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Adult stem cells that are tightly regulated by the specific microenvironment, or the

stem cell niche, function to maintain tissue homeostasis and regeneration after damage.

This demands the existence of specific niche components that can preserve the stem

cell pool in injured tissues and restore the microenvironment for their subsequent

appropriate functioning. This role may belong to mesenchymal stromal cells (MSCs)

due to their resistance to damage signals and potency to be specifically activated in

response to tissue injury and promote regeneration by different mechanisms. Increased

amount of data indicate that activated MSCs are able to produce factors such as

extracellular matrix components, growth factors, extracellular vesicles and organelles,

which transiently substitute the regulatory signals from missing niche cells and restrict

the injury-induced responses of them. MSCs may recruit functional cells into a niche

or differentiate into missing cell components to endow a niche with ability to regulate

stem cell fates. They may also promote the dedifferentiation of committed cells to re-

establish a pool of functional stem cells after injury. Accumulated evidence indicates

the therapeutic promise of MSCs for stimulating tissue regeneration, but the benefits of

administeredMSCs demonstrated in many injury models are less than expected in clinical

studies. This emphasizes the importance of considering the mechanisms of endogenous

MSC functioning for the development of effective approaches to their pharmacological

activation or mimicking their effects. To achieve this goal, we integrate the current ideas

on the contribution of MSCs in restoring the stem cell niches after damage and thereby

tissue regeneration.
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INTRODUCTION

The term “stem cells” refers to the cells that are capable of maintaining their own pool through
self-renewal as well as by differentiating into specialized cells of various tissues when certain signals
are received. Hence, owing to their functions, stem cells are key participants in morphogenesis,
homeostasis, and tissue regeneration (Keyes and Fuchs, 2018). The stem cell pool of an adult
organism is predominantly represented by multipotent stem and progenitor cells. They support
the structure of tissues and their ability to renew and regenerate throughout life.
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To become functionally organized, stem cells require a permissive
and instructive environment. The pool of adult stem cells,
together with its regulatory-specific microenvironment, a stem
cell niche, is a functional unit of tissue regeneration. The
concept of “stem cell niche” was developed by R. Schofield, who
suggested the existence of a microanatomical structure in which
the microenvironment determines the behavior of the stem cell.
According to this assumption, cells in a niche can proliferate
maintaining stemness, and daughter cells that are unable to
occupy a niche leave it and differentiate (Schofield, 1978).
However, the current conception claims that the coordinated
work of multiple components of the niche can not only maintain
stem cells but also stimulate the differentiation and return of
progenitor cells to an undifferentiated state (Kitadate et al., 2019).
Presumably, maintaining stem cells and transferring stem cell
properties to niche cells may be an important aspect of damaged
tissue regeneration, since they can be recruited to restore tissue.
However, themechanisms for maintaining the stem cell pool may
differ from those in homeostasis. Thus, it should be possible to
support stem cells even if the structure and function of the niche
are significantly altered. So the niche components that harbor
these functions must be resistant to tissue damage and activated
by damage-associated factors. To ensure balanced regeneration,
they must have the ability to perceive a spectrum of local and
distant signals of various natures and mediate their transmission
to target cells.

In the majority of stem cell niches, mesenchymal stromal
cells (MSCs) apparently meet these requirements (Friedenstein
et al., 1968; Morrison and Scadden, 2014; Somoza et al., 2016;
Degirmenci et al., 2018; Wosczyna et al., 2019). In response to
stimuli associated with damage, MSCs can secrete a wide range of
extracellular matrix (ECM) components, paracrine factors, and
extracellular vesicles (EV), mostly exosomes. When activated,
MSCs can also increase their own pool (Itkin et al., 2012) and
replenish individual components of the microenvironment by
differentiating or attracting supporting cells to a niche. These
effects of MSCs are directly or indirectly aimed at maintaining
resident stem cells after tissue damage; therefore, MSCs can be
considered as a central regulatory component in the regenerating
stem cell niche.

CURRENT UNDERSTANDING OF MSCs

The significant role of stromal cells in regulating the behavior
of stem cells was suggested by A. Maximov and later confirmed
by A. Friedenstein while investigating hematopoiesis, when it
was demonstrated that the hematopoietic microenvironment
was created by multipotent bone marrow cells with fibroblast-
like morphology, which had the ability to differentiate into
the major types of connective tissue cells (Friedenstein et al.,
1968; Friedenstein, 1989). These findings were rediscovered
and popularized by Owen (1988) and Owen and Friedenstein
(1988). Subsequently, this type of cell was termed as the
mesenchymal stem cell (Caplan, 1991). At present, multiple
studies claim a population of fibroblast-like progenitors is
located in the outermost layer of larger arteries and veins,

the tunica adventitia (Gomez-Salazar et al., 2020). Importantly,
the tunica adventitia possesses many stem cell niche-like
characteristics that support and regulate vascular wall progenitor
cells including mesenchymal stem cells (Psaltis and Simari,
2015). If further confer properties of mesenchymal stem cells
to other tissue-specific stem cells, like skeletal stem cells that
generate progenitors of bone, cartilage, and stroma, their niches
are localized in fetal and adult bones (Chan et al., 2018). In
particular, in mouse model it was found that classical bone
marrow MSCs were enriched by leptin receptor (LepR). LepR-
positive cells were the main source of CFU-Fs in the bone
marrow. It was also shown that these cells gave rise to bone
cells as well as adipocytes that formed in adult bone. Moreover,
LepR-positive cells were activated for tissue regeneration after
irradiation or fracture (Zhou et al., 2014). Since LepR-positive
MSCs are localized in close proximity to the sinusoids and
arterioles of the bone marrow, it can be assumed that endothelial
cells are components of the mesenchymal stem cell niche. This is
supported by the presence of extensive crosstalk between MSCs
and endothelial cells via PDGFR, BMP, and Notch signaling
(Kurenkova et al., 2020).

However, recently, the term “mesenchymal stem cells” was
recognized as incorrect due to the accumulated evidence
indicating that MSCs did not function in the body only as
progenitors for tissues, neither in the normal steady-state nor
in disease or injury circumstances (Caplan, 2017). Therefore,
the commonly recommended name of these cells now is
MSCs, and the presence of multipotent stem cells within
MSCs should be carefully evaluated by appropriate assays
(Viswanathan et al., 2019).

Till date, cells that meet the minimal MSC characterization
criteria (expression of specific surface markers, potential for
differentiation into connective tissue cells, and adhesion to
plastic) have been found in almost all tissues of the body, and
their high prevalence can be attributed to their perivascular
localization. However, presumptive MSCs are found notably
among pericytes and adventitial cells in the perivascular
niche and possibly as interstitial fibroblast-like cells in other
compartments. Noteworthy, any fibroblast could fit in MSC
definition, however, the relationship between phenotype and
cell function may be ambiguous. Thus, we and others have
demonstrated in some studies the substantial differences in
regenerative effects of so-called MSCs and so-called fibroblasts
(Gatti et al., 2011; Basalova et al., 2020).

Despite several common features, MSCs represent a
heterogeneous cell population with varied functional and
secretory behavior (Melief et al., 2013; Kehl et al., 2019).
Direct analysis of perivascular presumptive MSCs has
revealed that, within a given tissue or organ, these cells are
phenotypically and functionally diverse (Gomez-Salazar et al.,
2020). A developmental hierarchy of pericytes and adventitial
perivascular cells has been established in human adipose tissue
by single-cell transcriptome analysis (Hardy et al., 2017).
Correlatively, these two cell types, both of which contribute to
conventional cultured MSCs, play distinct roles in osteogenesis
in vivo (Wang et al., 2019). There is strong evidence indicating
the existence of tissue-specific cells, at least in the bone marrow
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stroma, although with limited ability to differentiate into
other cell types (Sipp et al., 2018). The difference between
populations of MSCs from different sources is also observed
in natural conditions and, apparently, can be persistent, which
is confirmed by the weaker osteogenic potential of adipose
tissue-derived MSCs, even after osteogenic priming (Brennan
et al., 2017). This was also indirectly confirmed by the stable
long-term autonomous function of subcutaneous adipose
tissue sites during its transplantation to the visceral region
(Tran et al., 2008). There are also several other examples of
the diverse functional properties of MSCs. Some studies even
recommend not using the term MSCs but referring post-natal
stem cells to tissue-specific stem cells (such as skeletal or adipose
stem cells), which was reflected in the recent International
Society of Cell & Gene Therapy (ISCT) recommendations
(Viswanathan et al., 2019).

In recent years, a pivotal role of MSCs in the regulation of
stem cell niches in various tissues has been intensively explored.
The most studied stem cell niche, in which MSCs are key
participants in homeostasis and regeneration, is the HSC niche.
Thus, MSCs are able to paracrine regulation of the HSC pool
by interacting with other cells of the niche and responding to
signals from the nervous system (Pinho and Frenette, 2019;
Méndez-Ferrer et al., 2020). In the other well-studied niche, a
skeletal muscle stem cell niche, MSCs apparently are required
for the maintenance of skeletal muscle stem cell pool (Wosczyna
et al., 2019). The existence of a perivascular niche for neural
stem cells (NSCs) has also been described in the subventricular
zone. It has been suggested that MSCs may regulate the local
niche by direct contact with NSCs and by secreting different
types of neurotrophins, such as BDNF (Somoza et al., 2016).
Below we will consider the mainmechanisms by whichMSCs can
participate in the regulation of tissue-specific stem cell niches.

MSCs ARE RESISTANT TO CELL DEATH
SIGNALS AND VARIOUS DAMAGING
STIMULI

AS suggested above, cells that trigger tissue regeneration must be
resistant to damage signals and be activated by them. MSCs can
be such cells, as they react by activation to the signals of cell death,
which are excessively presented in the damaged tissue, or exploit
the mechanisms of programmed cell death for survival. Thus, the
activation of Fas signaling in MSCs is accompanied not only by
apoptosis but also by intensive proliferation, which leads to an
increase in the number of them. Presumably, such a response
may be the mechanism responsible for their survival under tissue
damage and in conditions of inflammation (Solodeev et al.,
2018). Similarly, activation of autophagy might protect MSCs
from cell death. Particularly, MSCs isolated from transgenic mice
depleted for the autophagy proteins BECN1 and LC3B were
found to be more sensitive to cell death induced by reactive
oxygen species (ROS) than wild-type cells. At the same time, in
other cells, autophagy can mediate the turnover of damaged cells
(Ghanta et al., 2017).

MSCs can maintain their viability and function through other
mechanisms. MSCs express enzymes possessing an antioxidant
function and exhibit a high level of glutathione, which can
provide resistance to ROS and nitrogen species that accumulate
during tissue damage (Valle-Prieto and Conget, 2010). MSCs
are also resistant to genotoxic effects. In particular, studies have
shown that MSCs display greater viability and lower level of
DNA damage than sensitive cells when exposed to cisplatin
(Bellagamba et al., 2016) and also demonstrate resistance to
radiation damage (Singh et al., 2012). MSCs can also survive and
function for a long time under conditions of serum deprivation
(Sagaradze et al., 2019b) and hypoxia (Efimenko et al., 2010),
which are attributes of in vivo ischemic damage.

Therefore, MSCs have a certain resistance to cytotoxic
substances that accumulate during damage, as well as to some
genotoxic components such as damage inducers. Activation of
cell death mechanisms contributes to an increase in the MSC
population, which can support tissue regeneration.

MECHANISMS OF MSC PARTICIPATION IN
TISSUE REGENERATION

For tissue regeneration, it is necessary to preserve the stem
cell population and restore the stem cell niche. Presumably,
the effects of MSCs can be critical for the implementation
of these processes. Thus, to maintain and regulate the
behavior of cells in the microenvironment, MSCs secrete
many growth factors and cytokines, and are also capable of
transferring organelles and extracellular vesicles to target cells.
In addition, MSCs actively produce ECM, which has structural
and signaling functions. MSCs can also help replenish the
cellular composition of the niche. Thus, MSCs are able to
differentiate into some niche components, as well as attract
functional cells to a niche. In addition, MSCs are able to
replenish the stem cell pool by endowing differentiated cells
with stemness. A significant contribution of MSCs to tissue
regeneration can be achieved due to their prevalence in
tissues and the ability to respond to metabolic, mechanical,
biological paracrine stimuli of the microenvironment with high
plasticity (Figure 1).

MSCs Regulate Tissue Regeneration at
Local and Systemic Levels Through
Secretion
It was previously believed that the effects of MSCs are
associated with their ability to migrate to the area of damage
and differentiate into functional tissue cells. However, the
hypothesis that MSCs are involved in tissue regeneration,
primarily due to the secretion of growth factors into the
intercellular space, was later proposed and confirmed. In a
model of acute myocardial infarction, it was demonstrated that
secreted MSC products have a cytoprotective effect against
cardiomyocytes. The observed effects were achieved in a short
time, which additionally reinforced the hypothesis (Gnecchi
et al., 2005). Currently, the concept of the important role
of the paracrine effects of MSCs in restoring the cellular
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FIGURE 1 | Mechanisms of MSC participation in tissue regeneration. MSCs are able to differentiate into some niche components, as well as attract functional cells to

a niche. MSCs are able to replenish the stem cell pool by endowing differentiated cells with stemness. A significant contribution of MSCs to tissue regeneration can be

achieved due to their prevalence in tissues and the ability to respond to metabolic, mechanical, biological paracrine stimuli of the microenvironment with high plasticity.

MSCs, mesenchymal stromal cells; ECM, extracellular matrix.

composition of tissue is generally accepted. Moreover, several
researchers have confirmed that paracrine signaling of MSCs is
not limited to growth factors and cytokines. In addition, ECM
components as well as EV secreted byMSCs can play a significant
signaling role.

Effects of ECM Components Secreted by MSCs
The ECM is an important regulatory component of a stem cell
niche (Figure 2). It is a three-dimensional structure consisting
of collagen, fibronectin, elastin, glycosaminoglycans, and various
glycosylated proteins that are capable of transmitting mechanical
and biochemical cues to cells. In the stem cell niche, the ECM
is involved in the regulation of differentiation, proliferation,
and maintenance of the stem cell pool (Novoseletskaya et al.,
2019). To fine-tune the signaling function of the ECM, matrix
remodeling systems are presented in the niche. Therefore,
the supporting cells of the majority of niches secrete matrix
metalloproteinases, as well as their inhibitors, which can remodel

or maintain a specific ECM structure (Thakkar et al., 2013;
Gattazzo et al., 2014; Kalinina et al., 2015a).

Mechanical ECM signals are transmitted to cells through
cytoskeletal components and adhesive contacts. Integrins are the
key mechanosensors in the cell. The focal adhesion complexes
assembled by the participation of integrins turn the mechanical
signals of the matrix into biochemical signals (Smith et al., 2017).
The nuclear lamina may also be involved in the mechanisms
of regulation of certain transcription factors. In particular, the
rigidity of the matrix can regulate the expression of lamin A,
which can regulate the entry of a transcription factor such as
the retinoic acid receptor (Swift et al., 2013) into the nucleus,
which, in turn, can affect the differentiation potential of stem
cells (Green et al., 2017). Thus, matrix stiffness can regulate
the behavior of niche cells. The ability of the ECM to transmit
biochemical signals is also due to its ability to deposit regulatory
molecules and matrix-bounded vesicles, protecting them from
degradation and localizing their effects (Novoseletskaya E. et al.,
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FIGURE 2 | Functions of ECM components secreted by MSCs. ECM is a three-dimensional structure consisting of collagen, fibronectin, elastin, glycosaminoglycans,

and various glycosylated proteins that are capable of transmitting mechanical and biochemical cues to cells. ECM stiffness can regulate the behavior of niche cells.

The ability of the ECM to transmit biochemical signals is also due to its ability to deposit regulatory molecules and matrix-bounded vesicles, protecting them from

degradation and localizing their effects.

2019). The abovementioned mechanisms of signal transmission
through the ECM can mediate the maintenance of homeostasis
and tissue repair.

The ECM components and factors involved in its remodeling
are the most represented in the MSC secretome (Kalinina et al.,
2015a). MSCs can enhance the secretion of individual ECM
components in response to various damage-associated signals.
Therefore, in response to vascular damage, MSCs can disconnect
from the vascular wall and proliferate and secrete type 1 collagen
(Lin et al., 2008). Similarly, the secretion of type 1 collagen and
fibronectin by MSCs increases in response to signals regulating
wound healing, for example, transforming growth factor beta
1 (TGF-b1) (Desai et al., 2014; El Agha et al., 2017). These
structural proteins play a vital role in tissue repair after damage.
Hence, type 1 collagen is one of the primary structural and
signal components involved in tissue repair and regeneration
(Schulz et al., 2015). Fibronectin, in turn, can participate in the
transmission of signals to stem cells due to its ability to bind
to several molecules, including some of platelet-derived growth
factor, vascular endothelial growth factor, fibroblast growth
factor families, TGF-b1, and neurotrophin, thus preserving their
biological activity.

Furthermore, individual ECM components produced by
MSCs can mimic the effects of growth factors by acting as
agonists or antagonists of receptor tyrosine kinases. In particular,
laminin 5, secreted by MSCs, can bind to the epidermal growth
factor receptor and trigger cell differentiation (Klees et al.,

2005). In contrast, decorin was found to inhibit the signaling of
this receptor (Chermnykh et al., 2018). Several growth factors
secreted by MSCs are deposited in the ECM and are activated
upon tissue damage. Vesicles associated with the matrix have also
been found in the ECM produced by MSCs, but their impact on
the regenerative effects of MSCs yet remains to be investigated
(Huleihel et al., 2016; Novoseletskaya E. et al., 2019). Therefore,
filling the ECM with biologically active molecules or exposition
of active molecules, as well as its ability to act as a ligand, can
provide fine regulation of stem cell behavior during tissue repair
and localize them in the vicinity of MSCs, making it possible to
receive paracrine signals of a different nature.

Individual ECM components produced by MSCs can mimic
the effects of growth factors by acting as agonists or antagonists
of receptor tyrosine kinases. MSCs, mesenchymal stromal cells;
ECM, extracellular matrix.

Effects of Secreted Factors, Extracellular Vesicles,

and Organelle Transfer
MSCs have the ability to respond to damage through other
manners, for example, by changing the number and panel of
secreted factors (Caplan and Correa, 2011; Kalinina et al., 2015a)
(Figure 3). This may also be one of the strategies to regulate
the behavior of stem cells in a niche, and ultimately tissue
regeneration. Therefore, when a small intestine crypt stem cell
is damaged, the population of GLI1-positive MSCs becomes
the primary source of ligands for the Wnt signaling pathway,
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FIGURE 3 | MSC can regulate tissue regeneration by secretion of paracrine factors, extracellular vesicles, and organelle transfer. MSCs have the ability to respond to

damage by changing the number and panel of secreted factors. Particularly, MSCs can exhibit a paracrine response to stem cell demand signals during damage and

contribute to tissue regeneration. Another important response of MSCs to damage is the activation of an immunosuppression program. In addition to the secretion of

individual paracrine factors, MSCs can secrete EV or transfer individual organelles, such as mitochondria, through vesicular or tunnel nanotube transport. MSCs,

mesenchymal stromal cells; EV, extracellular vesicles.

while normal secretion of this ligand is also provided by Paneth
cells. Impaired secretion of Wnt ligands is accompanied by
an increased expression of intestinal epithelium Shh ligands,
which can serve as stimulatory signals for the proliferation
of GLI1-positive MSCs. Consequently, MSCs can exhibit a
paracrine response to stem cell demand signals during damage
and contribute to tissue regeneration (Degirmenci et al., 2018).

Another important response of MSCs to damage is the
activation of an immunosuppression program. Therefore,
proinflammatory cytokines accumulating in the lesion area,
such as TNF-alpha, IL-1-alpha, and IL-1-beta, trigger the
expression of immunosuppression mediators such as COX2,
PGE2, and IDO by MSCs. These molecules can inhibit excessive
tissue damage caused due to the effects of proinflammatory
cytokines, thereby positively contributing to regeneration
(Galipeau et al., 2016; Gomez-Salazar et al., 2020). In particular,
IDO can mediate the therapeutic effects of MSCs, which
was reflected by faster tissue repair as well as its protection
against structural changes and cell damage in the mouse
hind limb ischemia-reperfusion model (Masoumy et al.,
2014). It is noteworthy that MSCs can trigger the synthesis
of immunosuppression mediators in target cells as well.
One of the mechanisms may be the initiation of apoptotic
processes in MSCs in the proinflammatory microenvironment
(Solodeev et al., 2018), because the absorption of apoptotic
MSCs by macrophages leads to the secretion of IDOs
(Galleu et al., 2017).

In addition to the secretion of individual paracrine factors,
MSCs can secrete EV, mostly exosomes (Basalova et al.,
2020), whose composition also varies depending on external

signals (Lopatina et al., 2014). The significance of this cell
communication mechanism is crucial because MSCs can
transmit molecules of various nature, including proteins, lipids,
and nucleic acids such as mRNA and regulatory non-coding
RNAs, within EV to target cells (Kalinina et al., 2015b; Yáñez-
Mó et al., 2015; Efimenko et al., 2016; Basalova et al., 2020).
Due to the possible targeted effects of EV, their transfer to
nearby cells can help fine-tune the effects of the MSC secretome
(Hoshino et al., 2015). The EV secreted by MSCs contain
a large number of micrornas that are capable of inhibiting
the translation of mRNA in target cells both in vitro and
in vivo (Friedman et al., 2009; Wahid et al., 2010). Among
the most represented in the MSC-produced EV, microRNAs
were found to regulate the maintenance of the stem cell
pool by changing the expression of the components of the
Wnt, PDGF, and TGF-beta signal transmission pathways.
The EV secreted by MSCs can also contribute to tissue
regeneration due to their effect on the microenvironment.
In particular, studies have demonstrated that they contain
micrornas that suppress the formation of myofibroblasts and,
accordingly, the development of fibrosis by suppressing the TGF-
beta2/SMAD2 pathway and the production of ECM proteins
(Fang et al., 2016; Basalova et al., 2020).

Using EV, MSCs can transmit mRNAs that are translated in
the corresponding functional proteins in target cells, perform
an immunosuppressive function, and alter the proliferation
of target cells (Ragni et al., 2017). The literature reports
evidence of the transfer of growth factor molecules in EV
that stimulate the proliferation of target cells during in vitro
damage (Tomasoni et al., 2013), as well as some transcription
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factors, which indicates a possible protective function of
this mechanism.

However, MSC signaling is not limited to paracrine factors
or complexes of regulatory molecules in EV. MSCs can mediate
tissue regeneration by transferring individual organelles,
such as mitochondria, through vesicular or tunnel nanotube
transport. Mitochondrial transfer can be induced by signals from
damaged cells, DAMPs, in the form of mitochondrial DNA,
mitochondrial proteins, or whole mitochondria (Mahrouf-
Yorgov et al., 2017). MSCs, in turn, transfer their own
mitochondria to their microenvironment cells, which can
lead to restoration of the functional state of acceptor cells
and protection of the niche stem cell pool from depletion,
respectively. Therefore, in a model of acute lung damage,
it was demonstrated that the transfer of mitochondria
from MSCs to alveolar epithelial cells reduces the negative
consequences of acute lung damage through normalization
of the functions of alveolar epithelial cells (Islam et al., 2012).
In contrast, through the transfer of mitochondria, MSCs can
also restrain the effects of microenvironment cells, preventing
excessive inflammation. Hence, MSCs inhibit the secretion
of proinflammatory cytokines by activated macrophages and
stimulate their phagocytic function (Morrison et al., 2017).
In vivo, these effects can limit the excess damage caused due
to the proinflammatory microenvironment, as well as slow the
spread of proinflammatory signals due to their phagocytosis
by macrophages.

As not only local but also systemic stimuli are involved
in the regulation of regeneration, it is reasonable to consider
the ability of MSCs to respond to systemic signals, as well as
modulate them. Consequently, nestin-positive MSCs associated
with adrenergic fibers in response to the stimulation of their
own beta-3 adrenergic receptors reduce the expression of
hematopoiesis maintenance genes (Méndez-Ferrer et al., 2010).
These effects can be a part of a program for preserving the
stem cell pool by redistributing them into intact niches, as
indicated by the need for a functioning sympathetic nervous
system to restore bone marrow in damage models induced
by genotoxic agents. An alternative assumption may be their
involvement in the effects of the sympathetic nervous system
and other receptors such as beta-2 (Lucas et al., 2013). In
addition to sympathetic innervation, MSCs can regulate the
behavior of hematopoietic progenitor cells in a paracrine manner
in response to neuropeptide signals as well (Rameshwar and
Gascón, 1996).

Through paracrine exposure, MSCs can modulate central
nervous system signals by regulating tissue regeneration.
Therefore, due to their immunomodulatory properties,
MSCs can change the local level of cytokines that are
capable of triggering the transmission of inflammatory
reflex by the afferent vagus nerve. The launch of this
reflex can lead to the suppression of excess inflammation
that adversely affects tissue regeneration (Rosas-Ballina
et al., 2008; Pavlov and Tracey, 2017). Altogether, MSCs
can transmit paracrine signals from the nervous system,
as well as modulate its function, which can mediate
tissue regeneration.

MSCs Regulate Tissue Regeneration by
Restoring the Cellular Components of a
Niche
In addition to the paracrine potential involved in tissue
regeneration, MSCs can act as precursors of individual niche
components. In particular, during bone restoration after a
fracture, a soft bone callus consisting of fibroblasts and
chondrocytes is formed that ensures the mechanical stability of
the bone in the fracture area. Bone immobilization occurs due
to the secretion of ECM by chondrocytes, which can be derived
from MSCs. In the later stages of repair, primary bone formation
occurs. The major participants in this process are osteoblasts,
whose precursors can also be MSCs (Knight and Hankenson,
2013). Lineage tracing studies have demonstrated that adipose
tissue turnover and recovery after damage are also provided
by the differentiation of PDGFRb-positive mural cells that are
considered as MSCs (Vishvanath et al., 2016). It is also known
that MSCs are used in the therapeutic restoration of adipose
tissue damaged after surgery or injury (Choi et al., 2010).

It should be noted that the direction of differentiation ofMSCs
determines the ability of a niche to support stem cells. Therefore,
the imbalance between osteogenic and adipogenic differentiation
of MSCs leads to a decrease in the pool of osteoblasts, which
play a vital role in maintaining hematopoiesis (Justesen et al.,
2001; Visnjic et al., 2004). It has been demonstrated that MSCs
have the potential for differentiation into other cells. Hence, when
simulating chronically injured hearts, MSCs transplanted to the
lesion site remained in the donor organism for a long time and
expressed the transcription factors of cardiomyocytes, as well
as the markers of endothelial cells and vascular smooth muscle
(Quevedo et al., 2009).

Apparently, MSCs can replenish the pool of niche cells in
methods other than differentiation. This mechanism may be
especially important in the case of terminally differentiated cells
that do not proliferate in the niche. Sertoli cells that are essential
for the normal function of the SSC niche can be noted among
these cells. Therefore, injecting the MSC secretome can help
attract lost Sertoli cells from the pools of progenitor cells. This
assumption was indirectly supported by the restoration of the
Sertoli cell pool without visible proliferation at the observed
control points in vivo, as well as the stimulation of Sertoli cell
migration by MSC secretion in vitro (Figueiredo et al., 2016;
Sagaradze et al., 2019a).

Despite the significant regenerative potential of MSCs, the
stem cell pool in the tissue can be completely lost in the damaged
tissue. However, some cells of an adult organism have the
potential of plasticity and can acquire a stem cell phenotype, fill
a niche, and restore a lost organ or tissue (Rompolas et al., 2013).
Presumably, in case of damage to individual stem cell niches,
MSCs can participate in the transfer of stem cell properties to
differentiated cells. In particular, MSCs, being a subpopulation
of intestinal mesenchymal cells, can secrete proinflammatory
cytokines, for example, IL-11, in response to tissue damage
(Thomson et al., 2020). Recently it was demonstrated that when
the intestinal crypt was damaged, the stem cell pool was restored
primarily due to the differentiation of absorptive and secretory
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progenitors, and Ascl2 transcription factor was required for
restoring the ISC pool. Among the list of genes regulated by
Ascl2, a receptor for IL-11 was found, and the introduction of
recombinant IL-11 increased the regenerative potential of crypt
cells (Murata et al., 2020).

It is noteworthy that MSCs can not only stimulate the
acquisition of stem cell properties by niche cells but also give rise
to stem and progenitor cells, which ensures the restoration of the
pool of supporting niche cells. Thus, restoration of the Leydig
cell pool was detected in a mouse model of damage to Leydig
cells with ethane methane disulfonate (EDS). In the early stages
of observation itself, the restoration of the Leydig cell pool was
accompanied by an increase in the number of nestin-producing
vascular smooth muscle cells, as well as pericytes in the testis,
compared to that in the testes of intact animals.

After modeling damage, the nestin-positive cells left the
walls of blood vessels, acquired steroidogenic properties, and
lost the nestin expression. The conversion into steroidogenic
cells was also accompanied by the loss of alpha-SMA, which
indicated the possibility of transdifferentiation of pericytes into
progenitor Leydig cells (Davidoff et al., 2004). The possibility of
replenishing the Leydig stem cell pool by the transdifferentiation
of MSCs was indirectly confirmed by the greater proximity of
the Leydig stem cell transcript to MSCs (Stanley et al., 2011).
Furthermore, when individual types of MSCs were transplanted
into a rat testicle lacking Leydig cells due to EDS treatment,
the Leydig cell population was restored. Consequently, 21 days
after the transplantation, the researchers observed higher blood
testosterone levels in the MSC group than in the control group.
Remarkably, some transplanted cells expressed steroidogenesis
markers that are generally expressed by Leydig cells (Zhang
et al., 2016). However, MSCs isolated from some other tissues
during transplantation into the testis may not participate in the
formation of Leydig cell populations during restoration, which
may further support the tissue specificity of some functions of
MSCs (Curley et al., 2019) and suggest analyzing the possibility
of transdifferentiation of MSCs from the testicle into Leydig cells.

Accumulating evidence indicates that MSCs, activated
by damage stimuli, can provide a stem cell niche with
multiple signals aimed at restoring complicated cell-to-
cell communications. As mentioned earlier, MSCs possess
immunomodulatory properties and regulate the complex
balance between different subtypes of immune cells. Widely
recognized as proangiogenic, these cells also produce abundant
amounts of antiangiogenic factors, such as pigment epithelial-
derived factor and thrombospondins, and could be modified by
specific stimuli to limit new blood vessel formation and rather
stabilize the vascular structures (Lopatina et al., 2014). In tissue-
specific stem cell niches, MSCs might provide regulatory factors
restricting the injury-induced responses of niche cells. Hence,
we suppose that the ability of MSCs to restore the SSC niche
due to the effects of their secretome, which we observed in a rat
model of abdominal cryptorchidism (Sagaradze et al., 2019a),
could be at least partially mediated by secreted insulin-like
growth factor-binding proteins (IGFBPs) (Kalinina et al., 2015a).
Niche damage causes hyperplasia of the interstitial compartment
where Leydig cells localize and produce insulin-like growth

factor 1 (IGF1) that is critical for the functioning of both SSCs
and supporting cells. Importantly, excessive amounts of IGF1
could predominantly stimulate spermatogonial differentiation
leading to the depletion of undifferentiated SSCs and block in
spermatogenesis in the subsequent cycles (Safian et al., 2016).
IGF1 and other IGFs bind to IGFBPs with greater affinity than
they bind to their receptors (Youssef et al., 2017), which allows
to protect undifferentiated spermatogonia in the testis against
excessive differentiation. Furthermore, recent discoveries have
identified that IGFBP-3 plays a dual function of a gatekeeper
(induction of apoptosis and cell cycle arrest) and a caretaker
(DNA repair through interaction with DNA-PK, induction of
autophagy by interaction with GRP78, and the ability to regulate
sphingolipids required for the cell survival pathways) through
mechanisms independent of IGFs (Varma Shrivastav et al.,
2020). Taken together, by secreting IGFBPs, MSCs might be able
to correct the imbalance of IGF1-mediated regulatory effects
between cells within the niche, including Leydig cells, Sertoli
cells, and SSCs.

SENESCENCE OF MSCs CONTRIBUTES
TO ALTERATIONS OF TISSUE
REGENERATION

Senescence, a cellular response to endogenous and exogenous
stresses limiting the proliferation of damaged and dysfunctional
cells, markedly affects the processes of tissue homeostasis and
regeneration and contributes to both physiological aging and
age-related diseases (van Deursen, 2014; Childs et al., 2015;
McHugh and Gil, 2018). Cell senescence can be induced by
harmful stimuli such as DNA damage, telomere shortening,
oncogenic insults, metabolic stress, epigenetic changes, and
mitochondrial dysfunction (Liu et al., 2020). Senescent cells
accumulate with aging in different tissues, and stem cell
aging and replicative exhaustion are considered as hallmarks
and promoters of aging and functional attrition in organisms
(van Deursen, 2014; Childs et al., 2015).

There is a vast amount of evidence indicating the important
associations between tissue injury, especially chronic injury,
and accumulation of senescent cells, including those in
MSC populations (Childs et al., 2015; Cárdenes et al.,
2018; Neri and Borzì, 2020). The key regulators of MSC
senescence remain still incompletely identified and can represent
therapeutic targets to counteract age-associated diseases and
organismal aging. MSC senescence is accompanied by functional
alterations that caused due to metabolic, genetic, epigenetic,
transcriptional, and translational changes (see the detailed review
by Neri and Borzì, 2020). In addition, these cells acquire a
senescence-associated secretory phenotype (SASP) involving the
secretion of factors that can affect the behavior of neighboring
cells via autocrine/paracrine mechanisms and reprogram the
microenvironment toward the prosenescent state (Borodkina
et al., 2018; Campisi et al., 2019). During aging of an organism,
senescent MSCs imply an impairment of stem cell functions
contributing to the progressive decrease in tissue maintenance
and regeneration, because the regenerative potential of MSCs
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essentially declines with age together with an increase in
senescence markers (Stolzing et al., 2008; Schimke et al., 2015;
Yang et al., 2018; Khong et al., 2019; Neri and Borzì, 2020). Hence,
the delay in fracture healing with advanced age is attributed to a
decreased number and function of MSCs (Wagner et al., 2019).
In vivo, MSC senescence implies reduced osteogenic capacity,
thereby contributing to age-related diseases such as osteoporosis.
It has been demonstrated that miR-1292 could positively regulate
MSC senescence through the wingless-related integration site
(Wnt) /β-catenin signaling pathway and by targeting frizzled
4 receptor (FZD4), thereby emerging as a potential target to
treat osteoporosis (Fan et al., 2018). Furthermore, Liu et al.
(2015) showed that the loss of osteogenic potential in aged bone
marrow-derived MSCs is mediated by p53 increase through the
miR-17 pathway (Liu et al., 2015).

MSCs derived from aged donors exhibit impaired ability
to stimulate vascularization due to the reduced secretion
of proangiogenic factors—including vascular endothelial
growth factor, placental growth factor, and hepatic growth
factor (HGF)—whereas there is an increased secretion of
antiangiogenic factors such as thrombospondin-1 (TBS1),
plasminogen activator inhibitor-1 (PAI-1), and certain factors
involved in ECM remodeling (Efimenko et al., 2011, 2014;
Khan et al., 2011).

Aged MSCs have a diminished capacity to inhibit the
proliferation of allogeneic peripheral blood mononuclear cells
compared to that of younger cells (Gnani et al., 2019). The
production of SASP factors such as interleukin 6 (IL-6),
IL-8, and monocyte chemotactic protein 1 (MCP-1) in
the conditioned medium of senescent MSCs was found
to be increased compared to that in young MSCs, which
not only drives responses that reinforce senescence in a
cell-autonomous manner but also acts on neighboring
cells via a paracrine mechanism to accelerate senescence
(Gnani et al., 2019).

An earlier study demonstrated the critical role of EV and non-
coding RNAs in their composition in the regulation of target cells
by MSCs during aging (Xu and Tahara, 2013). Consequently,
Kulkarni et al. (2018) showed that certain miRNAs within
exosomes secreted by young MSCs can suppress cell aging of
hematopoietic stem cells, whereas vesicles from senescent MSCs
significantly aggravated this process (Kulkarni et al., 2018).

It is important to note that MSCs could also acquire the
senescent phenotype and properties in different diseases without
the direct relationship with advanced age (Dzhoyashvili et al.,
2014; Cárdenes et al., 2018). As an example, MSCs derived
from the adipose tissue of obese subjects were found to have
lower self-renewal properties because of increased oxidative
and metabolic stress affecting mitochondria, thereby leading to
DNA damage, telomere shortening, reduced proliferation and
stemness, increased apoptosis, and senescence (Pérez et al., 2015).
Perhaps, the accumulation of senescent MSCs is likely a response
to the damage stimuli such as chronic inflammation, and these
changes are not certainly negative. Consequently, several studies
have demonstrated the benefits of senescent cells in wound
healing, injury repair, and tissue regeneration (Ritschka et al.,
2017; Campisi et al., 2019). However, the pathological effects

begin to prevail along with their accumulation and prolonged
persistence in tissues. As a result, the accumulation of senescent
MSCs could lead to the disruption of their regulatory function,
mediated primarily through the effects of their secretome, and to
the pathological remodeling of their microenvironment, which
would ultimately attenuate the regenerative potential of tissues.

CONCLUDING REMARKS:
RECONSIDERING THE THERAPEUTIC USE
OF MSCs

Most of the therapeutic effects of MSCs are aimed at maintaining
stem cells after injury, as well as creating the infrastructure for
restoring the stem cell niche. MSCs have the ability to regulate
niche restoration, focusing on signals of tissue damage, as well as
nearby cells and the nervous system. Presumably, the ability of
these cells to secrete regulatory molecules and complexes
of various nature plays a key role in regulating the function of
MSCs. However, the contribution ofMSC differentiation to niche
restoration can also be significant, because an imbalance in
differentiation leads to a disruption in the cellular composition
of the stem cell niche and regulation of stem cell behavior. The
potential of MSCs to develop into tissue-specific stem cells, as
well as to support the dedifferentiation ofmicroenvironment cells
into stem cells, is also important.

MSCs are actively involved in tissue regeneration, which is
reflected by the effectiveness of using MSCs or MSC-derived
products in several injury models. This is due to the presence
of common mechanisms of tissue regeneration and common
functional patterns of MSCs that can affect them (Strioga
et al., 2012). However, the source of MSCs can to some extent
determine the effectiveness of using MSCs or MSC-derived
products. One of the reasons may be the different sensitivity of
MSCs to culture conditions. Hence, cell culture media can exert
different effects on the secretory or differentiation potential of
individual types of MSCs (Al-Saqi et al., 2014; Sagaradze et al.,
2019a). Another reason may be the persistent specialization of
MSCs with respect to tissue-specific stem or resident cells (Tran
et al., 2008; Pittenger et al., 2019). Therefore, it is advisable
to consider the use of MSCs from tissue-matched sources to
increase the effectiveness of MSCs or MSC-derived products
(Niemeyer et al., 2010).

Senescence of MSCs causes functional changes and
impairment of their regenerative capacity emphasizing the
importance of potential rejuvenation strategies, especially for
autologous MSC-based therapy (Efimenko et al., 2015; Neri and
Borzì, 2020). However, the current knowledge of senescence
is primarily based on bulk cell data. Novel techniques such
as single-cell RNA sequencing, extended time-lapse in vivo
imaging, and genetic lineage tracing would provide a more
complete understanding of MSC aging process, making it
possible to slow senescence or even rejuvenate aged MSCs (Liu
et al., 2020).

If it is impossible or technologically complex to implement
this approach, one can consider alternative methods for
restoring a stem cell niche using MSCs. Therefore, it is
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possible to activate MSC-mediated tissue regeneration using
mediators of inflammation and regeneration in vivo (Van
Megen et al., 2019). Activation of MSCs can also be facilitated
by simulating positive feedback between MSCs and resident
cells (Ferland-McCollough et al., 2018). Hence, the most
effective use of MSCs in regenerative medicine can be
achieved if MSCs are able to transduce the signals, and
target niches will perceive tissue-specific proregenerative signals.
Considering MSCs as critical contributors that preserve a
pool of stem cells and restore a stem cell niche after
injuries, we conclude that for an effective stimulation of tissue
regeneration, it is extremely important to understand how
to manage the tissue-specific interactions between MSCs and
niche cells.
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