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Abstract 

Background: Long non-coding RNAs (lncRNAs) play an important role in the immune processes of 
glioma. Immune related lncRNAs (IRlncRs) may be a critical prognosis in patients with glioma. The 
current study aimed to construct a glioma immune-related prognosis model by IRlncRs. 
Methods: Transcriptome RNA-sequencing data of glioma were obtained from The Cancer Genome 
Atlas (TCGA) and an immune-related risk score (IRRS) model was constructed by Lasso and multivariate 
Cox regression analysis. Receiver Operating Characteristic (ROC) curves were used to assess the 
sensitivity and specificity of the prognosis on IRRS. A predictive nomogram and a time-dependent ROC 
curve was performed in training and validation cohort. We explored the relationships between 
survival-related IRlncRs (sIRlncRs) and clinicopathologic parameters. Functional annotation of the 
sIRlncRs was investigated by gene set enrichment analysis (GSEA) and principal component analysis 
(PCA). The relationships between IRRS model and immune cell infiltration and co-expression network 
analysis among the sIRlncRs were performed for molecular mechanism study. 
Results: A total of 10 sIRlncRs were enrolled to build IRRS model. The IRRS was identified as an 
independent prognostic factor and correlated with the overall survival (AUC =0.880). The nomogram 
was constructed successfully with IRRS, age and grade as variables. Immune cell infiltration analysis 
indicated that B cells, neutrophil, dendritic and macrophage cells were positively correlated with IRRS. 
PCA and GSEA illustrated that the lncRNA signature enrolled the IRRS model was closely related to 
immune status. Additionally, co-expression network showed that there was a strong correlation 
between 10 sIRlncRs at the transcriptional level. 
Conclusion: We successfully constructed a remarkable clinical model of sIRlncRs with potential 
prognostic value for glioma patients, which provides an insight into immunological research and 
treatment strategies of glioma. 
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Introduction 
Glioma is the most common primary cancer of 

the central nervous system caused by astrocytes or 
astrocyte precursor cells, which accounts for 
approximately 81% of all malignant intracranial 
tumors [1]. Every year, about 100,000 people 
worldwide are diagnosed as gliomas [2]. Based on the 
degree of cell malignancy, gliomas are classified as 
grade 4 and the degree of malignancy increases with 

the enhancement of grade [3]. The low-grade glioma 
(LGG) is only account for 15% of all gliomas [3, 4] and 
the 5-year survival rate of patients with LGG is 
30-70%. However, glioblastoma (GBM), the most 
lethal glioma, accounts for 70% of all glioma, the 
median survival time of patients with GBM is only 
9-12 months and the 5-year survival rate is 0.05% to 
4.7% [5, 6], which indicated that the prognosis of most 
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glioma patients is still poor. Therefore, it is necessary 
to further study the clinical diagnosis and treatment 
methods of glioma, explore new risk factors and 
molecular markers, and develop new therapeutic 
targets, which have improved the clinical prognosis of 
patients with glioma. 

Long non-coding RNAs (lncRNAs) were once 
considered as RNA transcripts with a base length 
greater than 200 nucleotides and lacking 
protein-coding ability. Recent studies have shown 
that lncRNAs play key roles in a wide range of 
cellular biological processes by regulating gene 
expression at the transcriptional, post-transcriptional 
and epigenetic levels [7, 8]. Moreover, lncRNAs 
significantly affect the immune processes of tumors, 
including antigen exposure and recognition, as well 
as immune infiltration [9]. Notably, multiple aberrant 
expressions of lncRNAs play indispensable roles in 
the onset and progression of glioma malignancy, 
including the stemness, proliferation, angiogenesis 
and drug resistance [10, 11], which have important 
clinical implications in the glioma diagnosis of 
sub-classification [12] and prognostication [12, 13]. 
For example, the overexpression of lncRNA PXN- 
AS1-L is associated with unfavorable prognosis in 
patients suffering from glioma [14]. One of the 
distinctive features of lncRNAs is their highly tissue 
and cell type specific expression patterns [15], which 
could accurately classify different subtypes of glioma 
and predict responses to treatments. In addition, 
lncRNAs transmitted from cell to cell participate in 
intercellular communications for maintaining 
microenvironment homeostasis or mediating tumor 
metastasis [16]. 

Currently, cancer immunotherapy is a validated 
and critically important approach for treating patients 
with cancer, particularly immune checkpoint 
inhibitors including programmed death 1, PD-1 
ligand, and cytotoxic T lymphocyte-associated 
antigen [17]. Although it is also used in glioma, the 
effect is not satisfactory [18]. Immune-related genes 
(IRGs), such as immune related lncRNAs (IRlncRs), 
are abundant in immune cells and tumor immune 
microenvironment, which are involved in the 
tumorigenesis and tumor progression of glioma [19]. 
Therefore, the study of the immune-related molecular 
mechanism in glioma is of great significance for the 
treatment and prognosis of patients with glioma. 

In this study, we designed to investigate the 
clinical role of IRlncRs in prognostic evaluation of 
glioma. We extracted a series of IRlncRs in tumor 
immune microenvironment as predictive factors and 
further constructed a prognosis model to evaluate the 
relationship between the model with overall survival 
(OS) in combination with their clinicopathological 

features. The study would be helpful to establish a 
personalized quantitative predictive model and 
elucidate the potential mechanism of IRlncRs in 
glioma. 

Methods 
Publicly available mRNA data 

A series of transcriptome RNA-sequencing data 
of human glioma samples were downloaded from the 
TCGA data portal (https://porta l.gdc.cance r.gov/), 
which were updated to November 11, 2019. The 
inclusion and exclusion criteria of data for the further 
analysis were as follows. The inclusion criteria: 1. 
Data of gliomas including Low grade (LGG) gliomas 
and glioblastomas (GBM); 2. The gene expression of 
fragments per kilobase million (FPKM) were 
normalized in transcriptome. The exclusion criteria: 1. 
Survival time is less than or equal to 30 days; 2. 
Clinical data is null or information is not clear; 3. 
Normal or paracancerous tissue samples; 4. 
Annotation information is not matched with the 
samples information. 5. Duplicate data. The data was 
prepared to further analyze after processing. 
RNA-seq results were combined into a matrix file 
using a merge script in the Perl language 
(http://www.perl.org/). Next, the script in the Perl 
language was also used to convert the Ensembl ID of 
genes into a matrix of gene symbols. Because the data 
were downloaded directly from public databases and 
we strictly followed the publishing guidelines 
provided by TCGA, no ethical approval was required. 

IRlncRs acquisition 
The Molecular Signatures Database V4.03 

(Immune system process M13664, Immune response 
M19817, http://www.broad institute.org/gsea/ 
msigdb/index.jsp) was used to specify IRGs 
participation in the immune process. IRGs were used 
to establish the immune score of glioma gene by Gene 
Set Enrichment Analysis (GSEA). Pearson correlation 
analysis was used to evaluate the association by 
co-expression analysis between immune gene and 
lncRNA in glioma patients (“limma” R package with a 
standard of |r| > 0.7 and p < 0.001). 

Construction and validation of the 
immune-related risk score (IRRS) model 

Survival-related IRlncRs (sIRlncRs), associated 
with clinical outcomes in glioma patients, were 
screened by a univariate Cox proportional regression 
model using “survival” R package (p < 0.001). Next, 
the least absolute shrinkage and selection operator 
(LASSO) method was used for the selection of 
variables by a Cox regression model to determine 
significant prognostic lncRNAs with “glmnet” R 
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package. To make our model more optimized and 
practical, a stepwise Cox proportional hazards 
regression model was used carried out by “survival” 
and “glmnet” R packages. Finally, a risk score 
formula was calculated by considering the expression 
of optimized genes and correlation estimated Cox 
regression coefficients: 

𝑅𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒𝑠 (𝑅𝑆) = � 𝐸𝑥𝑝𝑖 ∗ 𝐶𝑜𝑒𝑖.
𝑁

𝑖−1
 

All glioma patients with survival time were 
randomly divided into the training and validation 
cohort at a ratio of 7:3 using the “caret” R package. 
The median RS served as a cutoff value to classify the 
patients into the high- or low-risk groups in each 
cohort. ROC curves were utilized to assess the 
sensitivity and specificity of the prognosis by “time 
ROC” R package. Kaplan-Meier plot was applied to 
visualize the OS probability of glioma patients 
between high-risk group and low-risk group in which 
survival differences were evaluated by a two-sided 
log-rank test. 

Identification of independent prognostic 
factors 

We performed rough analysis to identify 
potential risk factors in univariate Cox regression 
analysis. After selecting the potential risk factors, we 
used three selection procedures (forward, backward, 
and stepwise) for multivariate Cox regression analysis 
to select the most suitable model. The statistical 
significance level was 0.05 used to select the variables. 
Next, the “survival ROC” R package was used to 
draw the ROC curves of multiple items (containing 
age, gender, grade and IRRS) to evaluate the accuracy 
of the predicted survival probability. 

Construction and validation of a predictive 
nomogram 

The nomogram was performed by “rms” R 
package consisting of independent prognostic factors 
and related clinical parameters as variables based on 
multivariate Cox regression analysis in training and 
validation cohort. According to the different variables 
feature, a horizontal straight line was draw to 
ascertain the points for each variable, and the total 
points of each patient were calculated by adding the 
points of all variables together, which were 
normalized to a distribution from 0 to 100. The 
estimated OS rates at 1, 3, and 5 years of glioma 
patients were calculated by drawing a vertical line 
between the total point coordinate axis and each 
prognostic coordinate axis. The concordance index 
(C-index) by “survcomp” R package and calibration 
plot by “rms” R package were applied to validate the 
performance of the nomogram in training and 

validation cohort (by a bootstrap method with 1,000 
resamples). 

Principal component analysis (PCA) and Gene 
set enrichment analysis (GSEA) 

PCA was carried out with “scatterplot3D” R 
package to demonstrate the expression of glioma 
samples in low-risk and high-risk groups. GSEA was 
used to detect the different functional phenotype 
between the low-risk group and high‐risk group in 
the TCGA cohort. p < 0.05 was considered statistically 
significant. 

Correlation analysis between immune-related 
lncRNA signature and immune cells 
infiltration 

To explore the associations between immune 
related lncRNA signature and immune cells 
infiltration, we employed Tumor Immune Estimation 
Resource (TIMER) [20] (https://cistrome.shinyapps. 
io/timer/), a useful resource for comprehensive 
analysis of tumor infiltrating immune cells. TIMER 
algorithm allows users to estimate the composition of 
six tumor infiltrating immune cells subsets (B cells, 
CD4+ T cells, CD8+ T cells, macrophages, neutrophils, 
and dendritic cells). The immune infiltrate levels of 
glioma patients were derived from TIMER website. 
The correlation between the prognostic model and six 
tumor-infiltrating immune cells were conducted in R. 

IRlncRs co-expression analysis 
To define the strength of these transcriptional 

level relationships, co-expression relationships among 
these IRlncRs were calculated based on RNAseq 
levels, and Pearson correlations between genes were 
calculated by “corrplot” R package. 

Statistical analysis 
All data analysis was carried out by R version 

4.0.2 and corresponding packages. For all data, 
statistical significance was indicated in the figures as 
follows: *p < 0.05, **p < 0.01, ***p < 0.001. 

Results 
Acquisition of glioma expression and clinical 
data 

Fragments per kilobase per million normalized 
expression used as the RNA-seq results of 698 glioma 
samples and 5 normal samples were obtained from 
TCGA. In addition, there were 629 glioma patients 
with survival information enrolled from TCGA 
dataset. The transcriptome data was processed to 
convert the data ensembl ID into gene names and 
divided into lncRNA and mRNA. Additionally, we 
identified 331 glioma IRGs from the Immune system 
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process M13664 and Immune response M19817 of 
Molecular Signatures Database. 

The correlation analysis of IRlncRs and 
prognosis 

Firstly, a total of 92 lncRNAs were identified to 
be the IRlncRs by correlation analysis of co-expression 
(Supplementary Table 1). Then, we identified 63 
IRlncRs (Supplementary Table 2) by the univariate 
Cox proportional regression model. Next, 18 IRlncRs 
were identified by lasso analysis (Figure 1a, 1b). 
Lastly, 10 sIRlncRs including CYTOR, AC145098.1, 

AC012073.1, LINC00900, AC009227.1, AC010536.3, 
AC125616.1, AF106564.1, AC126118.1 and 
AC018647.1, were identified for the construction of 
the prognostic model by multivariate Cox regression 
analysis to establish the IRRS model (Figure 1c). The 
regression coefficients of CYTOR, AC145098.1, 
AC012073.1 and LINC00900 were positive, while the 
regression coefficients of AC009227.1, AC010536.3, 
AC125616.1, AF106564.1, AC126118.1 and AC018647.1 
were negative. 

 

 
Figure 1. Identification of IRlncRs associated with glioma prognosis. a, b. Eighteen IRlncRs were identified by the lasso regression analysis. c. Ten sIRlncRs were identified for the 
construction of a prognostic model by the multivariate Cox regression analysis. 
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Figure 2. Construction and validation of the IRRS model for survival prediction in training cohort (a1, b1, c1, d1, e1) and validation cohort (a2, b2, c2, d2, e2). a1, a2. The risk 
score distribution of glioma patients. b1, b2. Survival status and duration of patients. c1, c2. Heatmap of the ten immune‐related genes expression in glioma patients. d1, d2. The 
OS in the high-risk group was significantly worse than that in the low-risk group. e1, e2. Receiver operating characteristic curve (ROC) analysis predicted OS probability based 
on the IRRS. 

 

Construction and validation of the IRlncRs 
signature for survival prediction 

A total of 629 glioma patients with survival 
information were randomly assigned to training 

cohort (n=441) and validation cohort (n=188). The 
IRRS of each glioma patients in the TCGA were 
calculated, and these patients were divided into the 
high-risk group and the low-risk group by median 
IRRS (Figure 2a1). The mortality rate constantly 
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increased with the higher IRRS (Figure 2b1). With the 
enhancement of IRRS, the expression levels of 
CYTOR, AC012073, AC145098.1.1 and LINC00900 
were individually elevated, while the AC009227.1, 
AF106564.1, AC125616.1, AC018647.1, AC010536.3, 
and AC126118.1 expressed decreasingly (Figure 2c1). 
Also, the OS probability of the high-risk group was 
significantly shorter than that of the low-risk group 
based on Kaplan-Meier analysis and log-rank test (p < 
0.001, Figure 2d1). The AUC values of time-dependent 
ROC curves on 1-, 3- and 5- years were 0.858, 0.847 
and 0.760 in training cohort, which indicated higher 
sensitivity and specificity of the IRRS model to predict 
OS of patients with glioma (Figure 2e1). 

The predictive power of the IRRS model was 
confirmed by validation cohort. The IRRS, mortality 
rate, the expression levels of 10 sIRlncRs and OS 
analysis in validation cohort with the same trend in 
training cohort (Figure 2: a2, b2, c2, d2). The AUC 
values of time-dependent ROC curves on 1-, 3- and 5- 
years were 0.866, 0.734 and 0.640 in validation cohort 
(Figure 2e2). 

Independent prognostic factor identification 
and prognostic nomogram construction 

According to the criteria of inclusion and 
exclusion, there were 476 glioma samples with 
detailed clinical information enrolled. The baseline 
characteristics of these patients were shown in Table 
1. We identified the independent prognostic factors in 
patients with glioma by univariate and multivariate 
analysis in entire cohort. The results indicated that 
age, grade and IRRS can be independent predicated 
factors affecting prognosis (Figure 3a, 3b). The AUC 
values of IRRS, age and grade were 0.880, 0.803 and 

0.684 respectively (Figure 3c). To provide the clinician 
with a quantitative method for predicting the 
probability of 1-,3- and 5-year OS in glioma, a 
nomogram incorporating IRRS, age and grade as 
variables was constructed in training cohort (Figure 
4a1) and validation cohort (Figure 4a2). The 
calibration plots, the predictive curves were close to 
the ideal curves, showed that the performance of the 
nomogram was the best in predicting the 1-, 3-, and 
5-year OS in training cohort (Figure 4: b1, c1, d1) and 
validation cohort (Figure 4: b2, c2, d2). The C-index of 
our nomogram reached 0.843 (95% CI: 0.801-0.884) in 
training cohort and 0.852 (95% CI: 0.795-0.909) in 
validation cohort, respectively. The nomogram can be 
used to predict the OS rate of different patients 
according to their own conditions to improve the 
prediction efficiency and accuracy. 

Correlation between sIRlncRs and 
clinicopathologic indicators 

To investigate the relevance of the sIRlncRs and 
clinicopathological features of glioma, we analyzed 
the correlation between IRRS and clinical grade in 
entire cohort. The clinical characteristics of patients 
with high-risk score and low-risk score were shown in 
Table 1. Ultimately, we found the expression of 
CYTOR, AC145098.1 and AC012073.1 enhanced in the 
grade 3 (G3) than grade 2 (G2); the expression levels 
of AC018647.1, AC018647.1, AF106564.1 and 
AC125616.1 were decreased in the grade 3; while 
there were no differences in the expression of 
AC010536.3, AC126118.1, and LINC00900 between 
grade 3 and grade 2 (Figure 5). 

 

 
Figure 3. The analysis of independent prognostic factors in patients with glioma. a. Univariate Cox regression analysis. b. Multivariate Cox regression analysis. c. Receiver 
operating characteristic (ROC) curve of risk score and clinicopathologic features. 
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Figure 4. Construction and validation of the Prognostic Nomogram in training (a1, b1, c1, d1) and validation (a2, b2, c2, d2) cohort. a1, a2. Construction of the nomogram was 
based on the IRRS, age and grade. b1 and b2, c1 and c2, d1 and d2. Calibration plot for the internal validation of the nomogram. 
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Figure 5. The relationships between the 10 sIRlncRs and clinical grade in patients with glioma in entire cohort. ns, no significance. 

 

Table 1. Baseline characteristics of glioma patients in TCGA 

Clinical 
Characteristics 

All High risk Low risk p-value 

No. 476 161 315 - 
Age, median (IQR) 41 (33 to 53) 47 (35 to 59) 39 (32 to 49) <0.001 
Gender, No. (%)     
Female 216 (45%) 69 (42.86%) 147 (46.67%) 0.43 
Male 260 (55%) 92 (57.14%) 168 (53.33%) 
Grade, No. (%)     
G2 231 (49%) 47 (29.19%) 184 (58.41%) <0.001 
G3 245 (51%) 114 (70.81%) 131 (41.59%) 
Futime, median 
(IQR) 

590 (375 to 1105.5) 546(326 to 915) 622 (407 to 1164) 0.0363 

Fustat, No. (%)     
Live 369 (78%) 96 (59.63%) 273 (86.67%) <0.001 
Death 107 (22%) 65 (40.37%) 42 (13.33%) 

Note: IQR, interquartile range; Futime, survival time; Fustat, survival state. 
p-value: p value represents the difference of clinical characteristics between high 
and low risk groups. 

 

The immune status of the low and high-risk 
group 

We employed the PCA to detect the different 
distribution patterns between the low-risk group and 
the high-risk group in entire cohort. In the sIRlncRs 
gene set (Figure 6a), the low-risk group and the 
high-risk group were separated into two parts, of 
which the low-risk group having the lower immune 
scores than the high-risk group. While we didn’t 
detect the significant separation of the risk score based 
on the IRlncRs gene set (Figure 6b), IRGs set (Figure 
6c) and all gene sets (Figure 6d). The results of GSEA 
further confirm that immune-related responses and 
processes are more common in high-risk groups 
(Figure 6e, 6f). The relationships between the risk 

score model and immune cell infiltration were 
investigated. As shown in Figure 7, B cells, neutrophil, 
dendritic cells and macrophage were positive 
correlated with risk score, respectively. However, no 
significant correlations were observed between CD4+ 
T cells, CD8+ T cells and risk score. 

Co-expression of sIRlncRs 
Based on co-expression analysis between 

lncRNAs and immune gene, we found AC145098.1 
and AC018647.1 among the 10 sIRlncRs were closely 
associated with immune gene (Figure 8a). Meanwhile, 
as is shown in the Figure 8b, the 10 sIRlncRs had a 
close correlation between each other and formed a 
complex network of biological regulation, in which 
the highest positive correlation is AF106564.1 and 
AC125616.1 (0.72), while the highest negative 
correlation is LINC00900 and AC009227.1 (-0.54). 

Discussion 
Glioma is the most invasive tumor of the human 

nervous system. Despite some major advances in 
treatment, including surgery, chemotherapy and 
radiation therapy, have been developed and widely 
used. Due to the aggressive growth of glioma, 
complexity of intracranial anatomy of the central 
nervous system and the presence of the blood-brain 
barrier [21,22], the treatment outcome of glioma 
patients remains unsatisfactory. Multiplied studies 
have revealed that the individual variation at the 
genetic level should be the cause of this phenomenon 
[23]. As glioma is a heterogeneous disease 
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characterized by variant morphologic and molecular 
altered, the prognosis and tumor response to therapy 
varied greatly between different individual patients 
with similar clinical risk factors [24]. 

During the past decades, lncRNA have attracted 
more and more attention from researchers, especially 
IRlncRs. LncRNAs exist in either the nucleus or 
cytoplasm, and play distinct functions depend on 

their subcellular localizations. In the nucleus, 
lncRNAs may participate in transcriptional regulation 
of gene expression and mRNA splicing. While in the 
cytoplasm, they could affect mRNA stability and 
regulate protein function [25]. Moreover, lncRNAs 
exert their functions through multiple molecular 
mechanisms, such as binding with DNA to modulate 
gene transcription, acting as the ceRNA or miRNA 

 

 
Figure 6. Principal components analysis (PCA) and Gene set enrichment analysis (GSEA) in entire cohort. The high‐risk group and low‐risk group demonstrated different 
immune status. PCA between high‐risk group and low‐risk group based on the sIRlncRs gene sets (a), IRlncRs gene sets (b), IRGs sets (c), and all gene sets (d), respectively. The 
red and green dots represent high-risk and low-risk gene, respectively. GSEA indicated significant enrichment of immune‐related phenotype in the high‐risk group (e and f). 
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sponges to regulate gene expression at 
posttranscriptional level, associating with proteins, 
and encoding functional small peptides [26]. It has 
been confirmed that LncRNAs can function as 
molecular signaling mediators to regulate glioma 
phenotypes through mediating the expression of 
genes in NEAT1-WNT/β catenin [27] and CRNDE- 
mTOR signaling pathway [28]. For instance, LncRNA 
HULC regulates ESM-1 through PI3K/Akt/mTOR 
signaling pathway and plays a critical role in 
pro-angiogenesis in human glioma [29]. LINC01198 
was proved to be up-regulated in glioma cell lines, 
and silenced LINC01198 inhibited glioma cell 
proliferation and accelerated cell apoptosis [30]. 
Therefore, it is of great clinical significance to explore 
the potential therapeutic targets and accurate 
prognostic indicators of glioma. 

In the current study, the parameters of screening 
lncRNAs to construct the prognosis model were 
apparently different from previous studies [31-33]. In 
total, 10 sIRlncRs signature were included in the IRRS 
model to predict clinical prognosis. Furthermore, we 
analyzed the reliability and stability of the model by 
training and validation cohort, and results indicated 
the model was robust. Most glioma occurs with a 
30-50% higher incidence in males than females and 

increase with age in adult [34]. Risk of death enhanced 
1.23-fold in recurrent glioma patients with decade 
increase in age, and 2.01-fold in initial histology of 
GBM [35]. Generally, there is a poor prognosis in 
patients with high-grade glioma according to 
morphological criteria [36]. Moreover, the immune 
related lncRNA signature is significantly related to 
survival of glioma [32]. In our prognosis model, both 
univariate and multivariate Cox regression analyses 
were performed to identify independent prognostic 
factors of glioma patients among age, gender, grade 
and IRRS. Only age, grade and IRRS were selected as 
variables in the construction of nomogram in training 
and validation cohort to provide the clinician with a 
quantitative method for predicting the probability of 
1-,3- and 5-year OS. The gender was excluded because 
its p value was higher than 0.05 in univariate and 
multivariate Cox regression analyses. (Figure 4: b1 
and b2, c1 and c2, d1 and d2). Of note, the previous 
studies showed that some lncRNAs upregulated in 
glioma can promote the proliferation and invasion of 
glioma cells [37,38], while some lncRNAs 
downregulated in glioma may play a role in inhibiting 
tumor cell proliferation and promoting apoptosis [39]. 
We also analyzed the relationship between sIRlncRs 
expression and clinical pathological grade, and 

 

 
Figure 7. Relationships between the IRRS model and infiltration abundances of six types of immune cells in entire cohort. These immune cells include CD4-T cell (a), CD8-T cell 
(b), B cell (c), neutrophil (d), dendritic cell (e), and macrophage (f). 
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further clarified the guiding role of prognosis model 
for clinical. 

In the meantime, we additionally carried out the 
PCA, GSEA, the correlation between immune related 
signature and immune cell infiltration and the co 
expression gene network analysis, which were 
definite different from Zhou M [31] and pan YB’s [33] 
study. We performed PCA to study the distribution 
patterns of all genes, IRGs, IRlncRs and sIRlncRs in 
low-risk and high-risk groups. According to the 
sIRlncRs set, the low-risk group and the high-risk 
group tend to be divided into two parts. The immune 
score of the low-risk group is lower than that of the 
high-risk group (Figure 6a). When PCA was 
performed according to all genes, IRGs, IRlncRs 
genome expression, there was no significant 
separation of immune status in these groups (Figure 
6b, 6c, 6d). GSEA was applied to further verify the 
functional annotation. We found that there were more 
immune related reactions and processes in high-risk 
groups, with higher scores indicating the poor 
prognosis. PCA and GSEA analysis suggested that 
immune related biological reactions were more 
common in high-risk population of glioma. Previous 
studies have shown that immune microenvironment 
is closely associated with tumor prognosis. Multiple 
researchers have revealed the impact of the immune 
microenvironment on tumor cells [40,41]. In our 
study, the results suggest that IRRS was positively 
correlated with the contents of B cells, neutrophils, 
dendritic and macrophage cells in the tumor immune 

microenvironment, which further indicated that the 
IRRS model constructed in this study has positive 
significance for clinical prognosis. 

In addition, we also explored the potential 
molecular mechanism of the sIRlncRs expression in 
glioma. By co-expression network analysis, we found 
AC145098.1 and AC018647.1 in the ten sIRlncRs were 
closely associated with immune gene. Relationships 
among these sIRlncRs calculated based on RNAseq 
levels, we found that there was a strong correlation 
between 10 sIRlncRs at the transcriptional level. These 
results suggest that the risk assessment score based on 
the 10 sIRlncRs can contribute to identify high-risk 
patients from the same clinical or molecular 
characteristics to achieve individualized and 
appropriate treatment strategies. 

In brief, we have achieved a group of different 
IRlncRs to construct and validate the prognosis model 
successfully. The significance of our study is helpful 
for validating previous results in which IRlncRs are of 
important clinical implications in patients with 
glioma. Despite our results provided reliable evidence 
for further analysis to study the occurrence and 
development of glioma, limitations inevitably affect 
our research. More datasets of whole genome 
sequencing in glioma disease are needed to validate 
prognostic model and potential biomarkers. The 
efficiency of these sIRlncRs signature in glioma 
remains to be further verified by functional and 
mechanism experiments in vitro and in vivo. 

 

 
Figure 8. Correlation analysis of the ten sIRlncRs. a. Correlation of co-expression between sIRlncRs and immune gene at transcriptional level. The polygons represent immune 
gene, the squares represent sIRlncRs. The edges represent the relationship between sIRlncRs and immune gene. The width is proportional to the degree of correlation. b. 
Correlation analysis among 10 sIRlncRs. The red bands represent positive correlation, and the green bands show negative correlation. The width of the bands represents the 
degree of correlation between the sIRlncRs. 
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Conclusion 
In conclusion, we successfully constructed a 

sIRlncRs prognostic model with powerful predictive 
function and analyzed the potential mechanism of the 
10-sIRlncRs included in the model. The study has 
certain guiding value for the analysis of the 
pathogenesis and clinical treatment of glioma, and 
these sIRlncRs may become new biomarkers and 
therapeutic targets for inhibiting the development of 
glioma. 
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