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Time series classification (TSC) is a pervasive and transversal problem in various fields
ranging from disease diagnosis to anomaly detection in finance. Unfortunately, the most
effective models used by Artificial Intelligence (AI) systems for TSC are not interpretable and
hide the logic of the decision process, making them unusable in sensitive domains. Recent
research is focusing on explanation methods to pair with the obscure classifier to recover
this weakness. However, a TSC approach that is transparent by design and is
simultaneously efficient and effective is even more preferable. To this aim, we propose
an interpretable TSC method based on the patterns, which is possible to extract from the
Matrix Profile (MP) of the time series in the training set. A smart design of the classification
procedure allows obtaining an efficient and effective transparent classifier modeled as a
decision tree that expresses the reasons for the classification as the presence of
discriminative subsequences. Quantitative and qualitative experimentation shows that
the proposed method overcomes the state-of-the-art interpretable approaches.

Keywords: interpretable machine learning, explainable artificial intelligence, time series classification, time-series
pattern discovery, shapelet-based decision tree, transparent classifier

1 INTRODUCTION

Time series classifiers are more and more often fundamental in a variety of important applications
ranging from the identification of stock market anomalies to the automated detection of heart
diseases (Bagnall et al., 2017). These tasks are automatized in Artificial Intelligence (AI) systems
equipped with machine learning models and are adopted to support humans in sensitive decision-
making processes. In the literature, there are various types of time series classifiers. In particular, the
advent of deep architectures such as Convolutional (LeCun and Bengio, 1995) and Residual (He
et al., 2015) Neural Networks has brought significant advantages in terms of accuracy and resistance
to noise. Indeed, the best time series classifiers are proved to be Deep Neural Networks (DNNs) or
ensemble-based classifiers (Ismail Fawaz et al., 2019). The drawback of these models lies in their
complexity that makes them “black boxes” (Freitas, 2014) and causes the noninterpretability of the
internal decision process for humans (Doshi-Velez and Kim, 2017). However, when important
decisions, such as in clinical diagnosis, have to be taken, the interpretability aspect of AI performing
Time Series Classification (TSC) becomes the crucial building block of a trustworthy interaction
between the machine and the human expert. Therefore, only meaningful and interpretable TSC
models can augment the cognitive ability of human experts, such as medical doctors, to make
informed and accurate decisions (Pedreschi et al., 2019).

Recent research is focusing on developing explanation methods to pair with obscure time series
classifiers adopted in AI systems (Schlegel et al., 2019; Guidotti et al., 2020). However, a TSC
approach that is intrinsically interpretable and is simultaneously efficient and effective will be even
more preferable because it is the whole model that results in being transparent by design (Guidotti

Edited by:
Gabriele Tolomei,

Sapienza University of Rome, Italy

Reviewed by:
Stan Matwin,

Dalhousie University, Canada
Fabio Aurelio D’Asaro,
University of Milan, Italy

*Correspondence:
Riccardo Guidotti

riccardo.guidotti@unipi.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 23 April 2021
Accepted: 20 September 2021

Published: 20 October 2021

Citation:
Guidotti R and D’Onofrio M (2021)
Matrix Profile-Based Interpretable

Time Series Classifier.
Front. Artif. Intell. 4:699448.

doi: 10.3389/frai.2021.699448

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6994481

ORIGINAL RESEARCH
published: 20 October 2021

doi: 10.3389/frai.2021.699448

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.699448&domain=pdf&date_stamp=2021-10-20
https://www.frontiersin.org/articles/10.3389/frai.2021.699448/full
https://www.frontiersin.org/articles/10.3389/frai.2021.699448/full
http://creativecommons.org/licenses/by/4.0/
mailto:riccardo.guidotti@unipi.it
https://doi.org/10.3389/frai.2021.699448
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.699448


et al., 2018) and does not require a subsequent explanation
module that can be subject to errors or additional bias (Rudin,
2019). The idea is to aim for a classification model that would
resemble the human way of thinking such that, as humans, we can
entirely accept and trust the decision process automatically
derived from machine learning algorithms. Indeed, for time
series, there exists a line of research exploring interpretable time
series classifiers based on shapelets (Ye and Keogh, 2009).
Shapelet decision trees (Ye and Keogh, 2009) and shapelet
transforms (Lines et al., 2012) extract the shapelets from the
time series of the training set by selecting the subsequences with
high discriminatory power and exploit them for the
classification process. In Grabocka et al. (2014). an approach
is proposed that extracts shapelet trees by solving an
optimization problem. The weakness of these methods is that
they are generally not very accurate or not sufficiently efficient
because they require a large time to extract the shapelets and to
train the classification model.

In this paper, we designMAPIC, aMatrix Profile- (MP-) based
interpretable time series classifier. MAPIC is an interpretable
model for TSC able to guarantee a high level of accuracy and
efficiency while maintaining the classification and the
classification model interpretable. To this aim, in the design
of MAPIC, we follow the line of research based on shapelets.
However, we replace the inefficient approaches adopted in the
state of the art for the search of the most discriminative
subsequences with the patterns that are possible to extract
from a model named Matrix Profile (MP) (Yeh et al., 2016;
Dau and Keogh, 2017; Mueen and Keogh, 2017). In short, the
Matrix Profile represents the distances between all
subsequences and their nearest neighbors. A MP is possible
to efficiently extract some patterns characterizing a time series
such as motifs and discords. Motifs are subsequences of a time
series which are very similar to each other, while discords are
subsequences of a time series which are very different from any
other subsequence. As a classification model, MAPIC adopts a
Decision Tree Classifier (dtc) (Quinlan, 2014) due to its
intrinsic interpretability. Indeed, it is widely recognized that
rule-based classifiers expressing the reasons for decisions in a
logic form are among the most interpretable models (Doshi-
Velez and Kim, 2017). However, we modified the learning of the
decision tree in order to refine and reduce the search space for
the best shapelet by (i) searching for the best shapelet for the
split only among the motifs and discords of the time series
present in the node being analyzed and (ii) only among k
representative motifs and discords of these time series. We
present experimentation on seventeen datasets of univariate
time series with different dimensions, and we compare MAPIC
against state-of-the-art interpretable classifiers based on
shapelets and decision trees. We empirically demonstrate
that MAPIC overtakes existing approaches having similar
interpretability in terms of both accuracy and running time.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 formalizes the problem
faced and introduces basic concepts for the proposed
interpretable classification model which is described in Section
4. Section 5 presents the experiments. Finally, Section 6

summarizes our contribution, its limitations, and future
research directions.

2 RELATED WORK

Given the need to accurately classify time series, researchers have
proposed hundreds ofmethods to solve the TSC task (Bagnall et al.,
2017). One of the most popular TSC approaches is the k-Nearest
Neighbor (kNN) coupled with a distance function (Ismail Fawaz
et al., 2019). The Dynamic Time Warping (DTW) distance has
been shown to be a very strong baseline. Instance-based classifiers
such as kNN can be considered interpretable classifiers. Indeed, one
can adopt as an explanation the neighbors considered for
distinguishing the class as for the prototypes and
counterfactuals (Dhurandhar et al., 2018; Guidotti et al., 2019).
The issues that can arise are the following. First, the inspection of
the time series in the neighborhood could not sufficiently justify the
classification and could be nontrivial when the neighborhood is
large. Second, in case of large datasets, the kNN can be impractical
to use in real applications, especially with the DTW. Third, an
approach based on distances can have a partial vision of the TSC
problem and have upper limits in the accuracy that can be reached.

Thus, recent contributions have focused on developing
methods that outperform the kNN-DTW. In Lines and
Bagnall (2015), COTE is shown, an ensemble of kNN
classifiers with different distance functions that
outperforms all the ensemble’s individual components.
These approaches use either a Random Forest (Baydogan
et al., 2013) or an ensemble of different types of classifiers
on one or several feature spaces (Bagnall et al., 2015). These
approaches significantly outperform the kNN-DTW (Bagnall
et al., 2017) and share one common property, which is the
data transformation where time series is transformed, for
example, using shapelets (Bostrom and Bagnall, 2015) or
SAX (Lin et al., 2003). In Lines et al. (2018). COTE is
extended with a Hierarchical Vote system (HIVE-COTE)
by leveraging a new hierarchical structure with
probabilistic voting. HIVE-COTE is currently considered
the nondeep learning state-of-the-art method for TSC
(Bagnall et al., 2017). The increase in accuracy of these
methods has simultaneously brought a further increase of
the computational complexity (Ismail Fawaz et al., 2019) and
a lack of interpretability due to the ensemble and the voting
schemes (Guidotti et al., 2018).

The advent of deep architectures (LeCun and Bengio, 1995; He
et al., 2015) has brought significant advantages in terms of
accuracy and resistance to noise also for the TSC problem
(Wang et al., 2017). In Ismail Fawaz et al. (2019), it is shown
how DNNs are able to significantly outperform the kNN-DTW
but are also able to achieve results that are not significantly
different from COTE and HIVE-COTE. Although DNNs are
more efficient at test time with respect to ensembles or to the
kNN-DTW, the classification process of DNNs is not directly
interpretable.

Another line of research on TSC explores interpretable
methods based on shapelets (Ye and Keogh, 2009). Shapelet

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6994482

Guidotti and D’Onofrio Matrix Profile-Based Time Series Classifier

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


decision trees (Ye and Keogh, 2009) and shapelet transforms
(Lines et al., 2012) extract the shapelets from the time series of the
training set by selecting the subsequences with high
discriminatory power and exploit them for the classification.
In Grabocka et al. (2014). shapelets are learned, such that time
series represented in their shapelet-transform space, i.e., their
distances to each of the shapelets, are linearly separable. After
that, the time series are represented as distances to shapelets, and
any interpretable classifier such as decision trees or logistic
regressors (Guidotti et al., 2018) can be used for the
classification, also guaranteeing an explanation for the
decision. These approaches are generally inefficient in finding
the best shapelets and sometimes lack also in terms of accuracy.
Reasons for possible inefficiencies of shapelets are discussed in
detail in the following sections.

We advance the state of the art by proposing an interpretable
method for TSC based on shapelets that reveal the decision
process that is accurate and efficient.

3 SETTING THE STAGE

Before presenting MAPIC, we go through some formal
definitions for TSC and recall basic notions and key
definitions necessary to comprehend the proposed method.

3.1 Problem Definition
DEFINITION 3.1 (Time series) A univariate time series x � 〈x1, x2,
. . . , xm〉 is an ordered set of real values. The length of x is equal to
the number of real values |x| � m.

DEFINITION 3.2 (TSC) A dataset D � {(x(1), y(1)), . . ., (x(n), y(n))}
is a collection of pairs (x(i), y(i))where x(i) is a univariate time series
with y(i) as its corresponding class label. For a dataset containing c
classes, y(i) can take c different values. TSC consists of training a
classifier f on a dataset D in order to map from the space of possible
inputs to the space of possible classes.

Our goal is to define a function f that is intrinsically
transparent (Guidotti et al., 2018); i.e., it is humanly possible
to understand the reasons for the decision process f(x) � y.
Obviously, the interpretation is also highly dependent on the
application and on the background of the user. Perhaps the
average user can get some intuition related to the
classification, while expert users can get the full picture. For
instance, we can think of patients and doctors with respect to
ECG analysis. In line with the literature (Ismail Fawaz et al.,
2019), we assume that the time series in a dataset D have
timestamps at the same sampling rate and are properly
normalized such that geometric distances can be meaningfully
calculated among them.

3.2 Shapelets
Shapelets are discriminative subsequences of time series that best
predict the target class value (Ye and Keogh, 2009; Grabocka
et al., 2014).

DEFINITION 3.3 (Time series subsequence) A time series
subsequence (subsequence in short), of length l is an ordered
subpart of a time series. A subsequence starting at time j inside

the time series x is defined as xj,l � 〈xj, . . . , xj+l−1〉. Thus, given a
time series x of length m, there are q �m − l + 1 subsequences in x
provided the starting index of a sliding window of length l is
incremented by one.

DEFINITION 3.4 (Shapelets)Given a TSC dataset D, a shapelet s is
a subsequence of length l, with l < m where m is the length of the
time series in D that maximizes the Information Gain when
splitting D according to the distance between s and the time
series in D with its corresponding optimal split point.

In detail, the Information Gain is calculated as the difference
between the entropy of the classes of the time series in D keeping
D together or splitting it into two (or more) partitions. The
optimal split point is the best distance threshold separating two
partitions of time series to maximize the Information Gain.
Further details can be found in (Ye and Keogh, 2009). In
brief, a shapelet s is a subsequence of length l such that given
a time series x, the distance of s from x can be used to infer how to
discriminate the target class of a dataset D.

DEFINITION 3.5 (Shapelets distance) The distance between a
times series x and a shapelet s is defined as the minimum distance
dist (x, s) among the distances between s and each subsequence in
x. In other words, it is the distance of a shapelet to the most similar
subsequence:

dist(x, s) � min
j�1,...,q

1
l
∑
l

i�1
xj+i−1 − si( )2

where q � m − l + 1.
DEFINITION 3.6 (Shapelet transformation) Given a set of k

shapelets S and a set of n time series X, the shapelet
transformation of X ∈ Rn×m into X̂ ∈ Rn×k is defined as the
application of the distance dist (x, s) between all the time series
X with all the shapelets S.

In other words, every feature in X̂ represents the minimum
distance of a time series from a shapelet, which in turn is a
subsequence with high discriminatory power. Therefore, a
shapelet highlights the subparts of a time series that
characterizes a specific class. In Hills et al. (2014). it is shown
how general-purpose classifiers achieve high prediction accuracy
over the shapelet transformation X̂.

3.3 Matrix Profile
AMatrix Profile is a data mining model that is possible to extract
on a single time series (Yeh et al., 2016). In short, it represents the
distances between all subsequences existing in a time series given
certain sliding window size and their nearest neighbors in the
same series.

DEFINITION 3.7 (All-subsequences set) An all-subsequences set A
of a time series x is an ordered set of all possible subsequences of x
obtained by sliding a window of length l across x: A � {x1,l, . . . ,
xq,l}, where l is a user-defined subsequence length and q �m − l + 1.

DEFINITION 3.8 (Distance profile) The distance profile Pz of a
time series x for a query subsequence z is a vector of the distances
from z and each subsequence in A of x:

Pz � 〈p1, . . . , pq〉s.t.pj � 1
l
∑
l

i�1
xj+i−1 − zi( )2 ∀j � 1, . . . , q
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where q � m − l + 1.
DEFINITION 3.9 (Matrix Profile) The matrix profile M of a time

series x is a vector where the j-th value mj represents the distance
between the subsequence xj,l and the closest subsequence to xj,l in x
different from xj,l, i.e., the minimum distance in Pxj,l without
considering xi,j aligned with itself at position j:

M � 〈m1, . . . , mq〉s.t. mj � min Px
j′ ,l

| ∀j′ � 1, . . . , q∧j′ ≠ j{ } ∀j

� 1, . . . , q

where q � m − l + 1.
We highlight that we assume that all the subsequences have

length l. However, theoretically, multiple MP with different
lengths can be extracted and considered. We leave it as
future work.

A MP can be considered as a meta time series with various
interesting properties. The minimum values in a MP correspond
to the locations of the best time series motif pair (Mueen et al.,
2009). Motifs are subsequences of a time series that are very
similar to each other. On the other hand, the maximum values in
a MP correspond to discords (Chandola et al., 2009),
i.e., subsequences of a time series that are very different from
any other subsequence.

4 MATRIX PROFILE-BASED
INTERPRETABLE CLASSIFIER

MAPIC is a Matrix Profile-based interpretable time series classifier.
The main intuition behindMAPIC is the following. First, to find the
best shapelets, MAPIC exploits the Matrix Profiles extracted from
the time series of the training set instead of using a brute force
approach (Ye and Keogh, 2009) or an optimized search (Grabocka
et al., 2014). As candidate shapelets, MAPIC adopts the motifs and
discords that are possible to retrieve from theMatrix Profiles of each
time series. Second, differently from traditional approaches that
learn machine learning models for TSC directly on all the shapelet
transformation (Grabocka et al., 2014),MAPIC builds a decision tree
by refining at each split the set of candidate shapelets that better
represent the times series in the current split. Algorithms 1, 2
illustrate the pseudocode of MAPIC. Details are in the following.

4.1 Matrix Profile Extraction
MAPIC takes as input the time series training set D � {X, Y}, the
sliding window size l, the number of shapelets h, the number of

medoids k, and the maximum depth of the tree max_depth and
returns as output a time series classifier f: Xm → [0, c − 1] in the
form of dtc. MAPIC starts by initializing two empty sets of
candidate shapelets (line 1, Algorithm 1): S(m) collects the
motifs, while S(d) collects the discords. Then, for each time
series in the training set X, MAPIC extracts the Matrix Profile
M using a sliding window size l and fromM retrieves hmotifs and
h discords (lines 2–6, Algorithm 1). After that, it joins S(m) and
S(d) in the set of all the possible candidate shapelets S and starts
the construction of the decision tree based on Matrix Profile and
shapelets (lines 7–8, Algorithm 1). Finally, it returns f.

4.2 Tree Construction
As a classification model, MAPIC adopts dtc (Quinlan, 2014). It is
worth mentioning the existence of other approaches based on
inductive logic programming such as those presented in (Law
et al., 2021) and (D’Asaro et al., 2020) which, in some context,
can be more accurate and transparent than decision trees. However,
amongmachine learning approaches, we decided to adopt a decision
tree due to its intrinsic interpretability (Breiman et al., 1984; Craven
and Shavlik, 1995) that allows us to reason both “factually,” deriving
the reasons why a certain decision is taken, and “counterfactually,”
observing what should have been dissimilar to reach a different
outcome (Guidotti et al., 2019). Besides, it is widely recognized that
machine learning rule-based classifiers are among the most
interpretable models (Doshi-Velez and Kim, 2017).

The buildNode function, illustrated in Algorithm 2, is called
recursively byMAPIC to build the dtc. The recursion ends when the
depth of the tree is higher than max_depth (line 1, Algorithm 2) or
other classic stopping conditions, not reported here for the sake of
simplicity, are met. In this case, a leaf is returned indicating the
majority class among the instances y(i) ∈ Y in the current split (lines
2–3,Algorithm 2). The 1y(i)�j operator returns 1 when the i-th time
series is of class j. The argmax reveals the majority class.

In line five of Algorithm 2, MAPIC selects with the
selectShapelets function k shapelets to represent the dataset D
among those in the current set of candidate shapelets S (if |S| > k).
This selection allows considerably reducing the search space for
the best shapelets from |S| to k with k ≪|S| and avoiding useless
calculations. Indeed, a preliminary empirical study has shown
that many of the candidate shapelets obtained from motifs and
discords of the Matrix Profile are quite similar to each other.

Algorithm 1 | MAPIC (D, l, h, k, max_depth)

Algorithm 2 | buildNode (D, S, h, k, max_depth, cur_depth)
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Thus, it is not necessary to consider all of them. This similarity is
even stronger if we only consider the motifs and discords of the
shapelets in the current split1. We implement the selectShapelets
function through the K-medoids algorithm (Schubert and
Rousseeuw, 2019). K-medoids is a variant of K-means (Lloyd,
1982) where medoids are used instead of centroids. While a
centroid is obtained as the average of the features’ values, a
medoid is an instance in a cluster that minimizes the distance
with all the other instances in the same cluster. We preferred
K-medoids to K-means because the medoids selected as most
representative shapelets candidates are indeed real subsequences,
i.e., motifs or discords in S, and not the result of an aggregation
that could also be not representative. We indicate with S(k) the set
of k shapelets selected by K-medoids. After that, MAPIC
calculates the shapelets transformation X̂ on the most
representative shapelets S(k) and then finds the best split (lines
6-7 of Algorithm 2) using the findBestSplit function. In line with
classic algorithms for the induction of decision trees such as ID3
(Quinlan, 1986) and C4.5 (Quinlan, 2014), the findBestSplit
function finds the best split among the k continuous attributes
adopting the entropy (Shannon, 1948) as impurity measure. The
pair j, thr models, respectively, the index j of the shapelet in the
shapelets transformation X̂ and the threshold value thr that better
separates the labels Y between two different classes. In other
words, the lowest level of impurity for the dataset D with respect
to the shapelets S(k) is reached when separating the times series xi
∈ X having a distance from the j-the shapelet in S(k) (namely, s(k)j )
lower than or equal to thr, i.e., X̂ij � dist(xi, s

(k)
j )≤ thr from the

times series xi ∈ X having a distance higher than thr,
i.e., X̂ij � dist(xi, s

(k)
j )> thr. Therefore, MAPIC splits the

dataset D and the candidate shapelets S into the disjoint sets Dl,
Sl and Dr, Sr respecting the aforementioned conditions for building
the left and right subtrees, respectively (lines 8–9 Algorithm 2).
The recursion takes place in recursively building the left and right
subtrees fl, fr in the left and right partitioningDl, Sl, andDr, Sr (lines
10–11 Alg. 2). Finally, in line 12 Alg. 2, an internal node of the tree
is built and returned. It includes the best shapelet s(k)j for the
current split, the distance threshold thr, and the left and right
subtrees fl, fr.

As already mentioned, we stress that decision trees
traditionally trained on shapelets transformation consider the
same set of shapelets at every iteration. Thus, the training
procedure is conditioned from the initial search of the
shapelets. On the other hand, MAPIC considers as candidate
shapelets for every split only the motifs and discords of the time
series belonging to the current split. This allows for a locally
refined search of the best shapelet that, as shown in the
experimental section, markedly improves the performance.

4.3 Prediction Procedure
At prediction time, the MAPIC classification function f takes as
input the time series x ∈ Rm and returns the label y � f(10)

according to the following procedure. It starts from the root of the
tree and calculates the shapelet transformation w.r.t. the shapelet
s in the root node, i.e., dist (x, sroot). If dist (x, sroot) ≤ thrroot, then
the classification is repeated on the left subtree classification
function fl, otherwise, on the right subtree classification
function fr. The prediction procedure terminates when a leaf is
reached and the label y in the class is returned as a final outcome.

4.4 Computational Complexity
We conclude this section by analyzing the complexity of MAPIC
and how the usage of the Matrix Profile and of K-medoids is
helpful in reducing the overall complexity. In order to better
analyze the computational complexity of the proposed method
and to compare it with those of the approaches in the literature
(Ye and Keogh, 2009; Grabocka et al., 2014), we decompose our
reasoning into different phases: (i) shapelets extraction, (ii) tree
construction, (iii) shapelets transformation, and (iv) TSC.
Depending on the method, considered different phases take
place at training or at prediction time. We recall that, in our
notation, n indicates the number of time series, m is the time
series length, l is the sliding window size, k is the number of
shapelets extracted, and h is the number of motifs/discords. We
indicate with depth the depth of the decision tree and with iter the
number of iterations of a certain procedure.

Independently from the algorithm adopted, the shapelet
extraction is the step with the highest computational complexity
among the various phases. Since the size of a candidate set isO (n ·
m2), the brute force (bf) method which exhaustively tries
candidates from series segments (Ye and Keogh, 2009; Lines
et al., 2012) takes O (n · m) to check the utility of one
candidate results in a complexity of O (n2 · m3). On the other
hand, the approach proposed in (Grabocka et al., 2014) (opt)
requires O (n · m2 ·iter). With respect to MAPIC, the brute force
procedure for the extraction of a Matrix Profile requires O (m2 · l).
However, according to (Yeh et al., 2016), when possible, we adopt
the STOMP algorithm which requires O (m2 · log(m)) that
empirically results to be O (m2). The cost of extracting motifs
and discord is linear with the number required O(h) and negligible
with respect to the MP extraction. Thus, repeating the MP
extraction for every time series results in computational
complexity of O (n · m2 · log(m)) that is better than opt, the
shapelet-based classifier based on optimization to extract shapelets,
when log(m) < iter. We can claim that it is always true considering
that, in (Grabocka et al., 2014), the procedure typically converges
after no more than 1,000 iterations. The tree construction phase
requires O (n · m ·depth) for a decision tree learning on the whole
time series and O (n · k ·depth) for a decision tree learning on a
dataset represented by the distances with k shapelets. In addition,
both bf and opt require a shapelet transformation with a cost of O
(n · m · k) before the tree construction, while MAPIC repeats the
shapelet transformation several times during the tree construction
but pays O (n · m · k) only for the first split. Therefore, these costs
are comparable2. MAPIC additionally pays the complexity of

1The median average sum of distances between all the shapelets available in a node
and those selected among various iterations for all the datasets analyzed in the
experiment section is lower than 20.

2Both costs should be multiplied by l to account for the Euclidean distance. We
omit it as it does not impact the complexity.
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K-medoids that is O (n · m · k ·iter). However, it gains a benefit at
prediction time. Indeed, when using bf or opt to classify an unseen
time series, a shapelet transformation must be run. This
transformation cost O (m · k). On the other hand, for MAPIC,
it only costs O (m ·nodes) where nodes � 2depth − 1 indicates the
number of internal nodes of a balanced tree. Indeed, due to its
procedure that is driven by local choices for every node, in the end,
MAPIC only accounts for the shapelets present in the tree
discarding all the others considered during the training. Since in
(Grabocka et al., 2014) k is selected as a percentage w.r.t. the time
series length, on average, MAPIC is the lowest complexity at
prediction time when m > 50 which is often the case.

4.5 Limitations
The proposed MAPIC is largely based on the concept of shapelets.
Despite their not negligible interpretability, approaches based on
shapelets can suffer from inefficiencies in terms of accuracy. These
inefficiencies can be due to several different reasons. As their name
suggests, shapelets are typically suitable when time series can be
separated among classes looking at the shape of some subparts.
Therefore, they characterize through “local” aspects of the time series
of the dataset under analysis how to discriminate among classes.
However, if the characterizing aspects for a class are more “global,”
then shapelets can fail, leading to poor performance. Similarly, from
an interpretability perspective, an expert would more likely agree on
classifying a time series with respect to a global criterion like the
average value or variance rather than the shape of its subsequences. In
light of this reasoning, MAPIC is naturally more suitable for
applications where the aim is to recognize the class of a time
series based on local shapes. However, MAPIC can also be
extended by also considering global features like mean, variance,
and trend in parallel with the shapelets distances to build the decision
tree. We leave this extension as future work. Also, being based on
local features, shapelets can be theoretically affected by scale
transformations. However, in our proposal, shapelets are obtained
frommotifs and discords of theMP that automatically preprocess the
data (Yeh et al., 2016). Therefore, thanks to the MP, MAPIC is
executed on the input provided without requiring any special
preprocessing.

5 EXPERIMENTS

In this section, we show the interpretability, accuracy, and
efficiency of MAPIC on various datasets and against several
interpretable state-of-the-art time series classifiers3. The rest of
this section is organized as follows. First, we illustrate the
experimental setting. Then, we provide a qualitative evaluation

of the interpretable classification offered by MAPIC through a
visual inspection of a shapelet-based decision tree. After that, we
compare MAPIC against state-of-the-art interpretable time series
classifiers. Finally, we discuss the effect of the parameters on the
performance of MAPIC.

5.1 Experimental Setting
We experimented with MAPIC on 17 datasets usually adopted
for benchmarking in univariate TSC having various numbers
of instances, lengths, and number of classes. Table 1 reports
the details. In order to ensure a fair comparison with the
baselines, we used the default train and test data splits (Lines
et al., 2012; Hills et al., 2014). The datasets are available
through the UCR website4.

We compared MAPIC against the following interpretable
time series classifiers. Since we argue that decision trees are
among the most interpretable models, we focus on classifiers
adopting this structure and we differentiate the procedure
used to extract shapelets. In particular, we adopt the brute
force approach (bf) presented in (Ye and Keogh, 2009) and
the one based on optimization (opt) presented in (Grabocka
et al., 2014). Besides, we equip a dtc with the motifs and
discords extracted with the first step of MAPIC. We name this
approach Matrix Profile Decision Tree (mpdt) as it differs
from MAPIC from the internal (local) selection of candidate
shapelets. Finally, we compare against two traditionally
interpretable models not using shapelets: a kNN and a dtc
using as features the timestamps of the time series5. In the
following, we use the term completely interpretable classifiers
to refer to the shapelet-based approaches MAPIC, bf, opt, and
mpdt, while noncompletely interpretable classifiers to indicate

TABLE 1 | Datasets details: n number of time series in the dataset, m time series
length, and c number of classes.

n m c Training (%) Test (%)

ArrowHead 211 251 3 17 83
BirdChicken 40 512 2 50 50
Coffee 56 286 2 50 50
Earthquakes 461 512 2 70 30
ECG200 200 96 2 50 50
ECG5000 5,000 140 5 10 90
FaceFour 112 350 4 21 79
GunPoint 200 150 2 25 75
PowerDemand 1,096 24 2 6 94
Phalanges 2,658 80 2 68 32
Strawberry 983 235 2 62 38
Trace 200 275 4 50 50
TwoLeadECG 1,162 82 2 2 98
Wafer 7,164 152 2 14 86
Wine 111 234 2 51 49
WormsTwoClass 258 900 2 70 30
Yoga 3,300 426 2 9 91

3Code available at: https://github.com/matteo-Donofrio-unipi/Mapic. MAPIC is
realized using a revised version of the matrixprofile-ts library https://github.com/
target/matrixprofile-ts for extracting the Matrix Profile, the libraries binarytree
https://pypi.org/project/binarytree/ and scikit-learn https://scikit-learn.org/ for
the implementation of the shapelet-based decision tree, and scipy https://docs.
scipy.org/doc/scipy/reference/ for the calculus of the distances. Experiments
were run on Windows 10, Intel i5-3570K 3.4GHz CPU with an 8 GB DDR3 1800
MHz RAM.

4https://www.cs.ucr.edu/∼eamonn/time_series_data/.
5We used the py-ts library https://pyts.readthedocs.io/ to implement bf, the tslearn
library https://tslearn.readthedocs.io to implement opt, and the scikit-learn library
https://scikit-learn.org/stable/ to implement all the decision trees and the kNN.
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dtc and kNN. We adopt this description because, as shown in
the qualitative evaluation section, through completely
interpretable classifiers, it is possible to fully understand
which are the subparts of the time series causing the
classification, while with noncompletely interpretable
classifiers this is not immediately possible. We stress the
fact that we do not compare MAPIC against deep
learning-based solutions, solutions based on time series
approximation (such as SAX), or alternative
representations (like the Fourier one) as this is beyond the
purpose of this paper. Our aim is to compare against
shapelet-based classifiers. Hence, we do not compare also
against time series classifiers based on structural features
such as mean, min, and max.

We highlight that, in TSC, kNN and dtc are not
interpretable as the other methods. Indeed, kNN requires
inspecting the time series in the neighborhood to find
similarities with the one classified and this can be not

trivial if the neighborhood is large or if the time series is
particularly long. On the other hand, dtc identifies as
features for the tree individual time stamps along the time
series that do not reveal as clearly as shapelets the
classification reasons.

After empirical experimentation, we adopted the following
parameter settings that have the best results for the various
methods. For every decision tree, we use entropy as a gain
criterion. In our opinion, not every decision tree is interpretable.
Indeed, we believe that a decision tree is not interpretable if it is too
complex, i.e., too deep. Hence, for the sake of interpretability, we do
not grow each tree with a depth higher than 3 and we guarantee
that each leaf has at least 20 records in a node. For the shapelets, we
adopt a sliding window l � 20. For MAPIC and mpdt, we use h � 3
discords per time series and k � 20 shapelets. For bf and opt, the
default parameters of the libraries are used. For kNN, we use k � 3.

As an evaluation metric, we observed the classification
accuracy and the running time expressed in seconds.

FIGURE 1 | Shapelet-based tree obtained byMAPIC on ECG200. If the time series classified has a distance to the shapelet in the node smaller than the threshold
(not reported), the classification moves on the upper part, otherwise on the lower part.

FIGURE 2 | Application of the tree in Figure 1 to classify two time series with class infarction (left) and normal (right). Shapelets are always shown at their best
alignment with the time series and are colored in green if they are “contained” in the time series (i.e., the distance between the series and the shapelet is slower than the
threshold), in red otherwise.
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5.2 Qualitative Evaluation
In this section, we show the application of MAPIC6 for a possible
real case usage on the ECG200 dataset (Olszewski, 2001) with a
focus on the global and local interpretability of the model. The
goal for ECG200 is to distinguish time series representing heart
rate between normal heartbeat and myocardial infarction. The
tree returned by MAPIC is illustrated in Figure 1. If the time
series classified has a distance to the shapelet in the node smaller
than the threshold (not reported on the tree), then the
classification moves on the upper part of the tree, otherwise
on the lower part. In particular, we notice how in the upper part it
is possible to distinguish the presence of infarction if the first
discriminative shapelet s434 is present in a time series and the
second one (s394) is not. This reveals that a jump from a high value
to a lower one and vice versa is a clear indication of a possible
infarction. On the other hand, if another jump from a low value to
a high one and vice versa is present, then the risk of infraction is
lower. A similar reading can be done on the lower part of the tree.
This transparent and global vision of the logic of the AI system
adopting a MAPIC tree can be useful to practitioners. Indeed, it
can reveal how the AI system is reasoning and agree with it or not
in an easier way. Also, developers can unveil misclassification
reasons and vulnerabilities and act to align the AI reasoning with
human believes.

In Figure 2, we show an application of the tree to classify two
instances with class infarction (left) and normal (right). The
shapelets are always shown at their best alignment with the time
series and are colored in green if they are “contained” in the time
series (i.e., the distance between the series and the shapelet is slower
than the threshold), in red otherwise. The time series on the left

respect exactly the infarction pattern described above by containing
s434 and not containing s394. On the other hand, the time series on the
right, which is similar in shape to the one on the left, does not
contain s434 and contains s121 indicating a “normal” decrease of the
value and therefore a normal heartbeat.

We believe that this visual inspection clearly illustrates the
effectiveness of the transparent classifiers returned by MAPIC.
However, since similar models can be obtained with state-of-the-
art approaches, in the next section, we show how MAPIC
overperforms them.

5.3 Quantitative Comparison
In the following, we discuss the results obtained by comparing
MAPIC with the interpretable time series classifiers illustrated in
the experimental setting section.

Table 2 reports the accuracy of MAPIC and of the other
methods analyzed. We notice that, among the completely
interpretable time series classifiers adopting shapelet-based
decision trees, MAPIC has on average the highest
performance. In particular, MAPIC has the highest accuracy
on 11 out of 17 datasets, and it is the second-best performer
for the other five datasets. Indeed, the average ranking of MAPIC
is 2.38 also considering the nonshapelet-based classifiers. Among
the competitors, bf is generally the second-best performer among
shapelet-based classifiers, while kNN is the overall second-best
performer with the highest average accuracy but with the
aforementioned interpretability problems.

In Table 3, we report the training (left) and prediction (right)
times, respectively. Concerning training time, it shows us that
MAPIC is second in training time only to mpdt among the
shapelet-based decision trees. The additional training time of
MAPIC over mpdt for locally running the shapelets selection
procedure, i.e., K-medoids in our implementation, is justified by
the significant increase of the accuracy. On the other hand, opt
and bf have a higher training time, which is generally one order
of magnitude higher for opt and two orders of magnitude higher
for bf which makes an exhaustive search of the shapelets. With
respect to prediction time, we observe that opt has the lowest
prediction time7, but MAPIC is nearly always the second-best
performer among the shapelet-based classifiers. Finally, the
noncompletely interpretable classifiers dtc and kNN have
training and prediction times markedly lower than the
shapelet-based ones. These higher times are due to the
calculus of the distance between the time series and the
shapelets.

We summarize and combine the results in Figure 3 where we
consider simultaneously the accuracy (expressed as error, i.e., 1-
accuracy) and the training time. Figure 3 depicts a scatter plot
reporting the average values together with error bars representing
the standard deviation. We notice that MAPIC lies in the bottom-
left part of the graphics indicating the lowest error and lowest
training time. We remark that the training time is in a
logarithmic scale.

TABLE 2 | Accuracy of MAPIC and competitors. Among shapelet-based
classifiers, bold indicates the best performer and italic the second one (the
higher the better).

Dataset MAPIC mpdt opt bf dtc knn

ArrowHead 0.53 0.39 0.39 0.39 0.39 0.64
BirdChicken 0.80 0.50 0.50 0.50 0.50 0.45
Coffee 0.96 0.54 0.54 0.54 0.54 0.89
Earthquakes 0.74 0.73 0.75 0.71 0.68 0.74
ECG5000 0.91 0.46 0.91 0.90 0.90 0.87
ECG200 0.78 0.64 0.68 0.78 0.76 0.85
FaceFour 0.24 0.16 0.16 0.16 0.16 0.68
GunPoint 0.91 0.73 0.71 0.75 0.63 0.85
Phalanges 0.65 0.62 0.67 0.68 0.69 0.66
PowerDemand 0.92 0.53 0.61 0.94 0.97 0.93
Strawberry 0.87 0.64 0.85 0.90 0.88 0.94
Trace 0.98 0.66 0.89 0.98 0.72 0.74
TwoLeadECG 0.77 0.50 0.50 0.50 0.50 0.58
Wafer 0.95 0.89 0.92 0.95 0.97 0.99
Wine 0.61 0.50 0.74 0.57 0.74 0.72
WormsTwoClass 0.68 0.43 0.60 0.71 0.52 0.61
Yoga 0.66 0.52 0.61 0.62 0.60 0.79

Avg 0.76 0.55 0.64 0.68 0.65 0.76
Rank 2.38 5.26 3.79 3.26 3.79 2.50

6For this particular experiment, parameters are set as follows: l � 30, h � 3, k � 100,
and max_depth � 4.

7In particular, this is also due to an optimization introduced by the library used for
opt at prediction time.
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Moreover, we represent the comparison of the ranks of all
explainers against each other in Figure 4 with the critical
difference plots (Demšar, 2006). Critical difference diagrams
show the results of a statistical comparison of the performance
of the methods. In these diagrams, the methods, represented by
vertical plus horizontal lines, are displayed from left to right in
terms of the average rank obtained for the various evaluation
measures and experiments8. Horizontal bold lines connect the
methods producing statistically equivalent performance
according to a post hoc Nemenyi test with α � 0.05. We
observe that MAPIC is statistically the best performer for

accuracy with respect to mpdt and opt, while it is the
second-best performer with respect to training and prediction
time. Even though there is not a markedly clear statistical
significance between MAPIC and all the competitors, we
notice that also all the other methods are always tied.
Therefore, MAPIC results show its empirical superiority with
respect to the other methods.

5.4 Sensitivity Analysis
In this section, we discuss the effect of the parameters on the
accuracy and training time of MAPIC. In particular, we analyze
the effect of the window size l, the number of motifs/discords h,
the number of shapelets considered k, the maximum depth
max_depth of the tree, the usage of motifs and/or discords,
and the percentage of the training set. Figure 5 shows all the
results for the datasets ECG200, GunPoint, and PowerDemand.
The window size l impacts the accuracy but not necessarily the
training time. It generally reaches a plateau for l ≥ 20. The number
of motifs/discords h slightly increases the training time but has a
small effect on the accuracy, and h > 1 motifs/discords are
sufficient to guarantee the performance illustrated in the
previous section. On the other hand, the number of shapelets
k considered in each split and filtered using the selection
procedure impacts both accuracy and training time. On
average, for k ∼ 20, we observed the best results without a too
high time overhead. The maximum depth of the tree does not
particularly affect the accuracy, while higher values can increase
the training time. With respect to motifs and/or discords, there is
not a clear pattern for accuracy; therefore, we preferred to report
results only using discords that, on average, reach higher
performance. Using both motifs and discords increases the
training time. The percentage of the training set used impacts
more on the training time with an increase slightly less than

FIGURE 3 | Scatter plot with error bars for average and std. dev. of error
and training time (in log scale).

TABLE 3 | Training time (left) and prediction time (right) in seconds of MAPIC and competitors. Among shapelet-based classifiers, bold indicates the best performer and italic
the second one (the lower the better).

Dataset Training time Prediction time

MAPIC mpdt opt bf dtc knn MAPIC mpdt opt bf dtc knn

ArrowHead 6.31 2.65 43.09 35.69 <0.01 0.01 0.56 5.07 0.06 6.44 <0.01 0.03
BirdChicken 3.10 2.37 56.15 34.24 <0.01 0.01 0.04 0.60 0.04 25.86 <0.01 0.02
Coffee 3.48 2.23 32.66 22.93 <0.01 0.01 0.04 0.81 0.04 7.66 <0.01 0.01
Earthquakes 1539.07 1335.27 416.79 4654.63 0.06 0.05 6.52 25.98 0.06 2.77 0.01 0.08
ECG5000 86.28 29.22 123.38 982.01 0.04 0.02 42.63 140.22 0.37 8.83 0.04 0.93
ECG200 16.11 4.70 31.08 27.15 <0.01 <0.01 0.58 2.75 0.05 1.68 <0.01 0.01
FaceFour 49.01 44.98 45.85 31.78 <0.01 0.01 0.64 11.62 0.05 11.75 <0.01 0.02
GunPoint 7.46 2.82 28.91 19.90 <0.01 0.01 0.68 4.18 0.05 3.04 <0.01 0.02
Phalanges 647.55 217.69 199.37 3552.25 0.07 0.05 15.46 43.92 0.09 1.71 0.01 0.24
PowerDemand 6.89 2.23 26.67 0.76 <0.01 <0.01 2.74 24.24 0.10 0.83 <0.01 0.05
Strawberry 122.82 43.59 236.84 3821.50 0.06 0.05 4.29 11.70 0.07 6.57 0.01 0.12
Trace 19.70 7.56 67.65 192.35 0.01 0.01 0.61 2.92 0.05 7.26 <0.01 0.02
TwoLeadECG 2.39 1.09 22.81 3.01 <0.01 0.01 1.88 30.73 0.10 1.80 0.01 0.07
Wafer 576.50 359.74 213.21 4140.29 0.06 0.07 129.88 431.18 0.49 12.91 0.06 1.59
Wine 9.85 3.88 44.13 48.80 <0.01 0.01 0.40 1.52 0.04 0.21 <0.01 0.02
WormsTwoClass 58.31 34.94 671.60 4772.95 0.05 0.06 0.90 2.51 0.07 4.69 0.01 0.07
Yoga 77.09 30.16 294.04 2855.68 0.05 0.05 19.76 94.55 0.49 59.70 0.08 0.87

Avg 109.11 124.00 150.25 1482.11 0.02 0.03 13.39 49.08 0.13 9.63 0.01 0.24
Rank 4.35 3.29 5.05 5.29 1.35 1.64 4.38 5.64 2.64 4.94 1.0 2.38

81 indicates the best performer, and 4 indicates the worst performer. We exclude
dtc and kNN as they do not work on shapelets.
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linear. On the other hand, competitive levels of accuracy are
also reached using small portions of the training data
starting from 20%. We conclude by reporting some statistics
related to the number of iterations of the K-medoids
procedure that can highly impact the computational
complexity. Among all the datasets analyzed, we have on
average 4 ± 2.13 iterations with a minimum of 2 and a
maximum of 8. Therefore, in practice, the usage of K-medoids
is negligible in terms of complexity.

6 CONCLUSION

We have presented MAPIC, an interpretable model for TSC
based onMatrix Profile, shapelets, and decision tree. The usage of
the Matrix Profile allows MAPIC to reduce the cost for retrieving
the best shapelets by adopting motifs and discords. A further
speed-up is given by the usage of K-medoids to avoid analyzing

too similar candidates. Finally, the shapelet-based decision tree
provides intrinsic global interpretability that can be easily
extended for specific classification cases analyzing the path
from the root to the leaves. Wide experimentation on various
datasets and against state-of-the-art interpretable time series
classifiers reveals that MAPIC is statistically competitive with
existing approaches or overcomes them.

The method has some limitations. The sliding window
parameter constrains the shapelets to a predetermined size.
According to the state of the art (Senin and Malinchik,
2013), this issue can be easily overcome by repeating the
Matrix Profile extraction with sliding windows of different
sizes. The shapelet-based rules do not consider multiple
alignments of the same shapelet at different points of the
time series. However, multiple occurrences could help in
better explaining a predictive phenomenon. Several future
research directions are possible. MAPIC only works for
univariate and multiclass time series classifiers. A challenge is

FIGURE 5 | Effect of the parameters on the accuracy and training time of MAPIC. First row: window size (l) and number of motifs/discords (h). Second row:
number of shapelets (k) and max depth of the decision tree. Third row: usage of motifs/discords or both and training set size.

FIGURE 4 |Critical differencediagramsusing the post hocNemenyi testwithα � 0.05 to display statistical differences in termsof accuracy (left) and training time (right).
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to extend MAPIC to make it also work for multivariate time
series and multilabel classification. Also, technical and
conceptual extensions are possible: first, extending MAPIC
such that it can work on different types of sequential data
like text or shopping transactions through the adoption of
time series approximation; second, by enabling MAPIC to
automatically account for model complexity while building
the decision tree in order to avoid parameters related to the
generalization of the model, and finally, a real improvement
with respect to the current evaluation which would be an
experiment involving humans testing to which extent the
decision trees returned by MAPIC can be considered
“transparent” and valuable. Our idea is to conduct extrinsic
interpretability evaluation asking humans experts in a certain
area, e.g., medical doctors, to assess specific tasks driven by
MAPIC results. In such a way, we can simultaneously survey the
usability of MAPIC through the opinions of the experts and also
objectively and quantitatively evaluate the success rate in the
tasks assigned.
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