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Abstract

Sound localization relies on minute differences in the timing and intensity of sound arriving

at both ears. Neurons of the lateral superior olive (LSO) in the brainstem process these inter-

aural disparities by precisely detecting excitatory and inhibitory synaptic inputs. Aging gen-

erally induces selective loss of inhibitory synaptic transmission along the entire auditory

pathways, including the reduction of inhibitory afferents to LSO. Electrophysiological record-

ings in animals, however, reported only minor functional changes in aged LSO. The perplex-

ing discrepancy between anatomical and physiological observations suggests a role for

activity-dependent plasticity that would help neurons retain their binaural tuning function

despite loss of inhibitory inputs. To explore this hypothesis, we use a computational model

of LSO to investigate mechanisms underlying the observed functional robustness against

age-related loss of inhibitory inputs. The LSO model is an integrate-and-fire type enhanced

with a small amount of low-voltage activated potassium conductance and driven with

(in)homogeneous Poissonian inputs. Without synaptic input loss, model spike rates varied

smoothly with interaural time and level differences, replicating empirical tuning properties of

LSO. By reducing the number of inhibitory afferents to mimic age-related loss of inhibition,

overall spike rates increased, which negatively impacted binaural tuning performance, mea-

sured as modulation depth and neuronal discriminability. To simulate a recovery process

compensating for the loss of inhibitory fibers, the strength of remaining inhibitory inputs was

increased. By this modification, effects of inhibition loss on binaural tuning were consider-

ably weakened, leading to an improvement of functional performance. These neuron-level

observations were further confirmed by population modeling, in which binaural tuning prop-

erties of multiple LSO neurons were varied according to empirical measurements. These

results demonstrate the plausibility that homeostatic plasticity could effectively counteract

known age-dependent loss of inhibitory fibers in LSO and suggest that behavioral degrada-

tion of sound localization might originate from changes occurring more centrally.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009130 July 9, 2021 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ashida G, Tollin DJ, Kretzberg J (2021)

Robustness of neuronal tuning to binaural sound

localization cues against age-related loss of

inhibitory synaptic inputs. PLoS Comput Biol 17(7):

e1009130. https://doi.org/10.1371/journal.

pcbi.1009130

Editor: Jonathan Rubin, University of Pittsburgh,

UNITED STATES

Received: November 3, 2020

Accepted: May 30, 2021

Published: July 9, 2021

Copyright: © 2021 Ashida et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work was supported by the

Deutsche Forschungsgemeinschaft (DFG, German

Research Foundation) under Germany’s Excellence

Strategy EXC2177/1 (Project ID 390895286),

Associate Junior Fellowship from the Hanse-

Wissenschaftskolleg (GA), and NIH R01 Grants

DC011555 and DC017924 (DJT). The funders had

no role in study design, data collection and

https://orcid.org/0000-0002-8886-1213
https://orcid.org/0000-0001-6790-1290
https://orcid.org/0000-0001-9153-9324
https://doi.org/10.1371/journal.pcbi.1009130
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009130&domain=pdf&date_stamp=2021-07-09
https://doi.org/10.1371/journal.pcbi.1009130
https://doi.org/10.1371/journal.pcbi.1009130
http://creativecommons.org/licenses/by/4.0/


Author summary

Accurately locating a sound source is one of the most fundamental functions of the audi-

tory system. Behavioral studies report that sound localization ability generally degrades

with aging in both laboratory animals and humans. Anatomical studies in aged animals

have observed considerable reductions of inhibitory inputs into the neuronal circuit

responsible for sound localization. Paradoxically, physiological studies at the brainstem

level, however, find only minor age-related changes in the function of the sound localiza-

tion circuit. In order to bridge the puzzling discrepancy between these observations, we

developed a model of the corresponding neuronal circuit and simulate its function by

varying the number of inhibitory afferents. To simply mimic the activity-dependent

adjustment of synaptic inputs, we also varied the strength of remaining inhibition. Consis-

tent with the empirical findings, our simulations demonstrate that functional changes of

the sound localization circuit remain relatively small, compared to the reduced number of

inhibitory inputs. This functional robustness is further enhanced by adjusting the synaptic

strength. These results suggest that the age-related degradation of sound localization

behavior might be caused by altered functions of higher stages in the auditory pathways

above the level of the brainstem.

Introduction

The ability to accurately locate the source of a sound, or sound localization, is a fundamental

property of the auditory system, required for exploring the acoustic environment, performing

effective communication, avoiding danger, and finding pray or mates [1,2]. Mammals, includ-

ing humans, commonly possess specialized neuronal circuits for the encoding of binaural

sound localization cues comprising minute differences in the sound waves arriving at the two

ears. The lateral and medial superior olivary nuclei (LSO/MSO) in the auditory brainstem are

among the first locations in the auditory system where the information from the two ears con-

verges, with anatomical and synaptic properties suitable for extracting these small differences

[1,2]. An LSO neuron receives excitatory inputs from the ipsilateral ear and inhibitory inputs

originating from the contralateral ear [3,4]. Due to this binaural excitatory-inhibitory interac-

tion, the output spike rate of an LSO neuron varies systematically with the interaural level dif-

ference (ILD), which is the disparity in the sound intensity levels between the two ears [5,6,7].

As a sound source is moved from one side of the head around to the other side, LSO neurons

faithfully encode the corresponding ILD cues and therefore provide a neural correlate of

sound location in azimuth [8,9]. Furthermore, in response to a periodic sound stimulus, LSO

neurons act as an "anticoincidence detector" whose spike rate becomes maximal when excit-

atory and inhibitory synaptic inputs arrive temporally out-of-phase [10,11,12]. Because of this

temporal processing property, LSO neurons are also sensitive to the binaural envelope phase

difference of amplitude-modulated (AM) sounds, presenting periodic changes of spike rates

locked to the envelope frequency [13].

Behavioral studies have consistently showed that binaural hearing, including sound locali-

zation, generally degrades with age both in humans [14] (see [15,16] for reviews) and in model

animals [17,18,19], despite these subjects having generally normal hearing detection thresholds

(i.e., audibility of sound per se is not the cause of the decreased sound localization perfor-

mance). The underlying neural mechanisms of age-dependent decay of auditory detection and

discrimination, however, remain largely uncovered. One of the most salient changes found in

studies of aged animals is the loss of inhibitory neurotransmission along the central auditory
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pathways [20,21]. In the sound localization circuit of the brainstem, inhibitory inputs from the

medial nucleus of the trapezoid body (MNTB) to the LSO (Fig 1A) are selectively lost in aged

rodents even without frank loss of hearing sensitivity (i.e., the animals typically have near nor-

mal hearing thresholds). In aged Sprague-Dawley rats, more than 30% of MNTB neurons are

lost, and the decrease of inhibitory neurons starts already at 2–3 months of age [22]. Spongi-

form lesions appear in the MNTB of gerbils at ages much later than this (~3 years), indicating

selective reduction of inhibitory neurons [23].

Degraded localization performance in aged animal models and humans might reasonably

be hypothesized to result from the altered functions of the binaural brainstem circuits, includ-

ing the LSO, caused by the loss of inhibitory inputs from MNTB. To date, however, there are

only few empirical physiological studies of the aged LSO, and functional changes reported

were rather subtle. In aged Sprague-Dawley rats, ILD-tuning curves were shifted toward the

contralateral hemifield relative to younger animals, consistent with a reduction in inhibition,

whereas other effects were not identifiable that were related to inhibition loss [24]. In Fisher-

344 rats, loss of MNTB neurons assessed anatomically was less than 10% at 24 months relative

to young animals [25]; and tuning-curves of LSO neurons were almost unaffected [26]. Studies

of sound evoked auditory brainstem responses (ABR) have shown potentially reduced inhibi-

tory efficacy at LSO, which has recently revealed to produce the binaural interaction compo-

nent (BIC) of the ABR [27,28,29] (see [30] for review). The amplitude of the BIC in both

elderly humans [31] and aged gerbils [32] is significantly reduced compared to younger sub-

jects, despite relatively normal audibility. A reduction in the BIC amplitude is consistent with

reduced efficacy of inhibition to the LSO [30,32]. These studies demonstrate that the anatomi-

cal reduction in inhibitory neurons can have functional consequences for LSO neurons, even

if the changes noted are subtle.

In many areas of the nervous system, activity-dependent changes of the neuronal function,

called homeostatic plasticity, play a fundamental role in facilitating, stabilizing and adjusting

information processing [33,34,35]. A variety of adaptive plasticity takes place along the audi-

tory system [36,37]. Activity-dependent alteration has also been found in the auditory brain-

stem, which was formerly regarded as "hard-wired" and not a target of plastic changes [38,39].

Noise-induced and age-related hearing loss trigger various functional and anatomical changes

in the cochlear nuclei of rodents, but activity-dependent plasticity efficiently counteracts these

changes to retain their fundamental functions [40]. These observations suggest the hypothesis

that homeostatic plasticity may contribute to the preservation of binaural tuning in the aged

LSO, despite the observed changes in the number and function of inhibitory neurons [4,20].

In the present study, we use a computational model of LSO [41] to examine the effects of

age-related inhibition loss on the function of LSO. Our goals here are twofold. First, we study

how the known reduction in the number of inhibitory inputs may or may not affect binaural

tuning curves of LSO neurons. Second, we investigate how a compensatory increase of synap-

tic strength that counteracts the loss of inhibitory inputs may stabilize the binaural tuning of

modeled LSO. With these analyses, we aim to gain insights on the relationship between known

anatomical loss of inhibitory transmission in aged animals and the relatively unaffected physi-

ological characteristics of this binaural nucleus.

Materials and methods

LSO neuron model

We used a single-compartment active integrate-and-fire (IF) model of LSO. The model was

tuned to replicate known physiological response properties of LSO neurons [41]. The term

"active" indicates that the model contains low-voltage-activated potassium (KLVA)
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Fig 1. Modeled LSO functions. A. Schematic drawing of the LSO circuit. Excitatory inputs are shown in blue and back, and

inhibitory inputs in red. AN: auditory nerve; GBC: globular bushy cell; LSO: lateral superior olive; MNTB: medial nucleus of the

trapezoid body; SBC: spherical bushy cell. B. Modeled level-dependence of spike rates of SBCs and MNTB neurons used for

simulating ILD coding. C-D. Simulated excitatory (blue) and inhibitory (red) synaptic inputs driven by binaural non-modulated

tones with two different ILDs, and the resulting membrane potentials (black). Spike shapes are created by spike-mimicking

current (see Materials and methods). E. Simulated ILD-tuning curve. Bars indicate the standard deviation of the spiking rate for
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conductance that plays a major role in auditory information processing [42,43]. We note that

the limited amount of KLVA conductance in the LSO model does not alter its sustained firing

pattern to current injections or its low-pass filtering property [41]. While anatomical [44,45]

and physiological [46] studies reported multiple cell types in the LSO, we focus on neurons

that show sustained spiking responses to constant acoustic stimulation, because the other

major cell type, onset spiking neurons, are poor encoders of ILDs of continuous sounds.

The model equations and the corresponding parameter values are summarized in Table 1.

The dynamics of the membrane potential V as well as the activation of the KLVA conductance

are described each by a first-order differential equation. When the membrane potential

reaches or exceeds the threshold Vθ, an output spike is counted and the model is in an abso-

lutely refractory period of Tref, in which no more spikes are counted. In addition, a spike-asso-

ciated current Ispike(t -Tθ) is initiated at each threshold crossing to simulate a spike-like

trajectory of the membrane potential.

In addition to the active IF model, we also used a passive IF model to confirm the generaliz-

ability of our results. The parameters of this model (Table 2) were taken from a previous study

[41], in which a general comparison between the active and the passive model was performed.

The passive IF model lacks any active voltage-dependent conductance. When its membrane

500-ms stimulations repeated 4000 times. Triangles show the ILD values used for the examples in C and D. (Inset) Fano factor of

ILD-tuning curve. F. Neuronal discriminability for the ILD tuning curve (see Materials and methods for the definition).

Neighboring ILD values in E (2-dB step) was used for the calculations. G-H. Simulated excitatory (blue) and inhibitory (red)

synaptic inputs driven by binaural AM tones with two different input phase differences, and the resulting membrane potentials

(black). I. Simulated binaural envelope phase-tuning curve at 300 Hz. Bars indicate the standard deviation of the spiking rate for

each 500-ms stimulation. Triangles show the input phase differences used for the examples in G and H. (Inset) Fano factor of

phase-tuning curve. J. Neuronal discriminability for the envelope phase-tuning curve. Neighboring phase difference values in I

(10-deg step) was used for the calculations.

https://doi.org/10.1371/journal.pcbi.1009130.g001

Table 1. Equations and parameters for the active IF model. Units: t [ms], V [mV], Ispike [nA], αd [1/ms], and βd [1/

ms]. Equations for the synaptic currents Iex and Iinh are given in Table 3. See [41] for the complete description of this

LSO neuron model and justification of the parameters.

Cellular variable Equation

Membrane potential V (subthreshold dynamics) C d
dt V tð Þ ¼ IL þ IKL þ Iex þ Iinh þ Ispike

Spike timing Tθ Tθ: = t when V(t)� Vθ

Leak current IL = gL (EL-V)

KLVA current IKL = gKL d(V) (EK-V)

Spike-associated current (s = t -Tθ�0) Ispike(s) = 24exp(-s/0.15) − 12exp(-s/0.30)

KLVA activation variable d(t) td Vð Þ d
dt d tð Þ ¼ d1 Vð Þ � d tð Þ

Steady state for KLVA activation d1(V) = αd(V)/(αd(V) + βd(V))

Time constant for KLVA activation τd(V) = 1/(αd(V) + βd(V))

Activation rate of KLVA αd(V) = 0.5exp(+(V+50)/16)

Deactivation rate of KLVA βd(V) = 0.5exp(-(V+50)/16)

Parameter Value

Membrane capacitance C 24 pF

Leak conductance gL 14.4 nS

KLVA conductance gKL 21.6 nS

Leak reversal potential EL -56 mV

Potassium reversal potential EK -75 mV

Threshold Vθ -45.8 mV

Refractory period Tref 1.6 ms

https://doi.org/10.1371/journal.pcbi.1009130.t001
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potential V reaches the threshold Vθ, a spike is counted and then the membrane potential V is

fixed to the reset potential V0 for a refractory period of Tref. The passive IF model was used

only in the specific subsection titled "Binaural tuning simulated with passive IF model" in the

Results. In all other sections, we used the active IF model described above.

LSO input model

We adopted the same configurations for the excitatory and inhibitory synaptic inputs to the

modeled LSO neuron as in our previous study [41]. The model equations and the correspond-

ing parameter values are summarized in Table 3. Each presynaptic spike is converted into a

unitary synaptic conductance modeled as an alpha function (αex or αinh), and is then summed

Table 2. Equations and parameters for the passive IF model. See [41] for the complete description of this LSO neu-

ron model and justification of the parameters.

Parameter Value

Membrane capacitance C 24 pF

Leak conductance gL 26.4 nS

KLVA conductance gKL 0 nS

Leak reversal potential EL -60 mV

Reset potential V0 -60 mV

Threshold Vθ -45.1 mV

Refractory period Tref 1.6 ms

https://doi.org/10.1371/journal.pcbi.1009130.t002

Table 3. Equations and parameters for excitatory and inhibitory synaptic inputs. Iex
m and Iinh

m are the number of

spikes of the m-th excitatory and inhibitory fibers, respectively. tmi denotes the timing of the i-th spike of the m-th

fiber. fm is the modulation frequency in Hz. SPL is the sound level in dB. The unit for the intensities λ is spikes/s. See

[41] for the complete description of the synapse model and justification of the parameters.

Synaptic variable Equation

Unitary excitatory synaptic conductance αex(t) = Aex(t/τex)exp(1-t/τex) (t� 0)

Total excitatory synaptic conductance
gexðtÞ ¼

XMex

m¼1

XI
m
ex

i¼1

aexðt � tmi Þ

Excitatory synaptic current Iex(t) = gex(t) (Eex-V)

Unitary inhibitory synaptic conductance αinh(t) = Ainh(t/τinh)exp(1-t/τinh) (t� 0)

Total inhibitory synaptic conductance

ginhðtÞ ¼
XMinh

m¼1

XI
m
inh

i¼1

ainhðt � tmi Þ

Inhibitory synaptic current Iinh(t) = ginh(t) (Einh-V)

Parameter Value

Peak amplitude of excitatory input conductance Aex 3.5 nS

Peak amplitude of inhibitory input conductance Ainh 12 nS (default)

Time constant of excitatory input conductance τex 0.16 ms

Time constant of inhibitory input conductance τinh 0.32 ms

Reversal potential for excitatory inputs Eex 0 mV

Reversal potential for inhibitory inputs Einh -75 mV

Number of excitatory input fibers Mex 20

Number of inhibitory input fibers Minh 8 (default)

Input variable Equation

Level-dependent intensity function for non-modulated tones l SPLð Þ ¼ 30þ 240

1þexpð� ðSPL� 20Þ=6:0Þ

Modulation-frequency-dependent average intensity λ(fm) = 180 − 0.03fm
Modulation-frequency-dependent phase-locking (fm<2000) VS fmð Þ ¼ 0:65�

1� expððfm � 2000Þ=500Þ

1þexpððfm � 2000Þ=500Þ

https://doi.org/10.1371/journal.pcbi.1009130.t003
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into the total excitatory (gex) and inhibitory (ginh) synaptic conductances. The spiking activity

of the excitatory and inhibitory input fibers (from spherical bushy cells and MNTB neurons,

respectively; see Fig 1A) were modeled as a Poisson process. For non-modulated tones used

for simulating ILD-tuning curves, the Poisson process is homogeneous in time with a level-

dependent intensity function λ(SPL) (Fig 1B). For AM tones used for simulating phase-tuning

curves, the Poisson process is inhomogeneous, with a von Mises distribution function used as

the underlying intensity function [47]. In this case, the spiking activity is characterized by two

parameters, the average intensity λ(fm) and the degree of phase-locking VS(fm), with fm being

the modulation frequency. We assumed that all the inputs are mutually independent and that,

in phase-locked cases, all excitatory inputs are locked to one single phase and the inhibitory

inputs are locked to another. See [47] for the detailed theoretical relationship between the

parameters of the von Mises distribution and the degree of phase-locking measure as the vec-

tor strength (VS) [48].

Testing level- and phase-tuning

ILD-tuning of the LSO model for non-modulated tones was simulated by varying the contra-

lateral sound intensity level that determines the inhibitory synaptic input intensity (Table 3).

The ipsilateral sound pressure level was fixed to +35 dB. As in most physiological studies (e.g.,

[6,7,46]), the ILD was defined as the contralateral level minus ipsilateral level. ILD sensitivity

of binaural neurons throughout the auditory system, from LSO to cortex, does not depend on

the frequency sensitivity (i.e., characteristic frequency) of the neuron [49]. Thus, the model

LSO neuron is representative of typical LSO neurons regardless of their frequency sensitivity.

Envelope phase-tuning of the LSO model for AM tones was simulated by varying the rela-

tive phase between the ipsilateral (excitatory) and contralateral (inhibitory) inputs. Namely,

the difference between the locking phases of both inputs was varied from -180 to +180 degrees.

A positive phase means that inhibitory inputs arrive earlier than excitatory inputs. Unless oth-

erwise noted, the modulation frequency was fixed to 300 Hz, at which the effect of amplitude-

modulation is highly prominent [11].

Tuning curves of the model LSO neuron were further characterized with two measures:

modulation depth and neuronal discriminability. The modulation depth is defined as the dif-

ference between the maximum and minimum spiking rate of the tuning curve. The neuronal

discriminability D is defined as the spike rate difference between two stimulus conditions nor-

malized by the mean standard deviation of the spike rates [50]: D ¼ ðm1 � m2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

1
þ s2

2
Þ=2

p
.

Here the suffixes 1 or 2 denote two different stimulus values of ILD or input phase difference,

and μ and σ are the mean and standard deviation of the spike rate for each stimulus value,

respectively. The discriminability can be theoretically related to the Fisher information IF(S)

as: jDj ¼ DS
ffiffiffiffiffiffiffiffiffiffi
IFðSÞ

p
, where S denotes the stimulus value and ΔS is the difference between two

neighboring stimulus values (see section 3.3 of [51]). In other words, the discriminability is a

statistical measure that indicates how precisely a downstream neuron can theoretically infer

the value of the input parameter (i.e., ILD or phase difference) by observing the spike rate of

the upstream neuron (i.e., LSO). In the present study, the step size was ΔS = 2 dB for an ILD-

tuning curve and ΔS = 10 degrees for a phase-tuning curve. For each ILD or phase value, we

repeated 500-ms sound stimulation by 4000 times to calculate the mean and standard devia-

tion of the output spike rates of our LSO neuron model.

The Fano factor, which is the spike count variance in a fixed period divided by the average

number of spikes, is often used to characterize the variation of spiking response. LSO neurons

typically have a Fano factor near or slightly below 1, indicating somewhat more regular spiking

activity than the Poisson process [52]. Our simulated spike variance matched corresponding
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empirical observations, including the decrease of the Fano factor with the spike rate (insets of

Fig 1E and 1I).

Loss of inhibitory inputs and amplitude compensation

Age-related loss of inhibitory neurons was simulated by reducing the number of inhibitory

synaptic inputs. In the default (healthy) condition, the number Minh of inhibitory input to the

model LSO neuron was fixed to 8 (Table 3), which is based on available experimental data in

gerbils [53] and mice [54]. We varied this parameter between 0 and 16, and calculated the bin-

aural level and phase tuning curves of the model LSO neuron.

In order to examine the effects of inhibition loss, we considered three cases named "uncom-

pensated", "compensated", and "overcompensated". In the uncompensated case, only the num-

ber of inhibitory inputs was changed, while all the other parameters were kept unchanged. In

the compensated case, the unitary amplitude magnitude of inhibitory conductance was varied

according to the number of remaining inhibitory inputs so that the total amount of inhibitory

conductance remained unchanged. In this second case, when the number of inhibitory inputs

was halved from Minh = 8 to 4, for example, the unitary amplitude was doubled from Ainh = 12

to 24 nS to compensate the loss. In the overcompensated case, the amplitude of the unitary

inhibitory input was multiplied by a factor (2—Minh/8), so that the total inhibitory input con-

ductance linearly decreased with the number of inputs. For instance, the total inhibitory input

became 50% larger than the default value when the number of inputs was 4. Even in these com-

pensated and overcompensate cases, all model parameters other than the number and ampli-

tude of inhibitory inputs were unchanged throughout the simulations.

Population modeling

While the spike rate of an LSO neuron monotonically decreases with ILD (e.g., Fig 1E), the

location of the midpoint of an ILD-tuning curve generally differs between neurons [55,56]. To

investigate how loss of inhibitory inputs may affect neuronal discriminability function on the

population level, we created a set of LSO neurons by shifting the tuning curves along the ILD

axis. The resulting LSO neuron population had tuning curves whose midpoint locations uni-

formly distributed between -26 and +16 dB, covering more than 80% of the empirical distribu-

tion in gerbil LSO [56].

For each of the LSO neurons, we next assumed a "mirrored neuron" whose ILD-tuning

function is a flipped image of the original tuning curve about the midline (zero ILD). This mir-

rored neuron is the delegate of a similarly-tuned neuron in the contralateral LSO. We then cal-

culated the spike rate difference between the original and mirrored neuron to obtain the

bilateral rate difference (similar approaches were employed in [7,49,57,58]). This rate differ-

ence is assumed to carry the ILD information required for horizontal sound localization

[7,58]. Applying the same formula as described above, we computed the neuronal discrimina-

bility function from the across-trial mean and standard deviation of the bilateral rate

difference.

As there is no empirical data available on how outputs of multiple LSO neurons are inte-

grated at higher auditory stages, we calculated the "population discriminability" by simply

averaging the neuronal discriminability functions across the LSO population. The underlying

assumptions here are that sufficiently many neurons with different midpoint locations are

involved and that each neuron in the population shares the same impact on the resulting

discriminability through averaging. The discriminability functions were calculated for differ-

ent numbers of inhibitory inputs in the uncompensated and compensated conditions. For this

population averaging, we adopted 22 mirror neuron pairs in total (having midpoint locations
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from -26 to +16 dB with a step of 2 dB). We note that the number of neuron pairs used would

not affect our conclusion, since the calculated discriminability was all normalized to eliminate

the influence of the population size.

Results

Simulating binaural tuning in healthy LSO

LSO neurons change their spike rates according to binaural sound level differences and to bin-

aural envelope phase differences. As demonstrated in our previous study [41], these funda-

mental characteristics can be replicated with our LSO model (Fig 1). When the ipsilateral

sound level is much higher than the contralateral sound level, excitatory inputs to the model

LSO cell are much stronger than inhibitory inputs, therefore leading to a high spike rate (Fig

1C). For more intense contralateral sound stimulation, simulated inhibitory inputs more effec-

tively cancel excitatory inputs, resulting in a lower spike rate (Fig 1D). Because of this excit-

atory-inhibitory interaction, the level difference tuning curve of an LSO neuron generally has

a sigmoidal shape (Fig 1E). And the neuronal discriminability becomes maximal at or near the

ILD where the slope of the binaural tuning function is steepest (Fig 1F). As the LSO model

itself does not have an internal noise source, the observed trial-to-trial variability in its output

spike rate is caused solely by the randomness of the synaptic inputs generated with the Poisson

process.

In response to binaural AM sounds, the model LSO generates many spikes when phase-

locked excitatory inputs precede inhibitory inputs (Fig 1G). In such a case, the oscillation of

the membrane potential is large and therefore the spike threshold is reached easily. In contrast,

when the inhibitory inputs arrive slightly earlier than excitatory inputs, the peaks of both

inputs coincide and cancel each other, leading to a low spike rate (Fig 1H). If the inhibitory

inputs further precede the excitatory inputs, then the spike rate again increases. Because of the

periodic nature of this phase-dependent binaural interaction, the resulting phase-difference

tuning curve is sinusoidal (Fig 1I). The neuronal discriminability function is also periodic (Fig

1J), with positive and negative maximal values located close to the positions that correspond to

the steepest slopes of the tuning curve (Fig 1I).

Simulating effects of inhibition loss on binaural tuning

To simulate age-related loss of inhibition, we changed the number of inhibitory inputs to the

model LSO and examined how binaural level- and phase-tuning curves are altered. First, we

considered an "uncompensated" case, in which only the number of inhibitory inputs was var-

ied from the default value of 8, while all other model parameters remained unchanged (Fig

2A). This situation would correspond to an acute loss of inhibitory inputs without any recov-

ery processes. In our series of simulations, the number of inputs was varied between 0 and 16

for completeness. Considering the number of inputs in young LSO [53,54] and the amount of

its reduction by aging [22,25], however, we assumed that the most realistic range for the num-

ber of inhibitory inputs to an LSO neuron would be 4–12, on which we primarily focus in the

following subsections.

Simulated ILD-tuning curves showed a gradual increase of spike rates with a decreasing

number of inhibitory inputs and became flat when all the inhibitory inputs were lost (Fig 2B).

Midpoints of the sigmoidal tuning curves slightly shifted to positive ILDs for a smaller number

of inhibitory inputs (e.g., from -20.0 dB for Minh = 8 inputs to -17.3 dB for Minh = 4 inputs).

This shift of midpoints qualitatively agrees with previous experimental findings [24]. The max-

imum rate (peak of the tuning curve) changed almost linearly with the number of inhibitory

inputs, while the minimum rate (trough of the tuning curve) changed non-linearly,
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presumably because the spike rate cannot be below zero (Fig 2C, thin lines). The resulting

modulation depths increased almost linearly for 0–4 inputs, saturated for 6–10 inputs, and

slowly decreased for 12–16 inputs (Fig 2C). The neuronal discriminability D was averaged

over the entire ILD range tested and normalized to its value for Minh = 8 inputs. The curve of

this normalized discriminability monotonically increased with the number of inhibitory inputs

and saturated (Fig 2D). The reduction of discriminability with inhibition loss is caused by two

factors: reduced spike rate differences (Fig 2B) and increased rate variance associated with the

Fig 2. Simulated effects of inhibition loss on binaural tuning of LSO without amplitude compensation. A. Schematic drawing of the LSO circuit with a loss of

inhibitory synaptic inputs. Lost inputs are shown by dotted lines. B. Simulated ILD-tuning curves for different numbers of inhibitory inputs. C. (Thin lines) peak (max)

and trough (min) rates of the ILD-tuning curves. (Thick line) Modulation depth defined as the difference between maximum and minimum rates. D. Neuronal

discriminability of ILD tuning curves averaged over the range between -45 and +15 dB and normalized to the value for 8 inhibitory inputs. E. Simulated envelope phase-

tuning curves at 300 Hz for different numbers of inhibitory inputs. F. (Thin lines) peak (max) and trough (min) rates of the envelope phase-tuning curves. (Thick line)

Modulation depth defined as the difference between maximum and minimum rates. G. Neuronal discriminability of envelope phase-tuning curves averaged over the

range between -180 and +180 degrees and normalized to the value for 8 inhibitory inputs. In panels C, D, F, and G, the filled circles show the response for the default

number of inputs (Minh = 8).

https://doi.org/10.1371/journal.pcbi.1009130.g002
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increased average spike rate (Fig 1E). For Minh = 6 inputs and above, the discriminability dif-

fered, however, by less than 15% from the default case of Minh = 8 inputs.

Simulated envelope phase-tuning curves also showed gradual changes with the number of

inhibitory inputs (Fig 2E). Fewer inhibitory inputs led to higher overall spike rates with shal-

lower modulation depths. As in level-tuning, the maximum rates decreased linearly with the

number of inhibitory inputs, while the minimum rates changed nonlinearly (Fig 2F, thin

lines). The resulting modulation depth had a peak at around 6–8 inputs (Fig 2F, thick line).

The neuronal discriminability D increased with the number of inhibitory inputs and had a

mild peak at around Minh = 12 inputs (Fig 2G). These results indicate that binaural level and

phase difference tunings (as measured by the modulation depths or by discriminability) are

not strongly affected by the exact number in the range of 6–12 inhibitory inputs.

Simulating amplitude compensation acting against inhibition loss

Next, we considered a "compensated" case in which the magnitude of remaining inhibitory

inputs was increased to counteract the reduction in the number of inhibitory inputs (Fig 3A;

see Materials and methods for more details). This case might correspond to the situation

where homeostatic and other kinds of neuronal plasticity take place to partly recover from the

loss of synaptic inputs. Here, the average spike rate, which was increased due to the loss of

inhibition, was then reduced by augmenting the impact of remaining inhibitory synapses.

In comparison to the uncompensated case (shown in Fig 2), effects of inhibition loss were

greatly reduced, when the loss of inhibition was compensated by amplifying the remaining

inhibitory inputs. Simulated ILD-tuning curves became substantially shallow only when more

than half of the inhibitory inputs were lost (Fig 3B). This limited effect can also be seen by plot-

ting the modulation depth (Fig 3C, thick solid line). Unlike the uncompensated case, both

maximum and minimum rates showed nonlinear changes with the number of inhibitory

inputs in the compensated case (Fig 3C, thin lines). More specifically, the changes of these

rates were drastic for small numbers of inputs (Minh = 0–3) and only marginal for larger num-

bers of inputs (Minh� 4). As a result, the simulated modulation depth showed a prominent

change for 0–4 inputs but was almost constant for the range above 4 inputs (Fig 3C, thick

line). A similar trend was found for the normalized neuronal discriminability (Fig 3D).

Around the default number of inhibitory inputs (Minh = 8), the curves for the modulation

depth and the discriminability in the compensated case were even shallower than in the

uncompensated case (gray dash-dotted lines). These observations indicate that loss of a small

to moderate number of inhibitory fibers does not impair binaural tuning in LSO.

Simulated envelope phase-tuning showed comparable or even stronger robustness against

the loss of inhibition (Fig 3E). The shape of the phase-tuning curves was affected only slightly

even when half of the inhibitory inputs were lost (compare 4 and 8 inputs in Fig 3E). This

observation is confirmed with the modulation depths plotted against the number of inhibitory

inputs (Fig 3F). Amplitude compensation contributed to a flattening of the modulation depth

over 4 inhibitory inputs. Further compensatory effects are demonstrated for the normalized

discriminability D (Fig 3G), whose amount of decrease was less than 10% for Minh� 6 inputs

and less than 25% for Minh� 4 inputs. To sum, when the amplitude compensation mecha-

nisms take place, the binaural tuning curves becomes even more robust to changes of the num-

ber of inhibitory inputs.

Simulating amplitude overcompensation

In the above compensated case, we considered an ideal situation where the total inhibitory

conductance remained unchanged from the default, regardless of how many inhibitory
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synapses were lost. In a real biological system, however, compensatory mechanisms should be

more dynamically regulated, and improper compensation can lead to erroneous percepts [59].

In the auditory system, maladaptive neuronal hyperactivity is suggested to cause tinnitus [60].

In this subsection, we consider an "overcompensated" case in which the amplification of

remaining inhibitory inputs to the LSO model exceeded the total loss of inhibitory conduc-

tance (Fig 4A). The aim of this hypothetical setting is to examine whether the compensation

mechanism needs to be precisely controlled to achieve stable binaural tuning.

Fig 3. Simulated effects of inhibition loss on binaural tuning of LSO with amplitude compensation. A. Schematic drawing of the LSO circuit with a loss of inhibitory

synaptic inputs and potentiation of remaining inputs. Lost inputs are shown by dotted lines and potentiated inputs are indicated by thick lines. B. Simulated ILD-tuning

curves for different numbers of inhibitory inputs. C. (Thin lines) peak (max) and trough (min) rates of the ILD-tuning curves. (Thick solid line) Modulation depth

defined as the difference between maximum and minimum rates. D. Neuronal discriminability of ILD tuning curves averaged over the range between -45 and +15 dB

and normalized to the value for 8 inhibitory inputs. E. Simulated envelope phase-tuning curves at 300 Hz for different numbers of inhibitory inputs. F. (Thin lines) peak

(max) and trough (min) rates of the envelope phase-tuning curves. (Thick solid line) Modulation depth defined as the difference between maximum and minimum rates.

G. Neuronal discriminability of envelope phase-tuning curves averaged over the range between -180 and +180 degrees and normalized to the value for 8 inhibitory

inputs. In panels C, D, F, and G, simulated data for the uncompensated case (same curves as in the corresponding panels in Fig 2) are shown by gray dot-dashed lines for

comparison; the filled circles show the response for the default number of inputs (Minh = 8).

https://doi.org/10.1371/journal.pcbi.1009130.g003

PLOS COMPUTATIONAL BIOLOGY Binaural tuning of LSO is robust against inhibition loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009130 July 9, 2021 12 / 26

https://doi.org/10.1371/journal.pcbi.1009130.g003
https://doi.org/10.1371/journal.pcbi.1009130


The simulated tuning curves in the overcompensated case (Fig 4B and 4E) resembled those

for the compensated case (Fig 3B and 3E). This similarity is confirmed by the modulation

depth plots (Fig 4C and 4F). For 4–12 inhibitory inputs, the dependence of the depth of level

and phase tuning curves on the number of inhibitory inputs was nearly indistinguishable

Fig 4. Simulated effects of inhibition loss on binaural tuning of LSO with amplitude overcompensation. A. Total amount of inhibitory synaptic inputs normalized to

the value for the default (Minh = 8 inputs). In the uncompensated case (gray dot-dashed line; data shown in Fig 2), the total inputs depended linearly on the number of

inputs, while in the compensated case (thin gray line; data shown in Fig 3), the total inputs were kept constant. In the present overcompensation case (solid black line),

the summed inhibitory conductance was a linear decreasing function of the number of inhibitory inputs. Namely, in comparison to the default condition, the LSO

neuron model receives stronger inhibition in total, when the number of inhibitory inputs was reduced. B. Simulated ILD-tuning curves for different numbers of

inhibitory inputs. C. (Thin lines) peak (max) and trough (min) rates of the ILD-tuning curves. (Thick solid line) Modulation depth defined as the difference between

maximum and minimum rates. D. Neuronal discriminability of ILD tuning curves averaged over the range between -45 and +15 dB and normalized to the value for 8

inhibitory inputs. E. Simulated envelope phase-tuning curves at 300 Hz for different numbers of inhibitory inputs. F. (Thin lines) peak (max) and trough (min) rates of

the envelope phase-tuning curves. (Thick solid line) Modulation depth defined as the difference between maximum and minimum rates. G. Neuronal discriminability of

envelope phase-tuning curves averaged over the range between -180 and +180 degrees and normalized to the value for 8 inhibitory inputs. In panels C, D, F, and G,

simulated results for the uncompensated case (gray dot-dashed lines; same data as in the corresponding panels in Fig 2) and for the perfectly compensated case (thin gray

lines; same data as in the corresponding panels in Fig 3) are shown for comparison; the filled circles show the response for the default number of inputs (Minh = 8).

https://doi.org/10.1371/journal.pcbi.1009130.g004

PLOS COMPUTATIONAL BIOLOGY Binaural tuning of LSO is robust against inhibition loss

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009130 July 9, 2021 13 / 26

https://doi.org/10.1371/journal.pcbi.1009130.g004
https://doi.org/10.1371/journal.pcbi.1009130


between these compensatory conditions (solid black and solid gray lines). For Minh = 16

inputs, however, the modulation depth vanishes in the overcompensation case, because of the

input amplitude equals to zero, which can be considered unphysiological (Fig 4A). The nor-

malized discriminability curve for ILD-tuning in the overcompensated case was even shal-

lower than in the compensated case (Fig 4D), suggesting that additional increase of the

remaining inhibition may further contribute to the stability of ILD tuning. In binaural phase-

tuning, however, the normalized discriminability functions for the compensated and overcom-

pensated cases showed very similar trajectories for 3–9 inputs, implying minimal effects of

overcompensation (Fig 4G).

Our simulation results indicate that the fraction of performance reduction is generally

smaller than the amount of inhibition loss, and this reduction in performance is further com-

pressed by amplitude compensation. In one measure (modulation depth for phase difference),

however, (over)compensation did not improve the performance, because the overall rate

increase in the uncompensated case counteracted the decrease of the modulation depth. In

sum, our simulation results suggest that activity-dependent plasticity may effectively counter-

act the age-dependent loss of inhibitory fibers projecting to the LSO, and that this robustness

of binaural tuning does not strongly depend on the exact amount of compensation.

Phase-tuning at different modulation frequencies

Our results in the previous subsections suggest that binaural tuning in LSO is robust against

changes in the number of inhibitory inputs. In the remaining part of Results, we confirm this

conclusion at different simulation settings. In this subsection, we examine the phase-tuning of

the model LSO at two additional modulation frequencies of 150 and 450 Hz (Fig 5). As

observed in previous in vivo measurements [13,61], the trough positions of simulated phase-

tuning curves coincide across different modulation frequencies, while the shapes of tuning

curves may vary (Figs 2E, 5A and 5E). At 150 Hz, the number of inhibitory inputs affects the

trough spiking rate most strongly (Fig 5A). This effect, however, is reduced by the amplitude

compensation (Fig 5B), resulting in a curve of modulation depth that is almost flat around

Minh = 8 inputs (Fig 5C). The normalized discriminability for 150 Hz (Fig 5D) showed a very

similar dependence on the number of inputs as for 300 Hz (Fig 3G).

Phase-tuning curves at 450 Hz (Fig 5E) were shallower than those at 150 or 300 Hz, because

of the combination of weaker phase-locking of input fibers and shorter modulation period.

Such shallower tuning curves were observed both in physiological measurements [13,61] and

in computer simulations [11,41]. At 450 Hz, the number of inhibitory inputs affected not only

the trough rate but also the overall excitability of the model (Fig 5E). Namely, the tuning curve

became higher and narrower as the number of inhibitory inputs decreased (Fig 5G). Ampli-

tude compensation counteracted these changes (Fig 5F), but overall its contribution was subtle

at this high modulation frequency (Fig 5G and 5H). Unlike the example of 150 Hz, the overall

spike rate greatly rises with decreased inhibition, which partly counteracts the reduction of

modulation depth even for the uncompensated case (Fig 5A and 5D). Because of this effect,

the difference between the compensated and the uncompensated cases becomes minimal at

450 Hz. To sum, phase-tuning in LSO is robust against inhibition loss at all modulation fre-

quencies tested (150, 300 and 450 Hz), while the effect of amplitude compensation may be

small at high modulation frequencies.

Binaural tuning simulated with passive IF model

Up to the last subsection, we have used an active IF model, which has a small amount of volt-

age-dependent KLVA conductance. This conductance slightly reduces the maximum spiking
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rate for an ILD-tuning curve by suppressing the accumulating inputs (e.g., [43]), and slightly

enhances the peak of a phase-tuning curve probably through post-inhibitory facilitation [12],

making the model better fit corresponding experimental data than a model without KLVA

conductance [41]. However, the amount of KLVA in the LSO model is only limited, especially

compared to MSO (e.g., [62]), such that the modeled neuron still shows a low-pass filtering

property to subthreshold inputs and tonic spiking to large suprathreshold inputs [41].

To test if the existence of this KLVA conductance affects our conclusion of the robustness

of binaural tuning in LSO, we repeated the same simulations using a passive IF model without

any active conductances (see Materials and methods). Despite some difference in overall spik-

ing rates, both active IF (Fig 2B and 2E) and passive IF (Fig 6A and 6E) model showed very

similar dependence of binaural tuning curves on the number of inhibitory inputs. The effects

of amplitude compensation were also similar between the two models (Figs 3B, 3E, 6B and

6F). With amplitude compensation, the resulting modulation depths (Fig 6C and 6G) and neu-

ronal discriminability (Fig 6D and 6H) were almost unchanged for 6–12 inhibitory inputs in

the passive IF model, closely resembling our observation for the active IF model (Fig 3C, 3D,

3F and 3G). These comparisons indicate that adding some KLVA conductance to make the

modeled outcome realistic does not affect the robustness of binaural tuning against the loss of

inhibition.

Fig 5. Simulated effects of inhibition loss on binaural phase tuning of LSO. A-D. Responses of the model LSO neuron to 150-Hz amplitude-modulated sounds. E-H.

Responses of the model LSO neuron to 450-Hz amplitude-modulated sounds. Panels A, B, E and F present simulated envelope phase-tuning curves for different numbers

of inhibitory inputs either without (A,E) or with (B,F) amplitude compensation. The color code used is the same as in Figs 2–4. Thin lines in C and G show peak (max)

and trough (min) rates of the corresponding phase-tuning curves in B and F, respectively. Thick solid lines in C and G show the modulation depth defined as the

difference between maximum and minimum rates for the compensated case, while gray dot-dashed lines show that for the uncompensated case. D and H present the

neuronal discriminability of envelope phase-tuning curves averaged over the range between -180 and +180 degrees and normalized to the value for 8 inhibitory inputs

either for the compensated case (solid black) or uncompensated case (dot-dashed gray).

https://doi.org/10.1371/journal.pcbi.1009130.g005
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Simulating population coding

In previous subsections, we have investigated possible effects of inhibition loss on binaural

tuning at the single cell level. To test our results also at the population level, we simulated a set

of LSO neurons whose tuning curves had the steepest slope at different ILDs (Fig 7A1–7A5,

black curves), matching the empirical curve distribution in gerbils [56]. For each LSO neuron,

we introduced a mirrored neuron [7,49,57,58] that would encode the ILD of sound sources

located contralaterally to the original LSO (Fig 7A1–7A5, grey curves). We next calculated the

binaural spike rate difference between the original and the mirrored neuron (Fig 7B1–7B5).

From this rate difference, we then computed the neuronal discriminability D of each LSO pair

(Fig 7C1–7C5). When the original ILD-tuning curve is steepest near zero ILD, the resulting

discriminability function becomes unimodal (panels C3 and C4). In contrast, when the

dynamic ranges of the two mirrored ILD-tuning curves do not overlap, the discriminability

function is bimodal (panels C1, C2, and C5) [49]. In both cases, a loss of inhibitory inputs gen-

erally reduces the discriminability for all LSO pairs, while the overall shape of each curve is

roughly preserved (Fig 7C1–7C5, colored lines).

By averaging the discriminability functions across neuron pairs with different midpoint

locations, we obtained the population-averaged discriminability for our set of LSO neurons.

The curve for the population-averaged discriminability was unimodal but notably flat in the

range of ±10 dB (Fig 7D), because of the averaging of unimodal and bimodal curves whose

Fig 6. Simulated effects of inhibition loss on binaural tuning of LSO modeled with a passive IF model. A-D. Simulated ILD-tuning. E-H. Simulated envelope phase-

tuning at 300 Hz. Panels A, B, E and F present simulated binaural ILD- or phase-tuning curves for different numbers of inhibitory inputs either without (A,E) or with (B,

F) amplitude compensation. The color code used is the same as in Figs 2–4. Thin lines in C and G show peak (max) and trough (min) rates of the corresponding binaural

tuning curves in B and F, respectively. Thick solid lines in C and G show the modulation depth defined as the difference between maximum and minimum rates for the

compensated case, while gray dot-dashed lines show that for the uncompensated case. Panel D presents neuronal discriminability of ILD tuning curves averaged over the

range between -45 and +15 dB and normalized to the value for 8 inhibitory inputs. Panel H presents the neuronal discriminability of binaural tuning curves averaged

over the range between -180 and +180 degrees and normalized to the value for 8 inhibitory inputs. In D and H, solid black lines indicate the compensated case, while gray

dash-dotted lines indicate the uncompensated case.

https://doi.org/10.1371/journal.pcbi.1009130.g006
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Fig 7. Simulated effect of inhibition loss on LSO population coding. A1-A5. Simulated ILD-tuning curves with varied midpoint locations (black) and their mirrored

images (gray). Bars indicate the standard deviation of the spiking rate for repeated 500-ms stimulations. B1-B5. Bilateral spike rate differences, defined as the rate

difference of each LSO pair (i.e., original and mirrored). C1-C5. Neuronal discriminability functions calculated from the bilateral spike rate differences. D. Population

average of the neuronal discriminability functions, plotted for different number of inhibitory inputs without amplitude compensation. E. Population average of the

neuronal discriminability functions, plotted for different number of inhibitory inputs with amplitude compensation. F. Population-averaged discriminability that was

further averaged over the ILD range between -35 and +35 dB and normalized to the value for 8 inhibitory inputs.

https://doi.org/10.1371/journal.pcbi.1009130.g007
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peaks are located at different positions. The high discriminability around zero ILD seems to

correspond to the good sound localization precision near the midline reported in behavioral

studies (e.g., [63]). We calculated the population-averaged discriminability with reduced num-

bers of inhibitory inputs with and without amplitude compensation (Fig 7D and 7E). In both

cases, loss of inhibition reduces the discriminability without altering the shape of the curves.

To examine the effect of amplitude compensation, we further averaged the population

discriminability function in the range of ±35 dB and normalized it to the value for the default

condition of 8 inhibitory inputs (Fig 7F). The resulting curve for the normalized population

discriminability closely resembled the discriminability function of a single neuron (Fig 3D),

confirming the conclusions that the simulated ILD-tuning functions are generally robust to a

loss of inhibition and that robustness might be further boosted by amplitude compensation.

Discussion

Simulating age-related loss of inhibition in LSO

Age-related hearing loss is related to various types of cognitive decline in both lab animals and

humans [64]. However, underlying neuronal mechanisms causing perceptual and cognitive

deficiencies still remain to be uncovered. Whereas the ability of sound localization in elderly

subjects is generally degraded compared to young subjects [14,17,18,19], the degree of hearing

loss itself is not a good predictor of localization performance [16], suggesting complex com-

pensatory processes existing in the central auditory system. Along the auditory pathways of

aged animals, loss of inhibitory transmissions is commonly observed [20,21]. In the present

study, we used a binaural brainstem neuron model and investigated how its function is

affected by a loss of inhibition.

Our simulations showed that the binaural tuning performances of the model neuron, which

were measured by the modulation depth or the neuronal discriminability function, were

reduced by up to 15% when a quarter of inhibitory inputs were eliminated (Fig 2). We then

increased the amplitude of remaining inhibitory synaptic inputs to simulate compensatory

effects against the loss of input fibers. With this input compensation, percentage of reduction

in binaural tuning performances was suppressed to 10–25%, even when the number of inhibi-

tory inputs was halved (Fig 3). These results indicate that binaural tuning of the LSO neuron is

generally robust to moderate amount of inhibition loss, and that this robustness can further be

enhanced by a recovery mechanism to counteract a more severe inhibition loss, possibly

depending on a frequency-dependent manner (Fig 5). The relative paucity of physiological

changes observed in aged LSO [24,26] might be explained by this robustness of binaural tun-

ing. In order to test this hypothesis, future single-cell recordings in combination with histolog-

ical counting of the numbers of synapses on the same cells will be required.

Existence of activity-dependent plasticity in the auditory brainstem was reported in the last

decade [38,39]. And such plasticity may occur also in the population level to adjust the neuro-

nal outputs of LSO neurons according to the input stimulus statistics [65]. Adaptive changes

to stimulus statistics were also found in the midbrain inferior colliculus and are suggested to

be a mechanism of robust binaural perception [66]. Whereas various types of homeostatic

plasticity may exist in the real system on both cellular and network levels [33,34,35], we

adopted a very simplistic form of compensation, in which all remaining synaptic inputs were

uniformly amplified to keep the total synaptic conductance unchanged from the default

(healthy) state. Furthermore, our simulation results in the overcompensated case (Fig 4) dif-

fered only slightly from the compensated case (Fig 3), suggesting that the exact amount of

amplitude compensation may not have to be precisely controlled. Since these simple compen-

satory mechanisms were found effective in counteracting the loss of inhibitory inputs, we
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expect that more sophisticated forms of activity-dependent plasticity would render even fur-

ther robustness to binaural tuning in the aging LSO. In young animals, the cell body and proxi-

mal dendrite of an LSO neuron are covered primarily by inhibitory terminals, while excitatory

synapses are located more distally [1,67]. It would be a topic of future experimental and model-

ing studies how the distributions of synaptic location may or may not change with aging and

how such morphological alterations may affect binaural coding.

Degradation of temporal properties

In this study, we focused solely on the reduction of inhibitory synaptic inputs, assuming that

the excitatory inputs were not significantly altered in the old LSO. This assumption needs to

be tested in future anatomical and physiological studies. Experiments in human subjects using

earplugs suggested the existence of subcortical auditory gain control mechanisms [68]. Animal

studies also found an increased neuronal activity after noise damage in the cochlear nucleus

(reviewed in [60]). These results imply that not only inhibitory inputs but also excitatory

inputs might be homeostatically adjusted during aging. In aged animals including humans, the

number of auditory nerve fibers is generally reduced [69,70]. The temporal precision of

remaining fibers, however, does not differ from young animals [71]. Endbulb synapses

between auditory nerve fibers and bushy cells in mice show compensatory adjustment of

transmitter release (reviewed by [40]), which may contribute to the preservation of excitatory

input to LSO. In the present study, we did not examine the effects of increasing temporal jitter

in aged animals, since there are no physiological data currently available that can be used for

calibrating or testing the modeled outcome. Reliability of spike timing is more likely to affect

phase coding than level coding, as binaural phase-tuning in LSO requires temporally precise

interaction of excitatory and inhibitory inputs [11]. Consistent with this hypothesis, ILD sensi-

tivity both in behavior and in auditory midbrain neurons is robust to complete decorrelation

of sound stimuli at the two ears [57]. Increase in temporal jitter degrades the synchrony of syn-

aptic inputs, which would lead to a reduction of the modulation depth of phase-tuning curves

(as demonstrated in [72], albeit in a different system). Influences of temporally imprecise

inputs should be examined physiologically in the future, as there were no published recording

results from the aged LSO that used dichotic AM sounds.

As reviewed in the Introduction, aging often leads to a reduction of the binaural interaction

component (BIC) of the ABR, which is presumed to reflect the reduced efficacy of inhibition

in LSO [30,32]. Our population modeling results, however, showed only minor changes in bin-

aural ILD-tuning with reduced inhibition (Fig 7). This discrepancy might be explained by the

required temporal precision of spiking responses. ILD-tuning depends predominantly on the

spike rate differences of bilateral excitatory and inhibitory inputs, but not on the precise tim-

ings of these inputs. In contrast, prominent peaks in the ABR are likely to originate from the

time-locked activity of many neurons, possibly including those responding only at the onset of

sustained tonal stimulation [46]. We did not include such onset neurons in the present study

due to the paucity of relevant physiological data for modeling. Nevertheless, we expect that

BICs (as well as binaural phase coding) are probably more vulnerable to a reduced temporal

fidelity of input neurons than ILD coding. This hypothesis is a subject of future physiological

studies in both onset (principal) and sustained (non-principal) neurons of young and aged ani-

mals examined with transient stimuli, such as AM sounds and clicks (for a recent review, see

[73]).

Previous behavioral studies demonstrated that aged human subjects show more difficulties

in sound lateralization tasks relying on interaural time disparities than in those using level
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differences [74,75]. Our results suggested, however, that simulated tuning of phase difference

is slightly more robust against the loss of inhibition than level difference tuning (e.g., Fig 2D

and 2G). This discrepancy may be due to the difference in sound stimuli. We focused on the

sustained responses of LSO neurons, while the above-mentioned behavioral studies used click

trains that are highly transient in time. Furthermore, age-related functional changes in the

medial superior olive, which is responsible for the detection of interaural time difference in the

temporal fine structure of low frequency sounds [1,2], may also contribute to the altered bin-

aural perception in elderly subjects (see [16] for related discussions).

Sources of age-related degradation in binaural perception

Measurements of monaural and binaural ABRs suggest a general reduction of synchronized

neuronal activity along the auditory pathways in aged animals [32]. Comparative studies of

rodents, however, revealed that types and degrees of age-related changes in the auditory system

may largely depend on animal species [76]. Even within the same species, the degree of age-

related neuronal loss in MNTB can be different between genetic strains (e.g., more than 30%

in Sprague-Dawley rats vs. less than 10% in Fisher-344 rats) [22,25]. Furthermore, only rela-

tively recently was the existence of MNTB in humans conclusively confirmed [77]. It is

unknown how much MNTB neurons are lost in elderly people and what kind of functional

changes may occur in their binaural brainstem circuits.

Based on anatomical measurements in cats [78], we assumed that inputs to LSO (and MSO)

from spherical and globular bushy cells in the anteroventral cochlear nucleus are driven pri-

marily by high spontaneous rate auditory nerve fibers. In gerbils, age-related loss of high-

threshold, low-spontaneous rate auditory nerve fibers was also observed [79]. Recent evidence

in aged mice suggests that changes of low- and medium-spontaneous rate fibers may impact

bushy cells’ function [80]. Furthermore, spiking activity of a bushy cell is modulated by inhibi-

tory inputs [81,82] from several sources including D-stellate cells in the anteroventral cochlear

nucleus [83], whose synaptic inputs were found to degrade with aging [84]. Activity-dependent

adjustment of synaptic inputs may also occur at the level of bushy cells.

We used modulation depths and neuronal discriminability functions to estimate the perfor-

mance of binaural processing in the model LSO. While these measures are supposed to reflect

the encoding properties of LSO neurons, it is still unknown how the outputs of LSO neurons

and other brainstem nuclei are combined in higher auditory areas that "decode" the binaural

information to form the perception of sounds (see discussions in [7,85,86]). In our population

modeling approach, we simply used the rate differences of mirrored LSO neuron pairs and

averaged the corresponding discriminability functions within the simulated population

(Fig 7). While the detailed decoding mechanisms in the downstream stages beyond LSO

remain largely unknown, the use of discriminability allows us to compare theoretical bounds

of precision for estimating the binaural cues [51]. This population averaging could be related

to the integration of ILD cues in the midbrain [49,57]. Metrics such as marginal Fisher Infor-

mation (e.g., [87]) might be used to examine which stimulus dimensions can no longer be

encoded by single or populations of neurons in aged animals.

In our comparisons across different number of inhibitory inputs, we took a population

average of the discriminability and normalized it to the default condition (Fig 7). This average/

normalization procedure was used to eliminate the effects of the population size and other fac-

tors, such as the recording time length, that affect the trial-to-trial variability in spike rates.

Currently there are no behavioral or neurophysiological data available that can be compared

directly with our simulated population discriminability. In a future comparison between
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theoretical and experimental data, unnormalized discriminability could also be used for exam-

ining the actual amount of trial-to-trial variability and the robustness of binaural coding in the

real system. Our population modeling assumed symmetric changes in the LSO of both sides,

whereas hearing loss of a various extent can often happen asymmetrically between the two ears

[88]. To more rigorously characterize the effects of age-related loss of synaptic inputs at the

brainstem level, further experimental knowledge on physiological functions of the decoding

stages will be important.

In combination with prior physiological observations [24,26], our computational results

suggest that the main source of age-related decline in binaural perception may originate from

higher auditory stages than LSO. In the midbrain inferior colliculus, which are projected

directly and indirectly from the binaural nuclei in the brainstem [2], many fundamental

response properties remain relatively unaffected during aging, while the representation of

external acoustic environment is deteriorated possibly due to the decrease of temporal process-

ing fidelity (reviewed in [89]). Neurons in the midbrain superior colliculus, which receives

inputs both from the inferior colliculus and from the visual system, present degraded auditory

spatial selectivity in aged guinea pigs [90] and aged rats [91]. Auditory cortical neurons in aged

monkeys also present broader spatial tuning than in young monkeys, which is probably associ-

ated to age-related reduction of inhibitory inputs [92]. Contribution of higher auditory stages

is supported also by the observation that binaural discrimination performance in aged subjects

is associated with cognitive performance [93]. Future systematic comparisons across auditory

areas will thus be necessary for identifying the relative contribution of each stage along the

entire central auditory pathway to the age-related decline of binaural perception.
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