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Background: In cuproptosis, excess copper ions induce cell death via fatty acylation in the tricarboxylic 
acid (TCA) cycle. However, the effects of cuproptosis-TCA-related long non-coding RNAs (lncRNAs) on 
the clinical prognosis of non-small cell lung cancer (NSCLC) and the associated tumor microenvironment 
remain unclear. The purpose of this study is to use cuproptosis-TCA related lncRNAs to predict the 
prognosis of NSCLC.
Methods: Molecular signature databases and cuproptosis-related publications were made use of identifying 
cuproptosis-TCA-related genes. They were identified based on Pearson correlation analysis. The prognostic 
features associated with these lncRNAs were evaluated using the absolute contraction and selection operator 
and a receiver operating characteristic curve analysis. Additionally, downstream functional enrichment and 
immunoinfiltration were analyzed to examine the immunotherapeutic responses of patients with NSCLC. 
Results: Eleven cuproptosis-TCA-associated lncRNAs were identified. A high-risk group was compared 
with a low-risk group based on risk scores, and the high-risk group had a significantly lower overall survival 
(OS). We established a prognostic risk profile, and based on these characteristics and clinical staging, a 
nomogram was constructed. An analysis of functional enrichment revealed the involvement of pathways 
associated with cellular and humoral immunity and fatty acylation. Risk scores differed significantly based on 
immune cells and pathways (antigen-presenting cell co-stimulation). Moreover, TP53, TTN, and MUC16 
mutation status were strongly associated with risk scores, with patients identified as having a higher risk of 
NSCLC being more responsive to immunotherapy. 
Conclusions: Eleven cuproptosis-TCA-associated lncRNAs can be used to predict the prognosis of 
NSCLC patients, thereby providing a new theoretical basis for immunotherapy.
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Introduction

The main pathological types of non-small cell lung cancer 
(NSCLC) are lung squamous cell carcinoma (LUSC) and 
lung adenocarcinoma (LUAD) (1). In addition, NSCLC 
makes up 85% of the total lung cancer incidence (2). 
Currently, cancer-related deaths are dominated by lung 
cancer, and only 21.7% of patients diagnosed with this 
disease survive for more than 5 years (3). Therefore, 
accurate predictions of NSCLC prognosis can help provide 
different treatment options.

On the basis numerous molecular-level studies using 
tumor cells,  NSCLC treatment has changed from 
conventional radiotherapy and chemotherapy combined 
with surgery to molecular-targeted immunotherapy. In 
patients with epidermal growth factor receptor (EGFR)-
mutated NSCLC, tyrosine kinase inhibitors have become 
the first-line treatment (4-6). These drugs can regulate 
the tumor microenvironment (TME) to enhance the 
ability of T cells to kill cancer cells (7), thereby achieving 
good efficacy. Accordingly, immunotherapy effectiveness 
in NSCLC patients is closely associated with TME (8). 
Therefore, studying the TME is beneficial for predicting the 
responsiveness of patients with NSCLC to immunotherapy.

Recently, a new method of programmed cell death has 
been reported, and this copper-dependent mechanism is 
known as cuproptosis. Copper is a trace element required 
for human biological functions, and an appropriate 
amount of copper, functioning as a cofactor, is required 
for metabolic processes in the body, such as superoxide 
disproportionation, oxygen free radical scavenging, 

pigmentation, and catecholamine metabolism. When 
copper ion homeostasis is disrupted, metabolism becomes 
abnormal. An excess of copper ions promotes the formation 
of tumors through the regulation of mitochondrial 
respiration, the immune system, antioxidant defense, and 
apoptosis (9). Antioxidant-1 stimulates the proliferation 
of NSCLC cells by transporting copper ions (10), leading 
to a significant increase in serum copper levels in patients 
with lung cancer (11). Further, water-soluble copper (II) 
complexes increase copper ion concentrations in the body 
and jointly promote lung cancer cell death, along with 
human copper transporter 1 (CTR1) (12). Copper ion 
metabolism imbalances are closely linked to lung cancer 
development and its immune microenvironment. Copper 
ions can affect the occurrence of LUAD and the TME 
through lysyl oxidase-like 2 (LOXL2), solute carrier family 
31, member 2 (SLC31A2), and superoxide dismutase 3 
(SOD3) (13). Further, high concentrations of copper ions 
in patients with lung cancer were found to promote tumor 
angiogenesis and metastasis (11,14), whereas Copper ion 
reduction can increase the infiltration of Immune cell (15) 
and improve cytotoxicity against tumor cells in the body. 
The downregulation of amine oxidase copper containing 
3 expression in lung cancer cells can reduce the migration 
of CD4+ T cells to the lung tissue, thus promoting lung 
cancer progression (16). Studies on copper ion complexes as 
anticancer agents for the treatment of cancer have also been 
performed (17,18). Further, glucose restriction therapy 
can upregulate expression of the copper ion transporter 
CTR1, thus delaying the progression of NSCLC (19). 
Jiang et al. also found that copper nanoparticle reagents can 
inhibit lung cancer cell migration and improve cisplatin 
resistance by regulating the TME (20). In addition, it has 
been established that copper ions can serve as prognostic 
factors for patients with lung cancer. Specifically, studies 
have shown that copper levels in patients with advanced 
lung cancer are higher than those in patients with early lung 
cancer, suggesting that an increase in copper ion levels is 
related to the risk of lung cancer (21,22).

Cuproptosis is closely associated with the tricarboxylic 
acid (TCA) cycle, as excessive copper ions can bind to fatty 
acylation-associated components of TCA to inhibit the TCA 
cycle. This results in the loss of iron-sulfur (Fe-S)-cluster 
proteins, which then triggers protein-associated toxic stress 
and finally accelerates cell death (23). Excess acetyl-CoA 
in the TCA cycle competitively inhibits dihydrolipoamide 
s-acetyltransferase (DLAT) activity, resulting in cuproptosis, 
and these two factors influence each other. Copper ions can 
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also regulate tumor growth by targeting TCA-cycle proteins. 
Tsvetkov et al. found that copper directly binds lipid acylated 
components of the TCA cycle, resulting in the aggregation of 
lipid acylated proteins and the loss of Fe-S-cluster proteins, 
which then increases toxic protein stress and ultimately 
accelerates cell death (23). Active TCA circulation is closely 
associated with lung cancer (24), and a direct relationship 
exists between TCA cycle gene expression and NSCLC 
occurrence and prognosis (25-27). Simultaneously, lactic acid 
participates in NSCLC tumor cell metabolism as a carbon 
source for the TCA cycle (28). Copper ions as well as the 
TCA cycle all play a role in NSCLC.

Long non-coding RNAs (lncRNAs) are transcripts 
o f  n o n - c o d i n g  p r o t e i n s  t h a t  a r e  l o n g e r  t h a n  
200 nucleotides (29) and are closely related to proliferation, 
migration, and prognosis in NSCLC (30,31). Therefore, 
they have gradually emerged as novel biomarkers for 
predicting cancer prognosis. For example, lncRNA 
translation regulatory long non-coding RNA 1 (TRERNA1) 
can promote the proliferation of NSCLC cells by regulating 
forkhead box l1 (FOXL1) expression. In patients with this 
disease, TRERNA1 is linked to a poor prognosis (32). 
Numerous studies have also found that lncRNAs associated 
with cuproptosis can be used as prognostic factors for 
cancers, such as liver cancer, renal clear cell carcinoma, 
and soft tissue sarcoma (33-35). Cuproptosis-TCA-related 
lncRNAs are associated with tumor immunotherapeutic 
response and have an important role in predicting 
immunotherapeutic response. Binxiang Chu constructed 
a new risk-prognostic model and found that cuprotosis-
associated lncRNAs were involved in the development of 
sarcoma and assisted in the formation of the tumor immune 
microenvironment, which could identify the prognosis of 
sarcoma patients (36). Four cuprotosis-TCA-associated 
lncRNAs, including GIHCG and AC145343.1, are high-
risk lncRNAs in patients with hepatocellular carcinoma, 
and they are involved in the regulation of immune cell 
infiltration, and patients with their high expression are more 
responsive to immunosuppressants (33). AC145343.1, a 
cuproptosis-TCA-associated lncRNA, is associated with the 
TP53 mutation, is involved in the immune cell infiltration 
regulation and predicts the prognosis of patients with 
hepatocellular carcinoma. Cuproptosis-associated lncRNAs 
may affect the ability of tumor cells to escape immune 
surveillance by regulating the expression of immune 
infiltration-related molecules (37,38). If the expression 

of lncRNA XIST is downregulated in uterine corpus 
endometrial carcinoma (UCEC), high levels of XIST have a 
higher survival rate, and the XIST/miR-125a-5p/CDKN2A 
regulatory axis may be involved in the progression of  
UCEC (39). However, there are few studies on the 
association among cuproptosis, cuproptosis-TCA-related 
lncRNAs, the tumor immune microenvironment (TIME), 
and NSCLC prognosis. Therefore, a comprehensive 
analysis of cuproptosis-TCA-related lncRNAs would be 
beneficial for evaluating the treatment and prognosis of 
NSCLC and can provide new biomarkers for individualized 
immunotherapy of NSCLC.

Cuproptosis-TCA-associated lncRNAs in NSCLC 
were identified to construct a relatively accurate model to 
predict patient prognosis. This study was also undertaken to 
understand the role of cuproptosis-TCA-associated lncRNAs 
in the tumor immune microenvironment of NSCLC. 
Thus, this study elucidated the molecular mechanism by 
which cuproptosis-TCA-related lncRNAs affect NSCLC. 
And new immunotherapy theories will be developed from 
this research. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-660/rc).

Methods

Data source processing

We used The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/repository) to download the 
transcriptome studies and clinical data of 1,149 patients 
with NSCLC. RNA-seq data were normalized to transcripts 
per kilobase million values. TCGA database was used 
to download simple nucleotide variation data. In total, 
additional 123 patients were excluded for lack of clinical 
information, and clinical data from 1,026 patients with 
NSCLC were obtained (Table S1). Nineteen cuproptosis-
related motifs (Table S2) were obtained from the document 
search (23,40-44). At the same time, the gene set enrichment 
analysis (GSEA) database (https://www.gsea-msigdb.org/
gsea/index.jsp) was used to download 18 TCA-related genes 
(ACO2, CS, DLD, DLST, FH, IDH2, IDH3A, IDH3B, 
IDH3G, MDH2, OGDH, SDHA, SDHB, SDHC, SDHD, 
SUCLA2, SUCLG1 and SUCLG2), and after the removal of 
duplicated genes, 35 cuproptosis-TCA-related genes were 
obtained. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

https://tcr.amegroups.com/article/view/10.21037/tcr-24-660/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-660/rc
https://cdn.amegroups.cn/static/public/TCR-24-660-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-660-Supplementary.pdf
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Retrieval and identification of cuproptosis-TCA-related 
lncRNA data

To identify cuproptosis-TCA-related lncRNAs, we 
made use of pearson’s correlation analysis to evaluate the 
correlations between cuproptosis-TCA-related genes and 
lncRNAs using the “Perl” language. We set the criteria as a 
Pearson correlation coefficient >0.04 and a P value <0.001. 
Overlapping lncRNAs were identified as cuproptosis-TCA-
related.

Construction and validation of cuproptosis-TCA-associated 
lncRNA signatures

Twenty-four tumor normal samples were excluded from 
the clinical data, and 1,002 selected patients were placed 
randomly in training and testing groups (Figure 1). In the 
training group, univariate Cox regression, least absolute 
shrinkage and selection operator (LASSO) Cox regression, 
and multivariate Cox regression analyses (P<0.05) were 
used to construct the cuproptosis-TCA-related lncRNA 
signatures. Finally, the multivariate Cox recurrence 
coefficient (β) was used to calculate the risk score, which 
was equal to ∑icoefficient(lncRNAi) × expression(lncRNAi). 
The training, test, and total patients were divided into 
high- and low-risk groups based on the median risk score. 
By using the R packages “timeROC” and “survival”, We 
use time-dependent receiver operating characteristic (time-
ROC) curve analysis and Kaplan-Meier survival analysis to 
compare the overall survival (OS) of the training, trial, and 
low-risk group from all patients with NSCLC, as well as 
the clinically graded survival of patients with NSCLC. The 
signature’s prognostic accuracy was assessed using univariate 
and multivariate Cox analyses.

Prediction of nomogram structure

We then used the “rms” R package to establish a hybrid 
nomogram model that combined the cuproptosis-TCA-
associated lncRNA risk score with clinicopathological 
features to predict 1-, 3-, and 5-year OS in patients with 
NSCLC. A calibration curve and consistency index were 
then used to determine the predictive capability of the 
nomogram.

Functional enrichment analysis

According to the risk score, all clinical patients were divided 

into high- and low-risk groups. The R package “enrichplot”, 
“org.Hs.eg.db”, “ggplot2” and “clusterProfiler” was used 
to analyze the Gene Ontology (GO) enrichment analysis 
comparing the high- and low-risk groups following the 
criteria |log2fold change (FC)| >2.0, based on a P value 
<0.01, in addition to Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, based on a P value 
<0.05.

Microenvironment analysis of tumor-free patients with 
NSCLC in high- and low-risk groups

Twenty-eight types of tumor-infiltrating cell gene sets 
were downloaded from the TISIDB database (http://cis.
hku.hk/TISIDB/download.php). Cell-type Identification 
By Estimating Relative Subsets Of RNA Transcripts 
(CIBERSORT), Tumor Immune Estimation Resource 
(TIMER), Cell type enrichment analysis based on gene 
expression (Xcell), Quantitative Tissue Infiltrating 
I m m u n e  E s t i m a t i o n  b y  R N A - s e q  ( q u a n T I s e q ) , 
Microenvironment Cell Populations-counter (MCP 
counter), Estimation of the Proportions of Immune 
and Cancer cells (EPIC), and Single-sample Gene Set 
Enrichment Analysis (ssGSEA) algorithms were applied to 
estimate the infiltration level of immune cell populations. 
For comparison of the differences between high- and low-
risk groups in tumor immune cells and immune functions, 
the ssGSEA algorithm in gene set enrichment analysis 
(GSVA) was used.

Analysis of genetic variation in high- and low-risk groups

Using nucleotide variation data from patients with 
NSCLC downloaded from TCGA database, the R package 
“maftools” was used to evaluate genetic variation in the 
high- and low-risk groups of patients with NSCLC.

Immunotherapy-related analysis

Tumor mutation burden (TMB) reflects cancer mutations. 
The Tumor Immune Dysfunction and Exclusion (TIDE) 
computational framework was used to analyze TMB and 
TIDE scores in patients with NSCLC to predict the 
response to immunotherapy in high-risk groups. Waterfall 
plot showing the relationship between NSCLC patient 
risk score and TMB. Violin plot showing the relationship 
between NSCLC patient score and TIDE.

http://cis.hku.hk/TISIDB/download.php
http://cis.hku.hk/TISIDB/download.php
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Figure 1 Flowchart of study. Clinical samples of 1,149 cases in NSCLC were downloaded, and bioinformatics methods were used to identify 11 
cuproptosis-TCA-related lncRNAs associated with the prognosis of NSCLC patients. Based on this prognostic model, NSCLC patients were 
divided into high- and low-risk groups, and the differences between the two were identified in terms of OS, biologic function, tumor immune 
microenvironment, and immunotherapeutic responsiveness. NSCLC, non-small cell lung cancer; TCA, tricarboxylic acid; lncRNAs, long non-
coding RNAs; OS, overall survival; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator.
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Cell culture

Human bronchial epithelial cell line (BEAS-2B) was 
purchased from Hunan Starfish Biotechnology Co. Ltd. 
and these cells were cultured in Starfish matching human 
bronchial epithelial cell complete medium (item No. 

TCH-G132). The NSCLC cell line NCI-H1299, which 
was gifted by the Hunan Key Laboratory of Chinese 
Medicine Founder’s Research on Conversion Medicine, was 
cultured in RPMI-1640 medium supplemented with 10% 
fetal calf serum and 1% (penicillin-streptomycin) double 
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antiseptic sterilizing solution in RPMI-1640 medium at  
37 ℃ under 5% CO2. The sample was incubated in RPMI-
1640 medium supplemented with 10% fetal bovine serum 
and 1% (penicillin-streptomycin) double antiseptic solution 
at 37 ℃ under 5% CO2.

Total RNA extraction and real-time quantitative 
polymerase chain reaction (qRT-PCR)

To assess the expression level of AC004943.2 and 
LINC00996 between normal and cancer cells, total RNA was 
isolated from cells using TRIzol reagent. The complementary 
DNA (cDNA) was synthesized by reverse transcription using 
NovoScript® Plus All-in-one 1st Strand cDNA Synthesis 
SuperMix (gDNA Purge) (Lot No. 05305501). Then qRT-
PCR was performed on SYBR Premix Ex Taq (novoprotein). 
Relative expression of lncRNA was normalized to the internal 
reference of GAPDH.

LINC00996 forward: 5'-CTCCCATCTTTTCT 
G C C G G T- 3 ' ;  r e v e r s e :  5 ' - G AT T G T G T C G G A 
AGCGGTTG-3'. AC004943.2 forward: 5'-CACTTCTG 
CAGGAACACCGA-3' ;  reverse :  5 '-GTGGAGAC 
T G A AT G G C C C T C - 3 ' .  G A P D H  f o r w a r d : 
5'-GTGAAGGTCGGAGTCAACGG-3'; reverse: 5'-GCA
ACAATATCCACTTTACCAGAGT-3'.

Statistical analysis

R software was used for all statistical analyses (v4.2.1). 
The validity of ROC curve analysis and Kaplan-Meier 
survival analysis was used to predict survival outcomes. 
The association between high- and low-risk groups of 
NSCLC and survival outcomes, as well as other clinical 
characteristics, was investigated using Cox proportional 
modeling. If the level of statistical significance was not 
clearly indicated, P<0.05 was used.

Results

After enrolling 1,002 patients, they were divided into a 
training group and a test group. In the training group, the 
cuproptosis-TCA-related lncRNAs prognostic model was 
constructed. Each patient’s risk score was calculated based 
on this prognostic model. The OS of high-low risk patients 
in the training group, the test group, and all patient groups 
was finally compared (Figure 1).

Construction of cuproptosis-TCA-associated lncRNA 
signature for NSCLC

Pearson correlation coefficients were calculated comparing 
lncRNA expression and cuproptosis-TCA-related gene 
expression in NSCLC, and corFilter =0.4 and pvalueFilter 
=0.001 were used as the criteria to obtain correlation results, 
as shown in Figure 2A. As a result, 28 genes, including 
ATP7A, FDX1, and GCSH, were significantly correlated 
with 1,460 copper-associated death and TCA-related 
lncRNAs. First, 62 cuproptosis-TCA-related lncRNAs 
associated with the prognosis of patients with NSCLC 
were identified using univariate Cox regression analysis 
in the training group from TCGA (P<0.05). LASSO 
regression analysis with 1,000 iterations was then adopted. 
Twenty-eight cuproptosis-TCA-associated lncRNAs 
were selected for prognostic assessments of the patients  
(Figure 2B,2C). Finally, 11 cuproptosis-TCA-associated 
lncRNAs were identified via multivariate Cox regression 
analysis. LncRNA risk scores were calculated as follows 
(Figure 2D): risk rating = AC022165.1 × 0.47718 + 
AC004943.2 × 0.52590 + AC009226.1 × 0.68043 − 
LINC00996 ×  0.29947 − AC105389.2 ×  0.38091 − 
AC025178.1 × 0.27865 − AC092807.3 × 0.79728 − 
AL122020.2 × 0.89487 − SNHG30 × 0.21668 − LINC02635 
× 0.21324 − AP003032.1 × 0.21425. Analysis revealed 
that 35 cuproptosis-TCA-related genes were significantly 
correlated with 11 cuproptosis-TCA-related lncRNAs 
(Figure 2E). For example, the expression of AC004943.2 
and GCSH were positively correlated.

Validation of cuproptosis-TCA-associated lncRNAs in NSCLC

To verify the accuracy of the cuproptosis-TCA-related 
lncRNA labels, the aforementioned risk-scoring formula 
was used for the risk assessment based on all NSCLC 
patients in TCGA cohort, TCGA training, and TCGA 
test datasets. The risk states and lncRNA expression levels 
of TCGA queue (Figure 3A), training (Figure 3B), and test 
datasets (Figure 3C) were obtained. According to a Kaplan-
Meier analysis, patients with low-risk scores were more 
likely to survive longer than those with high-risk scores 
in TCGA cohort (P<0.001), TCGA training (P<0.001), 
and TCGA test (P=0.01) datasets. This indicated that the 
prognosis of patients with high-risk NSCLC was worse 
than that of patients with low-risk NSCLC (Figure 3D-3F).  
Time-ROC analysis further showed that this feature had 
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Figure 2 Identification of cuproptosis-TCA-related lncRNAs in NSCLC. (A) Identification of 1,460 cuproptosis-TCA-related lncRNAs 
associated with 28 cuproptosis-related genes. (B) According to the minimum criteria, 28 cuproptosis-TCA-related lncRNAs were screened 
using the LASSO regression model. (C) In LASSO regression, the coefficient of cuproptosis-TCA-related lncRNA was calculated. (D) 
Multivariate Cox regression analysis of 11 cuproptosis-TCA-associated lncRNAs and OS in patients with NSCLC shown in the forest map. 
(E) Eleven cuproptosis-TCA-related lncRNAs and 35 cuproptosis-TCA-related genes were analyzed via Pearson analysis. NSCLC, non-
small cell lung cancer; TCA, tricarboxylic acid; lncRNAs, long non-coding RNAs; OS, overall survival; LASSO, least absolute shrinkage and 
selection operator; CI, confidence interval.
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Figure 3 Verification of prognostic predictive ability and risk scores of 11 cuproptosis-TCA-associated lncRNA signatures in NSCLC.  
(A-C) Risk score distribution and expression heat maps of cuproptosis-TCA-associated lncRNAs in all patients with NSCLC, the training 
group, and the test group. (D-F) OS of high- and low-risk patients among all patients with NSCLC, the training group, and the test group.  
(G-I) A ROC curve verified the predictive ability of risk scores in all patients with NSCLC, the training group, and the test group. NSCLC, 
non-small cell lung cancer; TCA, tricarboxylic acid; lncRNAs, long non-coding RNAs; OS, overall survival; ROC, receiver operating 
characteristic; AUC, area under the curve.
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strong predictive ability; the AUCs of the cohort from 
TCGA were 0.682, 0.649, and 0.611, respectively, the 
AUCs of the training cohort were 0.710, 0.732, and 0.737, 
respectively, and the AUCs of the test cohort were 0.655, 
0.569, and 0.483, respectively (Figure 3G-3I). Finally, we 
found that this feature might be an independent prognostic 
factor for patients with NSCLC. Clinical features and 
cuproptosis-TCA-associated lncRNA risk scores were also 
evaluated with single-factor and multi-factor Cox regression 
models. Univariate Cox regression analysis suggested that 
there was a significant impact of this factor on the prognosis 
of NSCLC patients [total TCGA dataset: hazard ratio (HR) 
=1.115, 95% confidence interval (CI): 1.071–1.160, P<0.001; 
Figure 4A]. Multivariate Cox regression analysis further 
showed that the cuproptosis-TCA-related lncRNA risk 
score was an independent predictor of OS for patients with 
NSCLC [total dataset: HR =1.121, 95% CI: 1.074–1.170; 
P<0.001; Figure 4B]. All genes involved in the distinction 
between the high- and low-risk groups (Figure 4C),  
19 cuproptosis-TCA-related genes (Figure 4D), 1,460 
cuproptosis-TCA-associated lncRNAs (Figure 4E), and 11 
cuproptosis-TCA-associated lncRNA labels (Figure 4F) 
were used for principal component analysis. The results 
showed a wide range of gene expression changes between 
high- and low-risk patients.

Establishment of a nomogram survival-prediction model

Because the cuproptosis-TCA-related lncRNA risk score 
could not intuitively predict OS in patients with clinical 
NSCLC, we combined the cuproptosis-TCA-related 
lncRNA risk score with clinicopathological features. A 
hybrid nomogram model was established to predict the 1-, 
3-, and 5-year OS rates (Figure 5A). Predictors included risk 
score, age, and tumor grade. Simultaneously, calibration 
diagram indicated that the proposed model performed 
similarly to the ideal model (Figure 5B).

Functional enrichment analysis

To further investigate the mechanism underlying the effects 
of cuproptosis-TCA-related lncRNAs in NSCLC, GO 
(Figure S1) and KEGG (Figure S2) enrichment analyses 
were performed on differential genes in the high- and low-
risk groups of patients with NSCLC. The cuproptosis-
TCA-related lncRNA model was not only related to copper 
ion metabolism and transport but also to cellular and 
humoral immune responses, neuroactive ligand-receptor 

interactions, the IL-17 signaling pathway, and tryptophan 
metabolism.

Analysis of tumor immune microenvironment and 
immunotherapy response in patients with high- and low-
risk NSCLC

In order to determine whether TME differs between 
patients with low- and high-risk NSCLC, 28 tumor-
infiltrating immune cell gene sets were downloaded, and 
correlation analysis was performed using ssGSEA based 
on the c software package. The results showed that type 
2 helper T cells, CD4+ T cells, natural killer T cells, 
CD56 (bright) natural killer cells, effector memory CD4 
T cells, neutrophils, memory CD8+ T cells, and CD8+ 
T cells contributed a greater percentage to immune 
microenvironment in patients in the high-risk group. 
However, immature dendritic cells, B cells, mast cells, 
and eosinophils accounted for a lower proportion in 
patients in the high-risk group (Figure 6A). ssGSEA was 
also used to analyze differences in immune functions 
between the high- and low-risk groups, which showed that 
CCR, parainflammation, and MHC class I were further 
enriched in the high-risk group (Figure 6B). Changes in 
the distribution of somatic mutations in high- and low-risk 
patients were also analyzed. We found that 462 (95.06%) 
of the 486 high-risk samples had mutations, and the three 
genes with the highest mutation rates were TP53, TTN, 
and MUC16 (Figure 6C). Among the 486 low-risk samples, 
440 (90.53%) had mutations, and the top three genes with 
the highest mutation rates were TP53, TTN, and MUC16 
(Figure 6D). Mutation rates of TP53, TTN, and MUC16 in 
the high-risk group were higher than those in the low-risk 
group. 

The TMB can be used as an important indicator of the 
therapeutic effects of immune checkpoint blockade (ICB). 
An analysis of the mutation data showed that the TMB was 
higher in high-risk patients than that in low-risk patients, 
suggesting that immunotherapy may be better suited for 
high-risk patients (Figure 6E). Overall, patients with a 
higher TMB had higher survival rates (Figure 6F). Further 
comparisons were performed between the groups with high- 
and low-risk TMBs. Results showed that patients in the 
low-risk group with a high TMB had the highest survival 
rate, whereas those in the high-risk group with a low TMB 
had the lowest (Figure 6G). TIDE is a computational 
framework that simulates two major mechanisms of tumor 
immune escape and provides predictive outcomes related to 

https://cdn.amegroups.cn/static/public/TCR-24-660-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-660-Supplementary.pdf
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Figure 4 Relationship between the cuproptosis-TCA-related lncRNA risk score and clinical characteristics of patients with NSCLC. 
A univariate (A) and  multivariate (B) Cox regression forest map was used to analyze the effects of cuproptosis-TCA-related lncRNA 
risk scores and clinical characteristics on the prognosis of patients with NSCLC. Principal component analysis results are shown. Gene 
expression levels in high- and low-risk patients were compared based on (C) the expression of all genes tested, (D) cuproptosis-TCA-related 
genes, (E) cuproptosis-TCA-related lncRNAs, and (F) 11 lncRNAs with prognostic characteristics. NSCLC, non-small cell lung cancer; 
TCA, tricarboxylic acid; lncRNAs, long non-coding RNAs; CI, confidence interval; PC, principal component.
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Figure 5 Cuproptosis-TCA-associated lncRNA mixed nomogram for the diagnosis of NSCLC. (A) Mixed nomogram model to predict 1-, 3-,
and 5-year OS for all patients with NSCLC. (B) Nomogram calibration curves to predict 1-, 3-, and 5-year OS for all patients with NSCLC.
**, P<0.01; ***, P<0.001. NSCLC, non-small cell lung cancer; TCA, tricarboxylic acid; OS, overall survival; lncRNA, Long non-coding RNA.
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immunotherapy. To further demonstrate that this risk score 
is predictive of immunotherapy outcomes, TIDE scores 
were calculated. We found that TIDE scores were inversely 
associated with risk scores, suggesting better immunotherapy 
outcomes in the high-risk groups (Figure 6H).

Expression levels of AC004943.2 and LINC00996 in 
BEAS-2B, NCI-H520, and NCI-H1299

The expression of high-risk lncRNA AC004943.2 and 
low-risk lncRNA LINC00996 was examined in lung 
normal epithelial cells (BEAS-2B) and NSCLC cells 
(NCI-H520 and NCI-H1299). The results of the qRT-
PCR analysis demonstrated that AC004943.2 is markedly 
upregulated in the NCI-H520 and NCI-H1299 cell lines, 
whereas its expression is significantly downregulated in 
the BEAS-2B cell line (P<0.05) (Figure 7A). In contrast, 
LINC00996 displays elevated expression levels in BEAS-
2B, with downregulation observed in both NCI-H520 and 
NCI-H1299 (P<0.05, P<0.001) (Figure 7B).

Discussion

In this study, 11 lncRNAs associated with cuproptosis and 
TCA in NSCLC were identified, including 3 high-risk 
lncRNAs and 8 low-risk lncRNAs. Further, a difference was 
noted in their expression between the high- and low-risk 
NSCLC groups, and the high-risk group had a short OS. 
By constructing an ROC curve and nomogram model, we 

found that these parameters could be used as independent 
predictors of NSCLC prognostic risk. In addition, by 
analyzing the differences in biological functions, the TME, 
and response to immunotherapy between the high- and low-
risk groups, there was a better response to immunotherapy in 
the high-risk group of NSCLC than in the low-risk group.

Twenty-eight cuproptosis- and TCA-related lncRNA 
genes that were significantly correlated with OS in NSCLC 
were identified. These 28 genes included genes related to 
cuproptosis regulation, such as GLS, DLAT, and LIPT1, 
which were discovered by Tsvetkov et al. (23). The GLS 
gene encodes glutaminase, which helps the essential amino 
acid glutamine participate in the TCA cycle. Further, GLS 
promotes the proliferation of NSCLC cells through an 
oxidative stress response (45), and the inhibition of GLS 
expression can improve the survival of patients with prostate 
cancer (39). High expression of the DLAT glycolysis-
associated gene is associated with the tumor volume and 
poor prognosis in patients with NSCLC (46). Meanwhile, 
LIPT1 participates in fatty acylation during the TCA cycle 
and affects the occurrence and prognosis of lung cancer (47).  
These genes are associated with the development and 
prognosis of lung cancer.

Several studies have found that lncRNAs, as important 
regulatory factors in biological processes, can regulate 
gene expression to contribute to tumor development and 
occurrence (48-50). A newly identified NSCLC-associated 
lncRNA, AL139294.1, enters the cell via extracellular vesicle 
(EV) transport and activates the Wnt and NF-κB2 pathways 
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Figure 6 Comparison of tumor immune cell infiltration, somatic mutation spectrum, TMB, and TIDE scores in patients with high- and 
low-risk NSCLC. (A) Analysis of the difference in immune cell infiltration between high- and low-risk groups. (B) Analysis of differences in 
immune functions between high- and low-risk groups. (C) Analysis of gene mutations in high-risk group. (D) Analysis of gene mutations in 
low-risk patients. (E) Comparison of TMB between high- and low-risk groups. (F) The K-M curves of H-TMB and L-TMB patients. (G) 
The K-M curves of H-TMB patients and L-TMB patients in the high- and low-risk groups. (H) Violin plot showing the difference in TIDE 
scores between high- and low-risk groups. *, P<0.05; **, P<0.01; ***, P<0.001. NSCLC, non-small cell lung cancer; TMB, tumor mutation 
burden; TIDE, Tumor Immune Dysfunction and Exclusion; K-M, Kaplan-Meier.
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to promote cancer cell proliferation, differentiation, 
and migration (51). ACOXL-AS1, a cuproptosis-related 
lncRNA in the prognostic model of endometrial cancer, 
contributes to the proliferation of cancer cells by regulating 
the expression level of the miRror-421 to the cuproptosis 

related gene MTF1 expression level (52). Cuproptosis-
associated lncRNA LINC01614 upregulates the expression 
level of SLC31A1, which regulates the degree of immune 
cell infiltration in breast cancer and predicts the prognosis 
of breast cancer patients (53). However, few studies have 
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Figure 7 Expression levels of AC004943.2 and LINC00996 in NSCLC. The expression levels of AC004943.2 (A) and LINC00996 (B) as 
determined by qRT-PCR across BEAS-2B, NCI-H520, and NCI-H1299 cell lines. Statistical comparisons to the BEAS-2B group indicate 
***, P<0.001 and *, P<0.05. NSCLC, non-small cell lung cancer; qRT-PCR, real-time quantitative polymerase chain reaction.
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investigated the role of TCA-related lncRNAs in NSCLC. 
Using correlation analysis based on TCGA database, 
we found 1,460 cuproptosis-TCA-associated lncRNAs 
and created a prognostic model using these markers. 
In this study, we identified 11 TCA-associated lncRNA 
signatures associated with cuproptosis. AC004943.2, 
AC022165.1, and AC009226.1 were determined to be 
high-risk lncRNAs, whereas LINC02635, SNHG30, and 
LINC00996 were low-risk lncRNAs. AC004943.2 affects 
the tumor immunosuppressive microenvironment by 
activating the PTK2/PI3K pathway through sponge miR-
135a-5p upregulation of protein tyrosine kinase 2 (PTK2) 
expression (54). Meanwhile AC004943.2 is a predictor in 
the cuproptosis-associated lncRNA model in head and neck 
squamous cell carcinoma (HNSCC) and osteosarcoma 
(55,56). AC004943.2 has been found to be upregulated 
in laryngeal squamous cell carcinoma, which promotes 
tumorigenesis, suggesting it as a potential biomarker 
for laryngeal squamous cell carcinoma (57). And in this 
study, AC004943.2 was highly expressed in NSCLC cells, 
verifying that it can be used as a predictor of NSCLC 
prognosis. LINC00996 is a tumor immune-infiltrating cell-
associated lncRNA, which is lowly expressed in HNSCC 
high-risk patients and correlates with immunotherapy 
sensitivity (58). LINC00996, as an intermittent hypoxia-
associated signal, is lowly expressed in LUAD, and acts 
as a tumor suppressor to inhibit tumor development and 
metastasis through multiple biological pathways, predicting 
the prognosis of LUAD (59,60), and also as a prognostic 
predictor of bladder, colorectal, and cervical cancers (61-63).  
Meanwhile, Yan identified LINC00996 as a potential 

target for NSCLC immunology (64). In this study, 
LINC00996 was lowly expressed in NSCLC, suggesting 
that it is a protective lncRNA for NSCLC patients. In 
addition, AC009226.1 can be used as one of the prognostic 
predictors for LUAD (65). However, the roles and 
molecular mechanisms of AC022165.1 and LINC02635 in 
NSCLC have not been reported. Therefore, in this study, 
it was determined that this model can be considered an 
independent prognostic factor for NSCLC and can be used 
to predict patient therapeutic responses to ICB therapy. 
Subsequently, a prediction nomogram was generated by 
combining the risk score of patients with NSCLC with age, 
sex, and tumor grade to further improve its usefulness and 
make the risk score easier to use.

Tumor immune microenvironments are influenced 
by lncRNAs, as demonstrated in several studies (66,67). 
Accordingly, our study showed that this model is bound up 
with the tumor immune microenvironment. We also found 
that the proportions of memory B cells and CD4+ T cells 
were significantly increased in high-risk patients, suggesting 
that cuproptosis regulates the development of NSCLC 
by increasing the infiltration of these immune cells. 
However, these preliminary findings need to be further 
verified, both in vivo and in vitro. The high-risk group also 
exhibited rich immunization-related features, such as CCR, 
parainflammation, and MHC class I.

The analysis of immune cell infiltration and immune 
functions in samples alone cannot reflect the effect of ICB 
treatment on patients with NSCLC, and a comprehensive 
analysis and evaluation of clinical characteristics is needed. 
Researchers found that patients with a higher TMB have 
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a higher proportion of neoantigens and therefore respond 
better to immunotherapy (68-70). Our study showed that 
the TMB of high-risk patients was higher than that of 
low-risk patients, indicating a better immunotherapeutic 
effect in high-risk NSCLC patients. We also found that 
462 (95.06%) of the 486 high-risk samples had mutations, 
and among 486 low-risk samples, 440 (90.53%) had 
mutations. The top three genes with the highest mutation 
rates in the two groups were TP53, TTN, and MUC16, and 
the mutation rates of these three genes in the high-risk 
group were higher than those in the low-risk group. This 
provides an indication that a high TP53 mutation burden 
can be beneficial for immunotherapy. This conclusion 
is consistent with that of previous studies. Wang et al. 
showed that a high TP53 mutation rate is conducive to ICB 
treatment in patients with NSCLC (71). Further, TIDE, a 
framework for computing two major mechanisms of tumor 
immune escape, can be used to predict immunotherapeutic 
responses (72,73). Here, this was applied to demonstrate 
the predictive power of the immunotherapy risk scores. We 
found a negative association between TIDE and risk scores, 
further suggesting that patients at a high risk for NSCLC 
might have better immunotherapy outcomes.

This prognostic prediction model provides a new 
biological predictive marker for NSCLC patient prognosis 
as well as responsiveness to immunotherapy-cuprotosis-
TCA. The model is able to capture complex molecular 
features associated with tumors and is suitable for NSCLC 
prognostic assessment and treatment response prediction. 
These molecular features often go beyond the ability of 
traditional gene expression profiling to identify potential 
therapeutic targets. The biggest drawback of this model 
is that it is not yet possible to accurately predict the 
responsiveness of individual patients to specific different 
targeted drugs and chemotherapeutic agents. Meanwhile, 
how to effectively translate these models into clinical 
diagnostic or therapeutic tools still requires a lot of 
validation studies, which is also the biggest problem facing 
this model.

We must recognize the limitations of the current study. 
We lack in-depth mechanistic exploration of the key 
lncRNAs associated with cuprotosis-TCA in prognostic 
models. Further hard work on this topic is being carried out 
by our team.

Conclusions

We found that 11 cuproptosis-TCA-related lncRNAs 

could effectively predict the prognosis of patients with 
NSCLC, as independent factors, and the demonstrated 
on the TME of NSCLC. Simultaneously, they can 
predict the immunotherapy response. In summary, this is 
a new theoretical basis for understanding the molecular 
mechanism involved in the occurrence of NSCLC, which 
could lead to individualized treatments and prognostic 
assessments for patients suffering from the disease.
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