 10) and SO2 (I2 = 97.9 % P = 0.00001: Fig. S. 14). 
On the other hand, the subgroup difference between short term and long term exposure for PM10 (P = 0.65: Fig. S. 6), CO (P = 0.13: 
Fig. S. 18) and O3 (P = 0.34 Fig. S. 22) per 10 μg/m3 increase in concentration was not statistically significant. 

Since study methodology may potentially modify the exposure-response relationship, we performed a stratified analysis by study 
design (Table 3). The results show that the highest exposure-response per 10 μg/m3 increment for PM2.5, NO2, SO2, and O3 concen-
trations was revealed in cohort studies, whereas the highest exposure-response per 10 μg/m3 increment for PM10 and CO was revealed 
in ecological studies. There was no evidence for heterogeneity of the associations for SO2 under ecological studies (p = 0.65). The 
results of the subgroup difference revealed that the effect sizes differed significantly between study designs for PM2.5 (Fig. S. 4), PM10 
(Fig. S. 8), NO2 (Fig. S. 11), SO2 (Fig. S. 16), CO (Fig. S. 20) and O3 (Fig. S. 23), at p = 0.00001. 

Since the region of study may be a potential effect modifier on the exposure-response combination, we performed stratified analysis 
by country. There was variation in air pollution-COVID-19 incidence association across countries. The highest effect sizes per 10 μg/m3 

increment for PM2.5, PM10, NO2, SO2, CO, and O3 was revealed in USA [RR = 4.2506; 95 % (1.7505–10.321) I2 = 100], South Korea 
[RR = 2.7183; 95 % (2.7156–2.721), I2 = 0], Germany [RR = 4.1460 [2.4258–7.0861) I2 = 85], China [RR = 10.1528 
(5.9921–17.2026) I2 = 100], RR = 2.8658 (2.6188–3.1361) I2 = 100] and RR = 6.8696 (1.6254–29.04343) I2 = 93], respectively. 
Interestingly, a 10 μg/m3 increment for PM2.5 [RR = 1.0125 [0.8225–1.2465] did not influence COVID-19 incidence in Bangladesh. A 
10 μg/m3 increment for PM10 did not influence in Singapore [RR = 1.0005 (1.0002–1.0008] and Spain [RR = 1.0111 

Table 2 
Pooled effect size for short-and-long term exposure to air pollution and their association with COVID-19 incidence.  

Air pollutant Incidence 

Exposure period No of effect sizes RR (95%CI) Heterogeneity test Overall effect Z 

I2 (%) p-value p-value 

PM2.5 Short-term 16 3.0312 [2.3304–3.9428] 100 0.00001 0.00001 
Long-term 22 6.5580 [5.3430–8.0493] 99 0.00001 0.00001 

PM10 Short-term 13 2.4701 [1.6531–3.6910] 100 0.00001 0.00001 
Long-term 15 2.7202 [2.3882–3.0984] 100 0.00001 0.00001 

NO2 Short-term 13 3.0422 [2.8668–3.2282] 100 0.00001 0.00001 
Long-term 15 4.6373 [3.5120–6.1231] 100 0.00001 0.00001 

SO2 Short-term 8 2.6551 [2.4604–2.8652] 95 0.00001 0.00001 
Long-term 7 50.982 [22.059–117.829] 100 0.00001 0.00001 

CO Short-term 7 2.6338 [2.6013–2.6667] 100 0.00001 0.00001 
Long-term 7 2.8431 [2.5791–3.1340] 99 0.00001 0.00001 

O3 Short-term 11 2.2957 [1.9870–2.6524] 100 0.00001 0.00001 
Long-term 9 2.5509 [2.1766–2.9896] 100 0.00001 0.00001  
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[0.9905–1.0320]. Also no effect was recorded in the UK: RR = 1.0803 [1.0460–1.1156], Spain: RR = 1.0450 [1.0197–1.0709] and 
Singapore: RR = 1.0275 (1.0159–1.0392) for every 10 μg/m3 increment in O3. The results of the subgroup difference revealed that the 
effect sizes between countries was statistically significant for PM2.5 (Fig. S. 3), PM10 (Fig. S. 7), NO2 (Fig. S. 12), SO2 (Fig. S. 15) and O3 
(Fig. S. 24), all at p = 0.00001. The subgroup difference was not statistically significant between countries for CO at P = 0.35 (Fig. S. 
19). 

3.3. Air pollution and COVID-19 mortality 

Increased risk of COVID-19 mortality was significantly associated with a 10 μg/m3 increase in concentration of PM2.5, PM10, NO2 
and O3 corresponding to RR = 3.0418 [95 % CI; 2.7344–3.3838, I2 = 99 %; N = 25], RR = 2.6202 [95 % CI; 2.1602–3.1781, I2 = 98 %; 
N = 8], RR = 3.2226 [95 % CI; 2.1411–4.8504, I2 = 100 %; N = 12], and RR = 2.3270 [95 % CI; 1.5906–3.4045, I2 = 100 %; N = 11], 
respectively (p = 0.00001). The association between CO and COVID-19 mortality was not statistically significant [RR = 1.8021 [95 % 
CI; 0.8045–4.0370, I2 = 100 %; N = 2] at p = 0.15. Studies focusing on SO2 pollutant were limited thus the variable was not evaluated. 

The results of the combined mortality effects sizes based on the exposure time were evaluated (Table 4). There was a higher as-
sociation between air pollution and COVID-19 mortality with a 10 μg/m3 increment in concentrations for long term exposure than 
short term exposure. While PM10 revealed a higher effect size for short-term than long-term exposure, the heterogeneity level was 
significantly low for short-term (p = 0.18). The results of the subgroup difference revealed that the effect sizes between short term and 
long term exposure was statistically significant for PM2.5 (p = 0.00008: Fig. S. 26). The subgroup difference was not statistically 
significant between short-term and long-term exposure for PM10 (P = 0.80: Fig. S. 30) and NO2 (p = 0.30: Fig. S. 34) and O3 (p = 0.68: 
Fig. S. 39) per 10 μg/m3 increase in concentration. 

Risk ratios (RRs) and the 95 % CIs of air pollutants for COVID-19 mortality by different study designs are presented in Table 5. 
There was variability in the effect sizes with a 10 μg/m3 increase in the concentration of the tested air pollutants. No heterogeneity was 
revealed for COVID-19 mortality in cohort studies with a 10 μg/m3 increase in O3 concentration. Additionally, there was no significant 

Table 3 
Pooled effect size of air pollutant and their association with COVID-19 incidence by study design.  

Air pollutant Incidence 

Study design No of effect sizes RR (95%CI) Heterogeneity test Overall effect Z 

I2 (%) p-value p-value 

PM2.5 Ecological 19 3.0718 [2.8074–3.3611] 97 0.00001 0.00001 
Time series 12 2.8414 [1.9932–4.0504] 100 0.00001 0.00001 
Cohort 8 6.2232 [4.3281–8.9481] 87 0.00001 0.00001 

PM10 Ecological 11 2.9313 [2.7861–3.0842] 96 0.00001 0.00001 
Time series 11 2.3717 [1.5773–3.5662] 100 0.00001 0.00001 
Cohort 7 1.9054 [1.6145–2.2488] 92 0.00001 0.00001 

NO2 Ecological 13 3.0127 [2.8823–3.1489] 91 0.00001 0.00001 
Time series 9 3.1232 [2.9808–3.2724] 90 0.00001 0.00001 
Cohort 8 4.6501 [3.1699–6.8215] 98 0.00001 0.00001 

SO2 Ecological 4 2.7164 [2.7145–2.7183] 0 0.65 0.00001 
Time series 7 2.7123 [2.4255–3.0331] 96 0.00001 0.00001 
Cohort 4 9.4144 [2.7822–31.856] 92 0.00001 0.0003 

CO Ecological 4 2.7241 [2.7031–2.7452] 83 0.003 0.00001 
Time series 7 2.7056 [2.6965–2.7146] 89 0.00001 0.00001 
Cohort 4 2.6895 [2.6194–2.7614] 99 0.00001 0.00001 

O3 Ecological 5 2.4619 [1.4745–4.1104] 100 0.00001 0.0006 
Time series 10 2.4196 [1.8898–3.0980] 100 0.00001 0.00001 
Cohort 4 2.5232 [2.3139–2.7514] 98 0.00001 0.00001        

Table 4 
Pooled effect size of short-term and long-term exposure to air pollutant and their association with COVID-19 mortality.  

Air pollutant Mortality 

Exposure period No of effect sizes RR (95%CI) Heterogeneity test overall effect Z 

I2 (%) p-value p-value 

PM2.5 Short-term 5 2.8534 [2.7279–2.9848] 92 0.00001 0.00001 
Long-term 19 3.3592 [3.1039–3.6354] 85 0.00001 0.00001 

PM10 Short-term 3 2.6832 [2.4446–2.9427] 42 0.18 0.00001 
Long-term 5 2.5406 [1.6678–3.8701] 99 0.00001 0.00001 

NO2 Short-term 3 2.7240 [2.7090–2.7390] 0 0.044 0.00001 
Long-term 9 3.1577 [1.8653–5.3456] 100 0.00001 0.00001 

O3 Short-term 5 2.1707 [1.2294–3.8328] 100 0.00001 0.008 
Long-term 6 2.4628 [1.9904–3.0473] 98 0.00001 0.00001  
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impact on COVID-19 mortality in time series studies with a 10 μg/m3 increase in O3 concentration (p = 0.07). The results of the 
subgroup difference revealed that the effect sizes between study designs was statistically significant for PM10 (p = 0.001: Fig. S. 32) and 
O3 (p = 0.00001: Fig. S. 41). The subgroup difference was not statistically significant between study designs PM2.5 (P = 0.92: Fig. S. 28) 
and NO2 (P = 0.80: Fig. S. 36). 

The largest effect size for PM2.5 [RR = 3.9411 95 % CI; 2.8993–5.3574, I2 = 89 %], PM10 [RR = 4.4371 95 % CI; 1.3703–14.3676]; 
I2]N/A], NO2 [RR = 6.6512 95 % CI; 5.7142–7.7419, I2]N/A] and O3 [RR = 3.24, 95 % CI; 2.75–3.82, I2]N/A] were revealed in the 
USA, Austria, Spain and Canada, respectively. There was no strong effect of air pollution on COVID-19 mortality recorded in Germany 
for PM2.5 [RR = 1.6755 (0.8751–3.2078)], Chile for O3 [RR = 1.11 (1.10–1.11)], Italy for PM10, [RR = 1.1584 (1.0613–1.2643)] and 
NO2 [RR = 1.0030 (1.0005–1.0055)]. Results for the subgroup difference showed statistical significance between countries for PM2.5 
(Fig. S. 27), PM10 (Fig. S. 31), NO2 (Fig. S. 35) and O3 (Fig. S. 40) per 10 μg/m3 increase in concentration. 

3.4. Publication bias and sensitivity analysis 

Studies reporting on the association between long term exposure to air pollution and COVID-19 incidences did not reveal publi-
cation bias, except for SO2. Studies reporting on the association between short-term exposures to CO, O3, PM10, SO2 and COVID-19 did 
not show publication bias (Fig. S42-Fig. S. 45; Table S5). Noteworthy, publication bias was detected in studies that reported on PM2.5 
and COVID-19 incidences and mortality (due to short-term exposure) and on NO2 and COVID-19 mortality (based on study design, 
country and exposure window) (Fig S46). Sensitivity analysis results showed that individual study influence on pooled effect size 
estimations was not statistically significant at p ≤ 0.05. The effect sizes obtained after removing a study did not vary with the overall 
pooled effect size, thus the overall results were considered robust. 

3.5. Meta-regression modelling 

Meta-regression model for COVID-19 incidence revealed predictors of heterogeneity in varied rates among studies reporting on 
COVID-19 incidences (Fig. 2). The effect sizes significantly increased over years (YOP) for PM2.5 (Coefficient: 0.4157; 95 % CI: 
0.0275–0.8038; p < 0.01), PM10 (Coefficient: 0.7462; 95 % CI: 0.0851–1.5776; p < 0.05), NO2 (Coefficient: 0.4756; 95 % CI: 
0.0064–0.9576; p < 0.05), CO (Coefficient: 0.0373; 95 % CI: 0.0063–0.0810; p < 0.05) and SO2 (Coefficient: 0.6083; 95 % CI: 
0.0765–1.2932; p < 0.05). The YOP was not able to significantly predict the effect of O3 on COVID-19 incidence (Coefficient: 0.0075; 
95 % CI: 0.5216-0.5367; p < 1.0). Risk of bias (ROB) was significantly associated with COVID-19 incidence for CO (Coefficient: 0.2958; 
95 % CI: 0.2358–0.3559; p < 0.0001). Contrarily, the ROB was not able to significantly predict the effects of PM2.5, NO2, SO2 and O3 on 
COVID-19 incidences (p < 1.0). Variability in incidence was further explained by exposure window for PM10 (Coefficient: 1.5473; 95 % 
CI: 2.9652, − 0.1294; p < 0.01), NO2 (Coefficient: 2.6097; 95 % CI: 4.0379, − 1.1815; p = 0.0003) and SO2 (Coefficient: 3.6213; 95 % 
CI: 6.3892, − 0.8534; p < 0.0103), O3 (Coefficient − 0.3149; 95 % CI: 0.6060, − 0.0237; p = 0.0340). The exposure window did not 
significantly predict the effects of PM2.5 (p = 0.2201) and CO (p = 0.0825) on COVID-19 incidences. With reference to the meta- 
regression model, the ability of the tested covariates to predict the effect of PM2.5, NO2 and O3 on COVID-19 mortality was not sta-
tistically significant [YOP (PM2.5 p = 0.6260; NO2 p = 0.6941; O3 p = 0.3913), exposure window (PM2.5 p = 0.8988; NO2 p = 0.2889; 
O3 p = 0.2063) and ROB (PM2.5 p = 0.8327; NO2 p = 0.6266)] (Fig. 3). Meta-regression for mortality (PM10, SO2 and CO) was not 
performed because less than 10 studies were reported. 

4. Discussion 

The COVID-19 pandemic has resulted in a range of consequences affecting health [69–71], socioeconomic factors [72,73], and 
culture [74]. The trajectory of the pandemic remains uncertain, and there is a possibility of it persisting and transforming into a future 
outbreak with epidemic or pandemic potential [75]. Consequently, there is a crucial need for epidemiological insights to comprehend 
the environmental risk factors associated with adverse COVID-19 outcomes and facilitate targeted responses [76]. In this study, we 

Table 5 
Pooled effect size of air pollutant and their association with COVID-19 mortality analyzed based on different study designs.  

Air pollutant Mortality 

Study design No of effect sizes RR (95%CI) Heterogeneity test overall effect Z 

I2 (%) p-value p-value 

PM2.5 Ecological 16 3.4131 [2.4961–4.6670] 100 0.00001 0.00001 
Cohort 5 3.5493 [2.6050–4.8359] 77 0.005 0.00001 
Time series 3 2.7094 [1.5608–4.7033] 88 0.0002 0.0004 

PM10 Ecological 5 2.5060 [1.6469–3.8134] 99 0.00001 0.00001 
Cohort 3 2.5909 [2.5728–2.6091] 74 0.001 0.00001 

NO2 Ecological 8 3.4667 [1.8365–6.5442] 100 0.00001 0.0001 
Cohort 4 2.8249 [2.6111–3.0563] 90 0.001 0.00001 

O3 Ecological 6 2.4780 [1.8563–3.3081] 98 0.00001 0.00001 
Cohort 2 2.7211 [2.7143–2.7279] 0 0.54 0.00001 
Time series 3 1.1288 [0.9904–1.2866] 18 0.27 0.07  

H.A. Musonye et al.                                                                                                                                                                                                   



Heliyon 10 (2024) e32385

10

Fig. 2. Bubble plots showing results of the meta-regression model for air pollution COVID-19 incidences. From left to right: Risk of bias (low or 
moderate), YOP (year of publication) and exposure window (long or short term). 
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systematically synthesized findings from 58 individual studies investigating the association between air pollution exposure and 
COVID-19 risks. Similar to our findings, previous studies have also reported an uneven distribution of individual studies concerning 
geography, exposure window, and study design [47,55,77]. This suggests variation in the methodologies used across studies, which 
could potentially impact the consistency and reliability of the results. In the context of our meta-analysis, this uneven distribution 
highlights the need for standardized approaches to study design and methodology. Consistent methods in future research may improve 
evidence on the link between air pollution and COVID-19 risk, enabling more accurate risk assessment and informing public health 
interventions. 

In line with the previous studies [34,47,55,78], we report a significant association between air pollution and COVID-19 incidence 
and mortality. Comparatively, PM2.5 emerged as the primary contributor to the increase in COVID-19 incidences, followed by SO2, 
NO2, PM10, CO, and O3 Consistent with our meta-analysis, previous research [77], identified PM10, O3, PM2.5, NO2 and CO as the top 
five pollutants most frequently associated with COVID-19 cases. These findings highlight the diverse range of air pollutants that may 
contribute to the severity of COVID-19, emphasizing the need for comprehensive strategies to mitigate air pollution and reduce 
COVID-19 risk. Furthermore, studies [41,42,79,80] have reported a significant link between PM2.5 concentrations and COVID-19 
occurrences corroborating our findings. This reinforces the importance of PM2.5 as a key environmental risk factor for COVID-19 
severity and underscores the need for targeted interventions to reduce PM2.5 exposure and mitigate COVID-19 risk. Previously, a 
study [30] observed that increased NO2 concentration was significantly correlated with increased daily COVID-19 incidences in 120 
cities in China [30]. Similarly, other studies [42,44] documented a positive correlation between NO2 concentration COVID-19 inci-
dence in XiaoGan and Wuhan. These findings suggest that NO2 may also play a significant role in COVID-19 risk and highlight the 
importance of addressing NO2 pollution to reduce the risk. 

The effect sizes for COVID-19 mortalities were greater for NO2 followed by PM2.5, PM10, O3 and CO. These findings from our meta- 
analysis emphasize the significant impact of air pollutants, particularly NO2 and PM2.5, on COVID-19 mortality. This highlights the 
urgent need for targeted interventions to reduce exposure to these pollutants. Furthermore, the consistent associations between PM10, 
O3, PM2.5, and CO concentrations and increased COVID-19 mortality emphasize the importance of comprehensive air quality man-
agement strategies. Implementing measures to improve air quality could potentially reduce the risk of COVID-19 mortality, thereby 
protecting vulnerable populations and reducing the burden on healthcare systems [81]. Similar to our findings, previous studies have 
also reported a significant association between ambient air pollution and COVID-19 mortality. For instance, a study evaluating the 
connection between NO2 exposure and new coronavirus fatality in European countries [82], linked COVID-19-related mortalities to 
long-term NO2 exposures. Similarly, an empirical study carried out [83] in three major French cities correlated NO2 concentration with 
COVID-19-related mortalities. Furthermore, it was [77] documented that PM2.5 and NO2 were most frequently correlated with 
increased deaths. Elsewhere [43], it was discovered that PM2.5 was consistently related to increased death rates across multiple 
models, regardless of model adjustment for NO2 or year. Several other studies have equally linked increased COVID-19 mortalities to 
PM10, O3, PM2.5 and CO concentrations [23,40,47,78,84–86]. Regarding COVID-19 mortality, we could not make clear conclusions 
about SO2 because of the small number of articles reported. 

The association between ambient air pollution and COVID-19 incidence and mortality can be explained through various mecha-
nisms. Particulate matter (PM2.5 and PM10) can enter the lungs through the nose and throat [87]. Thus, persons who are constantly 
exposed to PM are at risk of having increased chronic airway inflammation [88]. This type of inflammation may result in augmented 
production of mucus and lessened cilia activity, increasing the risk of developing respiratory diseases following SARS-CoV-2 infections 
[26,87]. Carbon monoxide (CO) is toxic and can cause lung damage [79] by binding more strongly to hemoglobin than oxygen [89], 
leading to hypoxic tissue injury or possibly death from asphyxia [89]. Exposures to SO2 make patients more vulnerable to viral res-
piratory infections [90] due to prolonged immune-induced (via tumor necrosis factor, interleukin-8, and interleukin-17) inflammatory 
activities in the respiratory system [91]. Prolonged exposure to O3 may lead to oxidative stress-induced free radical production. This 
may alter immune and cardio-respiratory systems, exposing individuals to adverse effects of SARS-CoV-2 infections [92]. Generally, 

Fig. 2. (continued). 
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inflammatory response and oxidative stress are plausible biological mechanisms for the effect of air pollution on COVID-19. Pollutants 
may directly damage lung function via inflammation, immune response dysregulation, or oxidative stress, rendering patients more 
susceptible to SARS-CoV-2 infection [21,88,93,94]. Indirectly, air pollution can induce respiratory, cardiovascular, and metabolic 
diseases, which increase an individual’s vulnerability to COVID-19 risks [44,88]. Furthermore, air pollution can elevate the ACE-2 on 
the surfaces of the respiratory tract, raising the potential to develop severe COVID-19 [33,94]. 

The current meta-analysis, by assessing the overall effect sizes for COVID-19 incidence and mortality, highlighted the importance of 
comparing these effects based on study design, exposure interval, and study region. Notably, the pooled effect sizes varied across these 
variables, suggesting that diverse populations may experience different benefits from specific COVID-19 control strategies. Our 
analysis found that the effect sizes for COVID-19 mortality were greater for long-term exposure compared to short-term exposure for all 
the pollutants, except for PM10, (mortality). This suggests that chronic air pollution, prior to SARS-CoV-2 infection, may have 
contributed to the adverse effects of the disease [21,53,88,93]. This hypothesis is supported by previous studies [95], demonstrating a 
significant association between chronic PM exposure and COVID-19-related mortality. Furthermore, long-term exposure to NO2, 
PM10, and PM2.5 was found to significantly increase both COVID-19 incidence and COVID-19-related deaths [38,78,96]. These 
findings highlight the critical role of chronic air pollution in exacerbating COVID-19 outcomes. Research has shown that chronic 
respiratory illnesses, such as emphysema and bronchial obstruction, resulting from long-term air pollution exposure may increase 
individuals’ vulnerability to SARS-CoV-2 infection and severity [97]. Studies further support the concept that long-term exposure to air 
pollution causes overexpression of ACE-2 (the receptor for SARS-CoV-2), leading to increased susceptibility to infection [33,87]. 

Fig. 3. Bubble plots showing results of the meta-regression model for air pollution COVID-19 mortality. From left to right: exposure window (long 
or short term), Risk of bias (low or moderate) and YOP (year of publication). 
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Chronic air pollution combined with SARS-CoV-2 exposure creates a "double-hit" to the lungs. This weakens tissue remodeling and 
activates a local inflammatory response, resulting in acute lung damage [87]. 

Although the effect of PM10 was higher with short-term exposure, the association was not significant, and there was low hetero-
geneity in the pooled estimates. Previously [40], attributed the large effect exhibited by O3 to a chance association resulting from the 
lack of a significant positive association of the exposure-response combination following subgroup analysis. Several potential 
mechanisms for a short-term association have been postulated. Air pollution can cause changes in the mucosal membranes of the 
respiratory system, making the cells more vulnerable to infection. While these systems would mostly function during infection, in-
cubation, and the initial stages of the disease, damage to the mucous membranes could result in adverse disease consequences. 
Simultaneously, there may be an elevated rate of complication of clinical problems in individuals who already have concomitant 
disorders when shortly exposed to pollutants [98]. 

The effect of air pollutants on COVID-19 incidence and mortality varied across countries, with some revealing high disease risks 
while others showing null association. The variation in effect sizes observed in our study across countries may be attributed to country- 
specific intervention measures for COVID-19. Moreover, non-COVID-related factors such as pollution levels, socio-economic status, 
demographics and national income may have influenced exposure-response association. These suggestions are supported by previous 
studies that proposed variations in the spatial correlation between air pollutants and COVD-19 risks in diverse regions [55]. Specif-
ically [78], increased PM2.5 correlated with an increase in COVID-19 case fatality rate in a study of 49 Chinese cities. The authors did, 
however, underline the likelihood of confounding factors due to city-specific differences in age, population prevalence of underlying 
comorbidities, and severity of public health infection control measures. Heterogeneity in effect sizes of exposure-response correlations 
was associated with differences in country climate and medical care service availability [55,99]. Elsewhere, increased hospital bed 
capacity correlated with lower COVID-19 mortality [84]. Nonetheless, some studies [23,86,95] have reported contrary findings. 

These findings underscore the need for more region-specific epidemiological research relating air pollution to COVID-19 risks to 
elucidate the relevant factors and develop country-specific intervention policies and measures. The effect sizes for the association 
between air pollution and COVID-19 incidence and mortality were found to be higher in cohort and ecological studies compared to 
other study designs. Ecological studies comprise population or community as a unit of observation as opposed to an individual. These 
findings substantiate earlier studies that reported overestimation of accuracy in studies subjected to certain study designs. For instance, 
a relative risk of increased PM2.5 concentration for hospital admission among American veterans with COVID-19 was discovered in 
cohort studies [100]. Similarly, cohort studies conducted in Spain [101] and Mexico City [85] documented a positive correlation 
between PM2.5 and COVID-19 severity using slightly different methods. Therefore, including research with diverse designs in 
meta-analyses may have a significant impact on their conclusions. The results for subgroup differences revealed varied trends, indi-
cating the effect sizes for the association between an air pollutant and COVID-19 risk may vary based on the exposure period, study 
design or region. These findings highlight the importance of specificity in interpretation of air pollution-COVID-19 study outcomes. 

Heterogeneity was discovered in nearly all the exposure-outcome associations. This supports previous studies [102], which posit 
that heterogeneity is a commonly observed phenomenon of epidemiological studies on air pollution. The authors attribute this phe-
nomenon to the difference in populations, exposures, and study conditions. The non-significant shift in heterogeneity observed 
following stratified analysis suggests that other unmeasured factors may be functioning as modifiers for the exposure-response cor-
relations. Indeed, the meta-regression analysis revealed YOP, ROB and exposure window as some of the predictors of heterogeneity 
among studies reporting on COVID-19 incidences. The limited publication bias in the current study may be linked to an exhaustive list 
of individual research studies considered for this meta-analysis. A comparatively higher publication bias was observed in studies, 
which was associated with the failure to include a comprehensive scope of the research topic [34,47]. Publication bias revealed in 
some of the stratified analyses may be linked to the tendency of researchers to publish positive results ignoring the negative ones, 
potentially leading to an overestimation of the true exposure-response association. Other potential sources of biases in stratified 
analysis results include selection bias, study quality, confounding variables, and geographical bias [103]. Selection bias may arise from 
inclusion criteria, over-representing certain studies, like those from specific regions or with larger sample sizes. Variation in study 
quality, such as small sample sizes or non-randomized designs, could also bias results. Unaccounted confounding variables, like so-
cioeconomic status or access to healthcare, may impact exposure-response association. Geographical bias may exist as most studies 
were from the USA and China. These biases highlight the need for cautious interpretation of results and further research to minimize 
potential distortions in findings [103]. Sensitivity analysis showed that the influence of single studies on the pooled effect size esti-
mates was not statistically significant. This indicates that structural modeling assumptions did not influence the association measures. 

The current study’s strengths are: first, it allows us to delve into the relationship between air pollution and COVID-19 outcome by 
the pollutant, exposure period, study design and area of study. This is significant because the impacts of air pollution on COVID-19 
results are expected to be moderated by diverse regional and contextual circumstances. Second, we present an initial meta-analysis 
with meta-regression about the association between air pollution and COVID-19 incidence and mortality, providing valuable in-
sights for future research. Third, a subgroup analysis helped to assess the differential risk associated with exposure-response combi-
nations in various aspects. Fourth, by investigating the link between AAP and COVID-19 risk, it enhances our understanding of how 
environmental factors affect public health. This knowledge aids policymakers in developing more effective strategies to mitigate air 
pollution’s impact on COVID-19 outcomes, thereby improving public health. Finally, sensitivity analysis was performed to assess the 
impact of studies perceived to be of lower quality, and their inclusion was deemed appropriate for the transparency and robustness of 
our findings. Particularly, the inclusion of these studies in the meta-analysis provides a comprehensive assessment of available evi-
dence and an enhanced understanding of the research landscape. Furthermore, the inclusion facilitates the exploration of publication 
bias and heterogeneity within the evidence body [67,104]. 

Despite the strengths, this study remains with some limitations. First, as an epidemiological observational investigation, it does not 
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demonstrate causality to support the formulated hypothesis. Therefore, while the meta-analysis may suggest a link between air 
pollution and COVID-19 risk, further research, including randomized controlled trials or longitudinal studies, is necessary to establish 
causality. Second, the majority of individual studies in the meta-analysis allocated similar levels of air pollution exposure to everyone 
residing in vast geographical areas. Thus, geographic disparities in exposure were not recorded. Without accounting for geographic 
disparities in exposure, the meta-analysis may have underestimated or overestimated the true association between ambient air 
pollution and COVID-19 risk, potentially leading to measurement errors. Third, long-term air pollution exposure research typically 
evaluates average exposure to air pollution over one or more years and links it to eventual health consequences. These studies presume 
that the population investigated stayed in the same geographical location to directly correlate the association between past exposure 
and later results. However, the assumption that individuals remain in the same location for extended periods may not hold, particularly 
during a pandemic. Population mobility could lead to misclassification of exposure, potentially biasing the results of the meta-analysis. 
Fourth, ecological studies are vulnerable to confounding variables. The inclusion of studies that lack control for individual-level 
confounders may have skewed the association between ambient air pollution and COVID-19 risk, potentially leading to over-
estimation or underestimation of the true relationship. Finally, the study lacks geographical diversity because the bulk of the included 
studies were published in the USA and China, which are not generalizable to other nations with diverse climates. Air pollution levels 
and COVID-19 prevalence may vary significantly between different regions and countries, making it difficult to extrapolate these 
results to a global population. It is worth noting that none of the 58 articles examined data from Africa. 

5. Conclusion 

In conclusion, there was a significant association between PM10, SO2, NO2, PM2.5, PM10, CO and O3 concentrations and COVID-19 
incidence and mortality. Subgroup analysis showed that the study design, exposure interval, and country influenced the magnitude 
and direction of the exposure-response associations. In the meta-regression model, YOP, ROB, and exposure period significantly 
predicted the association between air pollution and COVID-19 incidences. Thus, the effects of air pollution on COVID-19 risks are 
moderated by diverse regional and contextual factors. Notably, the presence of studies perceived to be of lower quality suggests that 
the current studies have significant limitations or that there is a lack of consistent and reliable findings. Nonetheless, this meta-analysis 
contributes a comprehensive understanding of air pollution-COVID-19 risks association, emphasizing the need for targeted inter-
vention measures and policies informed by regional and contextual factors in management of the disease. More research is necessary to 
explore specific exposure-response relationships and investigate underlying mechanisms contributing to COVID-19 risks, predomi-
nantly multiple-pollutant exposures. 
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