
Dynamics of scene representations in the human brain revealed 
by magnetoencephalography and deep neural networks

Radoslaw Martin Cichya,b,*, Aditya Khoslab, Dimitrios Pantazisc, and Aude Olivab

aDepartment of Education and Psychology, Free University Berlin, Berlin, Germany

bComputer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

cMcGovern Institute for Brain Research, MIT, Cambridge, MA, USA

Abstract

Human scene recognition is a rapid multistep process evolving over time from single scene image 

to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography 

(MEG) data to unravel the time course of this cortical process. Following an early signal for lower-

level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. 

spatial layout processing, at ~250 ms indexing neural representations robust to changes in 

unrelated scene properties and viewing conditions. For a quantitative model of how scene size 

representations may arise in the brain, we compared MEG data to a deep neural network model 

trained on scene classification. Representations of scene size emerged intrinsically in the model, 

and resolved emerging neural scene size representation. Together our data provide a first 

description of an electrophysiological signal for layout processing in humans, and suggest that 

deep neural networks are a promising framework to investigate how spatial layout representations 

emerge in the human brain.
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Introduction

Perceiving the geometry of space is a core ability shared by all animals, with brain structures 

for spatial layout perception and navigation preserved across rodents, monkeys and humans 

(Epstein and Kanwisher, 1998, 1998; Doeller et al., 2008, 2010; Moser et al., 2008; Epstein, 

2011; Jacobs et al., 2013; Kornblith et al., 2013; Vaziri et al., 2014). Spatial layout 

perception, the demarcation of the boundaries and size of real-world visual space, plays a 

crucial mediating role in spatial cognition (Bird et al., 2010; Epstein, 2011; Kravitz et al., 

2011a; Wolbers et al., 2011; Park et al., 2015) between image-specific processing of 
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individual scenes and navigation-related processing. Although the cortical loci of spatial 

layout perception in humans have been well described (Aguirre et al., 1998; Kravitz et al., 

2011b; MacEvoy and Epstein, 2011; Mullally and Maguire, 2011; Park et al., 2011; Bonnici 

et al., 2012), the dynamics of spatial cognition remain unexplained, partly because neuronal 

markers indexing spatial layout processing remain unknown, and partly because quantitative 

models of spatial layout processing are missing. The central questions of this study are thus 

twofold: First, what are the temporal dynamics with which representation of spatial layout 

emerge in the brain? And second, how can the emergence of representations of spatial layout 

in cortical circuits be modeled?

The temporal dynamics of spatial layout processing

Given the intermediate position of spatial layout perception in the visual processing 

hierarchy between image-specific processing of individual scenes and navigation-related 

processing, we hypothesized that a signal for spatial layout processing would emerge after 

signals related to low-level visual processing in early visual regions (~100 ms, (Schmolesky 

et al., 1998; Cichy et al., 2015a)), and before activity observed typically in navigation-

related regions such as the hippocampus (~400 ms (Mormann et al., 2008)). Further, to be 

considered as an independent step in visual scene processing, spatial layout must be 

processed tolerant to changes in low-level features, including typical variations in viewing 

conditions, and to changes in high-level features such as scene category. We thus 

hypothesized that representation of spatial layout would be tolerant to changes in both low- 

and high-level visual properties.

To investigate, we operationalized spatial layout as scene size, that is the size of the space a 

scene subtends in the real-world (Kravitz et al., 2011a; Park et al., 2011, 2015). Using 

multivariate pattern classification (Carlson et al., 2013; Cichy et al., 2014; Isik et al., 2014) 

and representational similarity analysis (Kriegeskorte, 2008; Kriegeskorte and Kievit, 2013; 

Cichy et al., 2014) on millisecond-resolved magnetoencephalography data (MEG), we 

identified a marker of scene size around 250 ms, preceded by and distinct from an early 

signal for lower-level visual analysis of scene images at ~100ms. Furthermore, we 

demonstrated that the scene size marker was independent of both low-level image features 

(i.e. luminance, contrast, clutter, image identity) and semantic properties (the category of the 

scene, i.e. kitchen, ballroom), thus indexing neural representations robust to changes in 

viewing conditions as encountered in real-world settings.

A model of scene size representations

As an intermediate visual processing stage, spatial layout perception is likely to be 

underpinned by representations in intermediate- and high-level visual regions, where 

neuronal responses are often complex and nonlinear. To model such visual representations, 

complex hierarchical models might be necessary. We thus hypothesized that representation 

of scene size would emerge in complex deep neural networks, rather than in compact models 

of object and scene perception. To investigate, we compared brain data to a deep neural 

network model trained to perform scene categorization (Zhou et al., 2014, 2015), termed 

deep scene network. The deep scene network intrinsically exhibited receptive fields 

specialized for layout analysis, such as textures and surface layout information, without ever 
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having been explicitly taught any of those features. We showed that the deep scene neural 

network model predicted the human neural representation of single scenes and scene space 

size better than a deep object model and standard models of scene and object perception 

HMAX and GIST (Riesenhuber and Poggio, 1999; Oliva and Torralba, 2001). This 

demonstrates the ability of the deep scene model to approximate human neural 

representations at successive levels of processing as they emerge over time.

In sum, our results give a first description of an electrophysiological signal for scene space 

processing in humans, providing evidence for representations of spatial layout emerging 

between low-level visual and navigation-related processing. They further offer a novel 

quantitative and computational model of the dynamics of visual scene space representation 

in the cortex, suggesting that spatial layout representations naturally emerge in cortical 

circuits learning to differentiate visual environments (Oliva and Torralba, 2001).

Materials and methods

Participants

Participants were 15 right-handed, healthy volunteers with normal or corrected-to-normal 

vision (mean age ± s.d.=25.87 ± 5.38 years, 11 female). The Committee on the Use of 

Humans as Experimental Subjects (COUHES) at MIT approved the experiment and each 

participant gave written informed consent for participation in the study, for data analysis and 

publication of study results.

Stimulus material and experimental design

The image set consisted of 48 scene images differing in four factors with two levels each, 

namely two scene properties: physical size (small, large) and clutter level (low, high); and 

two image properties: contrast (low, high) and luminance (low, high) (Fig. 1A). There were 3 

unique images for every level combination, for example 3 images of small size, low clutter, 

low contrast and low luminance. The image set was based on behaviorally validated images 

of scenes differing in size and clutter level, sub-sampling the two highest and lowest levels 

of factors size and clutter (Park et al., 2015). Small scenes were of size that would typically 

fit 2–8 people, whereas large scenes would fit hundreds to thousands. Similarly, low clutter 

level scenes were empty or nearly empty rooms, whereas high clutter scenes contained 

multiple objects throughout. The contrast and luminance was adjusted to specific values for 

each image: images of low and high contrast had root mean square values of 34% and 50% 

respectively; images of low and high luminance had root mean square values of 34% and 

51% respectively.

Participants viewed a series of scene images while MEG data was recorded (Fig. 1B). 

Images subtended 8° of visual angle in both width and height and were presented centrally 

on a gray screen (42.5% luminance) for 0.5 s in random order with an inter-stimulus interval 

(ISI) of 1–1.2 s, overlaid with a central red fixation cross. Every 4 trials on average (range 

3–5 trials, equally probable) a target image depicting concentric circles was presented 

prompting participants to press a button and blink their eyes in response. ISI between the 

concentric-circles and the next trial was 2 s to allow time for eye blinks. Target image trials 
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were not included in analysis. Each participant completed 15 runs of 312 s each. Every 

image was presented four times in a run, resulting in 60 trials per image per participant in 

total.

MEG recording

We recorded continuous MEG signals from 306 channels (Elektra Neuromag TRIUX, 

Elekta, Stockholm) at a sampling rate of 1000 Hz. Raw data was band-pass filtered between 

0.03 and 330 Hz, and preprocessed using Maxfilter software (Elekta, Stockholm) to perform 

noise reduction with spatiotemporal filters and head movement compensation. We applied 

default parameters (harmonic expansion origin in head frame =[0 0 40] mm; expansion limit 

for internal multipole base=8; expansion limit for external multipole base=3; bad channels 

automatically excluded from harmonic expansions=7 s.d. above average; temporal 

correlation limit=0.98; buffer length=10 s). In short, maxfilter software in a first step applied 

a spatial filter separating distant noise sources outside the MEG sensor helmet, before 

applying a temporal filter discarding components of the signal data whose time series 

strongly correlated with the noise data. Further preprocessing was carried out using 

Brainstorm (Tadel et al., 2011). We extracted peri-stimulus MEG signals from −100 to +900 

ms with respect to stimulus onset. To exclude trials with strong signal deviations such as 

spikes, only trials that had a peak-to-peak amplitude smaller than 8000fT were considered 

for further analysis. As the number of excluded trials might indicate systematic differences 

in body or eye movement, we investigated whether the number of excluded trials differed by 

the level of experimental factors (e.g. more excluded trials for small vs. large spaces). For 

this we counted the number of excluded trials for each level of an experimental factor (e.g. 

small vs. large spaces) for each subject, and determined significant differences (sign 

permutation test, N=15, 1,000 permutations) We found no evidence for significant 

differences for any experimental factor (all p > 0.12). Finally, for each trial, we then 

normalized each channel by its baseline (−100 to 0 ms) mean and standard deviation, and 

temporally smoothed the time series with a 20 ms sliding window.

Multivariate pattern classification of MEG data

Single image classification—To determine whether MEG signals can discriminate 

experimental conditions (scene images), data were subjected to classification analyses using 

linear support-vector machines (SVM) (Müller et al., 2001) in the libsvm implementation 

(www.csie.ntu.edu.tw/~cjlin/libsvm) with a fixed regularization parameter C=1. For each 

time point t, the processed MEG sensor measurements were concatenated to 306-

dimensional pattern vectors, resulting in M=60 raw pattern vectors per condition (Fig. 1B). 

To reduce computational load and improve signal-to-noise ratio, we sub-averaged the M 

vectors in groups of k=5 with random assignment, thus obtaining M/k averaged pattern 

vectors. We then measured the performance of the SVM classifier to discriminate between 

every pair (i,j) of conditions using a leave-one-out approach: M/k − 1 vectors were randomly 

assigned to the training test, and 1 vector to the testing set to evaluate the classifier decoding 

accuracy. The above procedure was repeated 100 times, each with random assignment of the 

M raw pattern vectors to M/k averaged pattern vectors, and the average decoding accuracy 

was assigned to the (i,j) element of a 48×48 decoding matrix indexed by condition. The 
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decoding matrix is symmetric with an undefined diagonal. We obtained one decoding matrix 

(representational dissimilarity matrix or RDM) for each time point t.

Representational clustering analysis for size—Interpreting decoding accuracy as a 

measure of dissimilarity between patterns, and thus as a distance measure in representational 

space (Kriegeskorte and Kievit, 2013; Cichy et al., 2014), we partitioned the RDM decoding 

matrix into within- and between-level segments for the factor scene size (Fig. 2A). The 

average of between-size minus within-size matrix elements produced representational 

distances (percent decoding accuracy difference) indicative of clustering of visual 

representations by scene size.

Cross-classification across experimental factors—To assess whether scene size 

representations were robust to changes of other factors, we used SVM cross-classification 

assigning different levels of experimental factors to the training and testing set. For example, 

Fig. 2C shows the cross-classification of scene size (small vs. large) across clutter, 

implemented by limiting the training set to high clutter scenes and the testing set to low 

clutter scenes. The procedure was repeated with reverse assignment (low clutter for training 

set and high clutter for testing set) and decoding results were averaged. The training set was 

12 times larger (M=720 raw pattern vectors) than for single-image decoding, as we pooled 

trials across single images that had the same level of clutter and size. We averaged pattern 

vectors by sub-averaging groups of k=60 raw pattern vectors before the leave-one-out SVM 

classification. Cross-classification analysis was performed for the cross-classification of the 

factors scene size (Fig. 2D) and scene clutter (Supplementary Fig. 3) with respect to changes 

across all other factors.

Cross-classification across scene image identity—We investigated whether size 

and clutter representations were robust to changes in images again using cross-classification. 

For example for classifying size, we assigned two of three conditions from each unique 

combination of experimental factors (there are 24=16 sets of 3 images) to the training set 

(for small and large scene bins independently), and the third condition to the test set. 

Classification was performed a second time, with reverse assignment of conditions to 

training and testing sets, and averaged. All other parameters were as described above for 

cross-classification across experimental factors.

Low and high-level computational models of image statistics

We assessed whether computational models of object and scene recognition predicted scene 

size from our image material. For this we compared four models: two deep convolutional 

neural networks that were either trained to perform (1) scene or (2) object classification; (3) 

the GIST descriptor (Oliva and Torralba, 2001), i.e. a model summarizing the distribution of 

orientation and spatial frequency in an image that has been shown to predict scene 

properties, among them size; and (4) HMAX model (Serre et al., 2005), a model of object 

recognition most akin in structure to low-level visual areas V1/V2. We computed the output 

of each of these models for each image as described below.
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Deep neural networks—The deep neural network architecture was implemented 

following Krizhevsky et al., (2012). We chose this particular architecture because it was the 

best performing model in object classification in the ImageNet 2012 competition 

(Russakovsky et al., 2014), uses biologically-inspired local operations (convolution, 

normalization, max-pooling), and has been compared to human and monkey brain activity 

successfully (Güçlü and van Gerven, 2014; Khaligh-Razavi and Kriegeskorte, 2014; 

Khaligh-Razavi et al., 2014). The network architecture had 8 layers with the first 5 layers 

being convolutional and the last 3 fully connected. For an enumeration of units and features 

for each layer see Table 3. We used the convolution stage of each layer as model output for 

further analysis.

We trained from scratch two deep neural networks that differed in the visual categorization 

task and visual material they were trained on. A deep scene model was trained on 216 scene 

categories from the Places dataset (available online at: http://places.csail.mit.edu/) (Zhou et 

al., 2015) with 1300 images per category. A deep object model was trained on 683 different 

objects with 900,000 images from the ImageNet dataset (available online at: http://

www.image-net.org/) (Deng et al., 2009) with similar number of images per object category 

(~1300). Both deep neural networks were trained on GPUs using the Cafe toolbox (Jia et al., 

2014). In detail, the networks were trained for 450,000 iterations, with an initial learning 

rate of 0.01 and a step multiple of 0.1 every 100,000 iterations. Momentum and weight 

decay were kept constant at 0.9 and 0.0005 respectively.

To visualize receptive fields (RFs) of model neurons in the deep scene network (Fig. 3B) we 

used a reduction method (Zhou et al., 2015). In short, for a particular neuron we determined 

the K images activating the neuron most strongly. To determine the empirical size of the RF, 

we replicated the K images many times with small random occluders at different positions in 

the image. We then passed the occluded images into the deep scene network and compared 

the output to the original image, constructing the discrepancy map that indicates which part 

of the image drives the neuron. We then recentered discrepancy maps and averaged, 

generating the final RF. To illustrate the RFs tuning we further plot the image patches 

corresponding to the top activation regions inside the RFs (Fig. 3B).

GIST—For the GIST descriptor (Oliva and Torralba, 2001), each image was filtered by a 

bank of Gabor filters with 8 orientations and 4 spatial frequencies (32 filters). Filter outputs 

were averaged in a 4×4 grid, resulting in a 512-dimensional feature vector. The GIST 

descriptor represents images in terms of spatial frequencies and orientations by position, 

(code available: http://people.csail.mit.edu:/torralba/code/spatialenvelope/).

HMAX—We used the HMAX model as applied and described by Serre et al. (2005), a 

model inspired by the hierarchical organization of the visual cortex. In short, HMAX 

consists of two sets of alternating S and C layers, i.e. in total 4 layers. The S-layers convolve 

the input with pre-defined filters, and the C layers perform a max operation.

Linking computational models of vision to brain data

We used representational similarity analysis to compare the output of computational models 

to brain data. First, we recorded the output of each model for each of the 48 images of the 
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image set. Then, to compare to human brain data, we calculated the pair-wise dissimilarities 

between model outputs by 1 − Spearman’s rank order correlation R. This formed 48×48 

model dissimilarity matrices (RDMs), one for each layer of each model: 8 for the deep scene 

and deep object network, 1 for GIST, and 4 for HMAX.

To compare models and brains, we determined whether images that were similarly 

represented in a computational network were also similarly represented in the brain. This 

was achieved by computing the similarity (Spearman’s R) of layer-specific model 

dissimilarity matrix with the time-point specific MEG decoding matrix for every subject and 

time point and averaging results.

We then determined whether the computational models predicted the size of a scene. We 

formulated an explicit size model, i.e. a 48×48 matrix with entries of 1 where images 

differed in size and 0 otherwise. Equivalent matrices were produced for scene clutter, 

contrast and luminance (Supplementary Fig. 1). Correlation of the explicit size model with 

any computational model RDM yielded a measure of how well computational models 

predicted scene size.

Finally, we determined whether the above computational models accounted for neural 

representations of scene size observed in MEG data. For this, we reformulated the 

representational clustering analysis in a correlation framework. The two measures are 

equivalent except that the correlation analysis takes into account the variability of the data, 

which the clustering analysis does not for the benefit of clear interpretability as percent 

change in decoding accuracy. The procedure had two steps. First, we calculated the 

similarity (Spearman’s R) of the MEG decoding accuracy matrix with the explicit size 

model for each time point and each participant. Second, we re-calculated the similarity 

(Spearman’s R) of the MEG decoding accuracy matrix with the explicit size model after 

partialling out all of the layer-specific RDMs of a given computational model for each time 

point and participant.

Statistical testing

We used permutation tests for cluster-size inference, and bootstrap tests to determine 

confidence intervals of onset times for maxima, cluster onsets and peak-to-peak latency 

differences (Nichols and Holmes, 2002; Pantazis et al., 2005; Cichy et al., 2014).

Sign permutation tests and cluster-size inference—For the permutation tests, 

depending on the statistic of interest our null hypothesis was that the MEG decoding time 

series were equal to 50% chance level, or that the decoding accuracy difference of between-

minus within-level segments of the MEG decoding matrix was equal to 0, or that the 

correlation values were equal to 0. In all cases, under the null hypothesis the sign of the 

observed effect in the MEG time course is randomly permutable, corresponding to a sign-

permutation test that randomly multiplies the whole participant-specific time courses with 

+1 or −1. We created 1,000 permutation samples. This resulted in an empirical distribution 

of the data, allowing us to convert our original data, as well as the permutation samples, into 

P-values. To control for multiple comparisons we performed cluster-size inference (Maris 

and Oostenveld, 2007). We set P=0.05 (two-sided) as cluster-definition threshold to 
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determine candidate clusters on the original and permuted data. As statistic we used cluster 

size, i.e. the number of time points in a cluster. This statistic is particularly sensitive to 

temporally extended and weakly significant effects, but insensitive to short, but highly 

significant effects. For each permutation, we determined the maximal cluster size, yielding a 

distribution of maximal cluster size under the null hypothesis. We report clusters on the 

original data only if their size exceeded the 95% confidence interval of the maximal cluster 

size distribution (P=0.05 two-sided cluster threshold).

Bootstrapping—To calculate confidence intervals (95%) on cluster onset and peak 

latencies, we bootstrapped the sample of participants 1,000 times with replacement. For each 

bootstrap sample, we repeated the above permutation analysis yielding distributions of the 

cluster onset and peak latency, allowing estimation of confidence intervals. In addition, for 

each bootstrap sample, we determined the peak-to-peak latency difference for scene size 

clustering and individual scene image classification. This yielded an empirical distribution 

of peak-to-peak latencies. Setting P < 0.05, we rejected the null hypothesis of a latency 

difference if the confidence interval did not include 0.

Label permutation tests—For testing the significance of correlation between the 

computational model RDMs and the scene size model, we relied on a permutation test of 

image labels. This effectively corresponded to randomly permuting the columns (and 

accordingly the rows) of the computational model RDMs 1,000 times, and then calculating 

the correlation between the permuted matrix and the explicit size model matrix. This yielded 

an empirical distribution of the data, allowing us to convert our statistic into P-values. 

Effects were reported as significant when passing a P=0.05 threshold. Results were FDR-

corrected for multiple comparisons.

Results

Human participants (n=15) viewed images of 48 real-world indoor scenes that differed in the 

layout property size, as well as in the level of clutter, contrast and luminance (Fig. 1A) while 

brain activity was recorded with MEG. While often real-world scene size and clutter level 

correlate, here we de-correlated those stimulus properties explicitly by experimental design, 

based on independent behavioral validation (Park et al., 2015) to allow independent 

assessment. Images were presented for 0.5 s with an inter-trial interval of 1–1.2 s (Fig. 1B). 

Participants performed an orthogonal object-detection task on an image of concentric circles 

appearing every four trials on average. Concentric circle trials were excluded from further 

analysis.

To determine the timing of cortical scene processing we used a decoding approach: we 

determined the time course with which experimental conditions (scene images) were 

discriminated by visual representations in MEG data. For this, we extracted peri-stimulus 

MEG time series in 1ms resolution from −100 to +900 ms with respect to stimulus onset for 

each subject. For each time point independently we classified scene images pair-wise by 

MEG sensor patterns (support vector classification, Fig. 1C). Time-point specific 

classification results (percentage decoding accuracy, 50% chance level) were stored in a 

48×48 decoding accuracy matrix, indexed by image conditions in rows and columns (Fig. 
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1C, inset). This matrix is symmetric with undefined diagonal. Repeating this procedure for 

every time point yielded a set of decoding matrices (for a movie of decoding accuracy 

matrices over time, averaged across subjects, see Supplementary Movie 1). Interpreting 

decoding accuracies as a representational dissimilarity measure, each 48×48 matrix 

summarized, for a given time point, which conditions were represented similarly (low 

decoding accuracy) or dissimilarly (high decoding accuracy). The matrix was thus termed 

MEG representational dissimilarity matrix (RDM) (Cichy et al., 2014; Nili et al., 2014).

Supplementary material related to this article can be found online at http://dx.doi.org/

10.1016/j.neuroimage.2016.03.063.

Throughout, we determined random-effects significance non-parametrically using a cluster-

based randomization approach (cluster-definition threshold P < 0.05, corrected significance 

level P < 0.05) (Nichols and Holmes, 2002; Pantazis et al., 2005; Maris and Oostenveld, 

2007). 95% confidence intervals for mean peak latencies and onsets (reported in parentheses 

throughout the results) were determined by bootstrapping the participant sample.

Neural representations of single scene images emerged early in cortical processing

We first investigated the temporal dynamics of image-specific individual scene information 

in the brain. To determine the time course with which individual scene images were 

discriminated by visual representations in MEG data, we averaged the elements of each 

RDM matrix representing pairwise comparisons with matched experimental factors 

(luminance, contrast, clutter level and scene size) (Fig. 1C). We found that the time course 

rose sharply after image onset, reaching significance at 50 ms (45–52 ms) and a peak at 97 

ms (94–102 ms). This indicates that single scene images were discriminated early by visual 

representations, similar to single images with other visual content (Thorpe et al., 1996; 

Carlson et al., 2013; Cichy et al., 2014; Isik et al., 2014), suggesting a common source in 

early visual areas (Cichy et al., 2014).

Neural representations of scene size emerged later in time and were robust to changes in 
viewing conditions and other scene properties

When is the spatial layout property scene size processed by the brain? To investigate, we 

partitioned the decoding accuracy matrix into two subdivisions: images of different (between 

subdivision light gray, +) and similar size level (within subdivision, dark gray, −). The 

difference of mean between-size minus within-size decoding accuracy is a measure of 

clustering of visual representations by size (Fig. 2a). Peaks in this measure indicate time 

points at which MEG sensor patterns cluster maximally by scene size, suggesting underlying 

neural visual representations allowing for explicit, linear readout (DiCarlo and Cox, 2007) of 

scene size by the brain. Scene size (Fig. 2B) was discriminated first at 141 ms (118–156 ms) 

and peaked at 249 ms (150–274 ms), which was significantly later than the peak in single 

image classification (P=0.001, bootstrap test of peak-latency differences).

Equivalent analyses for the experimental factors scene clutter, contrast, and luminance level 

yielded diverse time courses (Supplementary Fig. 1, Table 1A). Importantly, representations 

of low-level image property contrast emerged significantly earlier (peak latency 74 ms) than 

scene size (peak latency, 249 ms, difference=175 ms, P=0.004) and clutter (peak 
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latency=107 ms, difference=142 ms; P=0.006, bootstrap test of peak-latency differences). 

For the factor luminance, only a weak effect and thus no significant onset response was 

observed, suggesting a pre-cortical luminance normalization mechanism.

To be of use in the real world, visual representations of scene size must be robust against 

changes of other scene properties, such as clutter level (i.e. space filled by different types 

and amounts of objects) and semantic category (i.e. the label by which we name it), the 

particular identity of the scene image, and changes in viewing conditions, such as luminance 

and contrast. We investigated the robustness of scene size representations to all these factors 

using cross-classification (Fig. 2C; for 95% confidence intervals on curves see 

Supplementary Fig. 2). For example for contrast, we determined how well a classifier trained 

to distinguish scenes at one clutter level could distinguish scenes at the other level, while 

collapsing data across single image conditions of same level in size and clutter. We found 

that scene size was robust to changes in scene clutter, luminance and contrast and image 

identity (Fig. 2D; onsets and peaks in Table 1B). Note that by experimental design, the scene 

category always differed across size level, such that cross-classification also established that 

scene size was discriminated by visual representations independent of the scene category.

An analogous analysis for clutter level yielded evidence for viewing-condition and scene-

identity independent clutter level representations (Supplementary Fig. 3), reinforcing the 

notion of clutter level as a robust and relevant dimension of scene representations in the 

human brain (Park et al., 2015). Finally, an analysis revealing persistent and transient 

components of scene representations indicated strong persistent components for scene size 

and clutter representations, with little or no evidence for contrast and luminance 

(Supplementary Fig. 4). Persistence of scene size and clutter level representations further 

reinforces the notion of size and clutter level representations being important end products 

of visual computations kept online by the brain for further processing and behavioral 

guidance.

In sum, our results constitute evidence for representations of scene size in human brains 

from non-invasive electrophysiology, apt to describe scene size discrimination under real 

world changes in viewing conditions.

Neural representations of single scene images were predicted by deep convolutional 
neural networks trained on real world scene categorization

Visual scene recognition in cortex is a complex hierarchical multistep process, whose 

understanding necessitates a quantitative model that captures this complexity. Here, we 

evaluated whether an 8-layer deep neural network trained to perform scene classification on 

205 different scene categories (Zhou et al., 2014) predicted human scene representations. We 

refer to this network as deep scene network (Fig. 3A). Investigation of the receptive fields 

(RFs) of model neurons using a reduction method (Zhou et al., 2015) indicated a gradient of 

increasing complexity from low to high layers, and selectivity to whole objects, texture, and 

surface layout information (Fig. 3B). This suggests that the network might be able to capture 

information about both single scenes and scene layout properties.
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To determine the extent to which visual representations learned by the deep scene model and 

the human brain are comparable, we used representational similarity analysis (Kriegeskorte, 

2008; Cichy et al., 2014). The key idea is that if two images evoke similar responses in the 

model, they should evoke similar responses in the brain, too.

For the deep neural network, we first estimated image response patterns by computing the 

output of each model layer to each of the 48 images. We then constructed layer-resolved 

48×48 representational dissimilarity matrices (RDMs) by calculating the pairwise 

dissimilarity (1-Spearman’s R) across all model response patterns for each layer output.

We then compared (Spearman’s R) the layer-specific deep scene model RDMs with the 

time-resolved MEG RDMs and averaged results over layers, yielding a time course 

indicating how well the deep scene model predicted and thus explained scene 

representations (Fig. 3D). To compare against other models, we performed equivalent 

analyses to a deep neural network trained on object-categorization (termed deep object 

network) and standard models of object (HMAX) and scene-recognition (GIST) (Oliva and 

Torralba, 2001; Serre et al., 2007).

We found that the deep object and scene network performed similarly at predicting visual 

representations over time (Fig. 3D, for details see Table 2A; for layer-resolved results see 

Supplementary Fig. 5), and better than the HMAX and GIST models (for direct quantitative 

comparison see Supplementary Fig. 6).

In sum, our results indicate that brain representations of single scene images were predicted 

by deep neural network models trained on real-world categorization tasks of either object or 

scenes, and better than standard models of object and scene perception GIST and HMAX. 

This demonstrates the ability of DNNs to capture the complexity of scene recognition, and is 

suggestive of a semblance between representations in DNNs and human brains.

Representations of scene size emerged in the deep scene model

Beyond prediction of neural representations of single scene images, does the deep scene 

neural network indicate the spatial layout property scene size? To visualize, we used 

multidimensional scaling (MDS) on layer-specific model RDMs, and plotted the 48 scene 

images into the resulting 2D arrangement color-coded for scene size (black=small, 

gray=large). We found a progression in the representation of scene size in the deep scene 

network: low layers showed no structure, whereas high layers displayed a progressively 

clearer representation of scene size (A). A similar, but weaker progression, was visible for 

the deep object network (Fig. 4B). Comparable analysis for HMAX and GIST (Fig. 4C,D) 

found no prominent representation of size.

We quantified this descriptive finding by computing the similarity of model RDMs with an 

explicit size model (an RDM with entries 0 for images of similar size, 1 for images of 

dissimilar size; Fig. 4E inset). We found a significant effect of size in all models (n=48; label 

permutation tests for statistical inference, P < 0.05, FDR-corrected for multiple 

comparisons; stars above bars indicate significance). The size effect was larger in the deep 

neural networks than in GIST and HMAX, it was more pronounced in the high layers, and 
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the deep scene network displayed a significantly stronger effect of scene size than the deep 

object network in layers 6–8 (stars between bars; for all pair-wise layer-specific comparisons 

see Supplementary Fig. 7). A supplementary partial correlation analysis confirmed that the 

effect of size in the deep scene network was not explained by correlation with the other 

experimental factors (Supplementary Fig. 8).

Together, these results indicate the deep scene network captured scene size better than all 

other models, and that scene size representations emerge gradually in the deep neural 

network hierarchy. Thus representations of visual space can emerge intrinsically in neural 

networks constrained to perform visual scene categorization without being trained to do so 

directly.

Neural representations of scene size emerged in the deep scene model

The previous sections demonstrated that representations of scene size emerged in both 

neural signals (Fig. 2) and computational models (Fig. 4). To evaluate the overlap between 

these two representations, we combined representational similarity analysis with partial 

correlation analysis (Clarke and Tyler, 2014) (Fig. 5A).

We first computed the neural representations of scene size by correlating (Spearman’s R) the 

MEG RDMs with the explicit size model (black curve). We then repeated the process, but 

only after partialling out all layer-specific RDMs of a model from the explicit size model 

(color-coded by model) for each time point separately (Fig. 5B). The reasoning is that if 

neural signals and computational models carry the same scene size information, the scene 

size effect will vanish in the latter case. When partialling out the effect of the deep scene 

network, the scene size effect was reduced and no longer statistically significant. In all other 

models, the effect was reduced but was still statistically significant (Fig. 5B).

Further, the reduction of the size effect was higher for the deep scene network than all other 

models (Fig. 5C). Equivalent analyses for scene clutter, contrast and luminance indicated 

that the deep scene and object networks abolished all effects, while other models did not 

(Supplementary Fig. 9).

Together, these results show that relevant inherent properties of visual scenes that are 

processed by human brains, such as scenes size, are partly captured by deep neural 

networks.

Discussion

We characterized the emerging representation of scenes in the human brain using 

multivariate pattern classification methods (Carlson et al., 2013; Cichy et al., 2014) and 

representational similarity analysis (Kriegeskorte, 2008; Kriegeskorte and Kievit, 2013) on 

combined MEG and computational model data. We found that neural representations of 

individual scenes and the low-level image property contrast emerged early, followed by the 

scene layout property scene size at around 250 ms. The neural representation of scene size 

was robust to changes in viewing conditions and scene properties such as contrast, 

luminance, clutter level, image identity and category. Our results provide novel evidence for 
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an electrophysiological signal of scene processing in humans that remained stable under 

real-world viewing conditions. To capture the complexity of scene processing in the brain by 

a computational model, we trained a deep convolutional neural network on scene 

classification. We found that the deep scene model predicted representations of scenes in the 

brain and accounted for abstract properties such as scene size and clutter level better than 

alternative computational models, while abstracting away low-level image properties such as 

luminance and contrast level.

A multivariate pattern classification signal for the processing of scene layout property 
scene size

A large body of evidence from neuropsychology, neuroimaging and invasive work in 

humans and monkeys has identified locally circumscribed cortical regions of the brain 

dedicated to the processing of three fundamental visual categories: faces, bodies and scenes 

(Allison et al., 1994; Kanwisher et al., 1997; Aguirre et al., 1998; Downing et al., 2001; 

Tsao et al., 2006; Kornblith et al., 2013). For faces and bodies, respective 

electrophysiological signals in humans have been identified (Allison et al., 1994; Bentin et 

al., 1996; Jeffreys, 1996; Liu et al., 2002; Stekelenburg and de Gelder, 2004; Thierry et al., 

2006). However, electrophysiological markers for scene-specific processing have been 

identified for the auditory modality only (Fujiki et al., 2002; Tiitinen et al., 2006), and a 

visual scene-specific electrophysiological signal had not been described until now.

Our results provide the first evidence for an electrophysiological signal of visual scene size 

processing in humans. Multivariate pattern classification analysis on MEG data revealed 

early discrimination of single scene images (peak at 97 ms) and the low-level image 

property contrast (peak at 74 ms), whereas the abstract property of space size was 

discriminated later (peak at 249 ms). While early scene-specific information in the MEG 

likely emerged from low-level visual areas such as V1 (Cichy et al., 2014), the subsequent 

scene size signal had properties commonly ascribed to higher stages of visual processing in 

ventral visual cortex: the representation of scene size was tolerant to changes occurring in 

real world viewing conditions, such as luminance, contrast, clutter level, image identity and 

category. The electrophysiological signal thus reflected scene size representations that could 

reliably be used for scene recognition in real world settings under changing viewing 

conditions (Poggio and Bizzi, 2004; DiCarlo and Cox, 2007; DiCarlo et al., 2012). However, 

note that while the scene signal was independent of particular scene categories (e.g. 

indicating smallness similarly for bathrooms and storerooms), this did not and in principle 

cannot establish full independence. For real world images size and category cannot be 

orthogonalized: for example, bathrooms are always small, and stadiums are always large. 

For natural scenes size level and category necessarily co-occur. Future studies that use 

artificial stimuli with implied size may be able to further disentangle scene size and 

category. Together, these results pave the way to further studies of the representational 

format of scenes in the brain, e.g. by measuring the modulation of the scene-specific signal 

by other experimental factors.

The magnitude of the scene size effect, although consistent across subjects and statistically 

robust to multiple comparison correction, is small with a maximum of ~1%. Note however 
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that the size effect, in contrast to single image decoding (peak decodability at ~79%), is not 

a measure of how well single images differing in size can be discriminated, but a difference 

measure of how much better images of different size can be discriminated rather than images 

of the same size. Thus, it is a measure of information about scene size over-and-above 

information distinguishing between any two single scenes. The magnitude of the size effect 

is comparable to effects reported for abstract visual properties such as animacy (1.9 and 

1.1% respectively, Cichy et al., 2014). Last, all cross-classification analyses for size yielded 

strong and consistent effects, corroborating the scene size effect.

Can the size effect be explained by systematic differences in eye movements or attention for 

small vs. large scenes? The scene effect is unlikely explained by differences in eye 

movements. For one, participants were asked to fixate during the whole experiment. Further, 

a supplementary decoding analysis on the basis of single MEG sensors indicated that 

posterior electrodes overlying occipital and peri-occipital cortex, rather than anterior 

electrodes (e.g. sensitive to frontal eye field region), contained most information about all 

experimental factors, including size (Supplementary Fig. 10). This suggests that the sources 

of the size effect are in the visual cortex, not actual eye movements. However, we cannot 

fully exclude a contribution of eye movement planning signals, potentially originating in 

frontal eye fields or parietal cortex. The size effect is also unlikely explained by strong 

differences in attention for small vs. large scenes. A supplementary analysis (Supplementary 

Fig. 11) did not yield evidence for attention-related differential modulation of task 

performance by the size of the scene presented before. However, the extent to which the size 

effect depends on attention remains an open question (Groen et al., 2015).

What is the exact source of the scene size signal in the brain? The relatively long duration of 

the size effect might indicate the subsequent contribution of several different sources, or a 

single source with persistent activity. Suggesting the former, previous research has indicated 

parametric encoding of scene size in several brain regions, such as parahippocampal place 

area (PPA) and retrosplenial cortex (Park et al., 2015). However, an account of only a single 

source, in particular the PPA is also suggested by previous literature. Both onset and peak 

latency of the observed scene size signal concurred with reported latencies for 

parahippocampal cortex (Mormann et al., 2008), and human intracranial recordings in PPA 

showed neural responses to scenes over several hundred milliseconds. Future studies, using 

source reconstruction or combining MEG with fMRI (Cichy et al., 2015b) are necessary to 

resolve the spatio-temporal dynamics of scene size processing.

Last, we found that not only scene size representations, but also scene clutter representations 

were tolerant to changes in viewing conditions, and emerged later than the low-level image 

contrast representations. These results complement previous findings in object perception 

research that representations of single objects emerge earlier in time than representations of 

more abstract properties such as category membership (Carlson et al., 2013; Cichy et al., 

2014).
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Deep neural networks share in part similar representations of abstract scene properties 
with the brain

Scene processing in the brain is a complex process necessitating formal quantitative models 

that aim to capture aspects of this complexity. The role of such models for characterizing 

brain computations is to provide a formal framework for testing under which circumstances 

(e.g. model architecture, choices of simplification, training procedures) model 

representations similar to brain representations can emerge. While this may create new 

hypotheses about visual processing and thus shed new light on our understanding of the 

algorithms underlying visual processing, it does not imply that the models and brain perform 

exactly the same underlying computations. Even though there exist no model that can 

capture the complexity of the brain, our investigation of several models of scene and object 

recognition provided three novel results, each with theoretical implications for the 

understanding of biological brains.

First, deep neural networks offered the best characterization of neural scene representations 

compared to other models tested to date. The higher performance of deep neural networks 

compared to two simpler models suggests that hierarchical architectures might be critical to 

capture the scene representations in the human brain. However, this claim is strictly limited 

to the models of scene perception investigated here. A future comprehensive comparison 

across large sets of models (Khaligh-Razavi and Kriegeskorte, 2014) will be necessary to 

determine the ability of previous models to predict variance in brain responses to scene 

stimuli. We also note that good performance in characterizing neural representations is not a 

sufficient criterion to establish that the model and brain use the same algorithms to solve 

vision problems. However, it is a necessary criterion: only models that are representationally 

similar to the brain are good candidates. While previous research has established that deep 

neural networks capture object representations in human and monkey inferior temporal 

cortex well, here we demonstrated that a deep neural network captured millisecond-resolved 

dynamics underlying scene recognition from processing of low- to high-level properties. 

Concerning high-level abstract scene properties in particular, our results shed lights onto 

cortical scene processing. The near monotonic relationship between the representation of 

size and clutter level in the deep neural network and the network layer number indicates that 

scene size is an abstract scene property emerging through complex multi-step processing. 

Finally, our result concur with the finding that complex deep neural networks performing 

well on visual categorization tasks represent visual stimuli similar to the human brain 

(Cadieu et al., 2013; Yamins et al., 2014), and extends the claim to abstract properties of 

visual stimuli.

The second novel finding is that a deep neural network trained specifically on scene 

categorization had stronger representation of scene size compared to a deep neural network 

trained on objects. This indicates that the constraints imposed by the task the network is 

trained on, i.e. object or scene categorization, critically influenced the represented features. 

This makes plausible the notion that spatial representations emerge naturally and 

intrinsically in neural networks performing scene categorization, such as in the human brain. 

It further suggests that separate processing streams in the brain for different visual content, 
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such as scenes, objects or faces, might be the result of differential task constraints imposed 

by classification of the respective visual input (DiCarlo et al., 2012; Yamins et al., 2014).

The third novel finding is that representations of abstract scene properties (size, clutter level) 

emerged with increasing layers in deep neural networks, while low-level image properties 

(contrast, luminance) were increasingly abstracted away, mirroring the temporal processing 

sequence in the human brain: representations of low-level image properties emerged first, 

followed by representations of scene size and clutter level. This suggests common 

mechanisms in both and further strengthen the idea that deep neural networks are a 

promising model of the processing hierarchies constituting the human visual system, 

reinforcing the view of the visual brain as performing increasingly complex feature 

extraction over time (Thorpe et al., 1996; Liu et al., 2002; Reddy and Kanwisher, 2006; 

Serre et al., 2007; Kourtzi and Connor, 2011; DiCarlo et al., 2012).

However, we did not observe a relationship between layer-specific representations in the 

deep scene network and temporal dynamics in the human brain. Instead, the MEG signal 

predominantly reflected representations in low neural network layers (Supplementary Fig. 

5). One reason for this might be that our particular image set differed strongly in low-level 

features, thus strongly activating early visual areas that are best modeled by low neural 

network layers. Activity in low-level visual cortex was thus very strong, potentially masking 

weaker activity in high-level visual cortex that is invariant to changes in low-level features. 

Another reason might be that while early visual regions are close to the MEG sensors, 

creating strong MEG signals, scene-processing cortical regions such as PPA are deeply 

harbored in the brain, creating weaker MEG signals. Future studies using image sets 

optimized to drive low-and high level visual cortex equally are necessary, to test whether 

layer-specific representations in deep neural networks can be mapped in both time and in 

space onto processing stages in the human brain.

Conclusions

Using a combination of multivariate pattern classification and computational models to 

study the dynamics in neuronal representation of scenes, we identified a neural marker of 

spatial layout processing in the human brain, and showed that a deep neural network model 

of scene categorization explains representations of spatial layout better than other models. 

Our results pave the way to future studies investigating the temporal dynamics of spatial 

layout processing, and highlight deep hierarchical architectures as the best models for 

understanding visual scene representations in the human brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Image set and single-image decoding
A) The stimulus set comprised 48 indoor scene images differing in the size of the space 

depicted (small vs. large), as well as clutter, contrast, and luminance level; here each 

experimental factor combination is exemplified by one image. The image set was based on 

behaviorally validated images of scenes differing in size and clutter level, de-correlating 

factors size and clutter explicitly by experimental design (Park et al., 2015). Note that size 

refers to the size of the real-world space depicted on the image, not the stimulus parameters; 

all images subtended 8 visual angle during the experiment. B) Time-resolved (1 ms steps 

from −100 to +900 ms with respect to stimulus onset) pairwise support vector machine 

classification of experimental conditions based on MEG sensor level patterns. Classification 

results were stored in time-resolved 48×48 MEG decoding matrices. C) Decoding results for 

single scene classification independent of other experimental factors. Decoding results were 

averaged across the dark blocks (matrix inset), to control for luminance, contrast, clutter 

level and scene size differences. Inset shows indexing of matrix by image conditions. 

Horizontal line below curve indicates significant time points (n=15, cluster-definition 

threshold P < 0.05, corrected significance level P < 0.05); gray vertical line indicates image 

onset.
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Fig. 2. Scene size is discriminated by visual representations
A) To determine the time course of scene size processing we determined when visual 

representations clustered by scene size. For this we subtracted mean within-size decoding 

accuracies (dark gray, −) from between-size decoding accuracies (light gray, +). B) Scene 

size was discriminated by visual representations late in time (onset of significance at 141ms 

(118–156 ms), peak at 249 ms (150–274 ms). Gray shaded area indicates 95% confidence 

intervals determined by bootstrapping participants. C) Cross-classification analysis, 

exemplified for cross-classification of scene size across clutter level. A classifier was trained 

to discriminate scene size on high clutter images, and tested on low clutter images. Results 

were averaged following an opposite assignment of clutter images to training and testing 

sets. Before entering cross-classification analysis, MEG trials were grouped by clutter and 

size level respectively independent of image identity. A similar cross-classification analysis 

was applied for other image and scene properties. D) Results of cross-classification analysis 

indicated robustness of scene size visual representations to changes in other scene and image 

properties (scene clutter, luminance, contrast and image identity). Horizontal lines indicate 

significant time points (n=15, cluster-definition threshold P < 0.05, corrected significance 

level P < 0.05); gray vertical line indicates image onset. For result curves with 95% 

confidence intervals see Supplementary Fig. 2.
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Fig. 3. Predicting emerging neural representations of single scene images by computational 
models
A) Architecture of deep convolutional neural network trained on scene categorization (deep 

scene network). B) Receptive field (RF) of example deep scene neurons in layers 1, 2, 4, and 

5. Each row represents one neuron. The left column indicates size of RF, and the remaining 

columns indicate image patches most strongly activating these neurons. Lower layers had 

small RFs with simple Gabor filter-like sensitivity, whereas higher layers had increasingly 

large RFs sensitive to complex forms. RFs for whole objects, texture, and surface layout 

information emerged although these features were not explicitly taught to the deep scene 

model. C) We used representational dissimilarity analysis to compare visual representations 

in brains with models. For every time point, we compared subject-specific MEG RDMs 

(Spearman’s R) to model RDMs and results were averaged across subjects. D) All 

investigated models significantly predicted emerging visual representations in the brain, with 

superior performance for the deep neural networks compared to HMAX and GIST. 

Horizontal lines indicate significant time points (n=15, cluster-definition threshold P < 0.05, 

corrected significance level P < 0.05); gray vertical line indicates image onset.
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Fig. 4. Representation of scene size in computational models of object and scene categorization
A–D) Layer-specific RDMs and corresponding 2D multidimensional scaling (MDS) plots 

for a deep scene network, deep object network, GIST, and HMAX. MDS plots are color-

coded by scene size (small = black; large = gray). E) Quantifying the representation of scene 

size in computational models. We compared (Spearman’s R) each model’s RDMs with an 

explicit size model (RDM with entries 0 for images of similar size, 1 for images of 

dissimilar size). Results are color-coded for each model. F) Similar to (E) for clutter, 

contrast and luminance (results shown only for deep scene and object networks). While 

representations of the abstract scene properties size and clutter emerged with increasing 

layer number, the low-level image properties contrast and luminance successively abstracted 

away. Stars above bars indicate statistical significance. Stars between bars indicate 

significant differences between the corresponding layers of the deep scene vs. object 

network. Complete layer-wise comparisons available in Supplementary Fig. 7 (n=48; label 
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permutation tests for statistical inference, P < 0.05, FDR-corrected for multiple 

comparisons).
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Fig. 5. The deep scene model accounts for more of the MEG size signal than other models
A) We combined representational similarity with partial correlation analysis to determine 

which computational models explained emerging representations of scene size in the brain. 

For each time point separately, we calculated the correlation of the MEG RDM with the size 

model RDM, partialling out all layer-wise RDMs of a computational model. B) MEG 

representations of scene size (termed MEG size signal) before (black) and after (color-coded 

by model) partialling out the effect of different computational models. Only partialling out 

the effect of the deep scene network abolished the MEG size signal. Note that the negative 

correlation observed between ~50 −150 ms when regressing out the deep scene network was 

not significant, and did not overlap with the scene size effect. This effect is known as 

suppression in partial correlations: the MEG RDMs and the size model are mostly 

uncorrelated during this time (black curve), but partialling out the DNN RDM induces a 

relationship (negative correlation) because it accounts for residuals left by the original 

model. C) Difference in amount of variance partialled out from the size signal: comparing all 

models to the deep scene network. The deep scene network accounted for more MEG size 

signal than all other models (n=15; cluster-definition threshold P < 0.05, significance 

threshold P < 0.05; results corrected for multiple comparisons by 5 for panel B and 3 for 

panel C).
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Table 1
Onset and peak latencies for MEG classification analyses

Onset and peak latency (n=15, P < 0.05, cluster-level corrected, cluster-definition threshold P < 0.05) with 

95% confidence intervals. A) Clutter, luminance and contrast level representation time course information. B) 

Time course of cross-classification for scene size. 95% confidence intervals are reported in brackets.

A

Onset latency Peak latency

Clutter level 56 (42–71) 107 (103–191)

Luminance level 644 (68–709) 625 (146–725)

Contrast level 53 (42–128) 74 (68–87)

B

Size across clutter level 226 (134–491) 283 (191–529)

Size across luminance level 183 (138–244) 217 (148–277)

Size across contrast level 138 (129–179) 238 (184–252)

Size across image identity 146 (133–235) 254 (185–299)
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Table 2
Onset and peak latencies for model-MEG representational similarity analysis

Onset and peak latency (n=15, P < 0.05, cluster-level corrected, cluster-definition threshold P < 0.05) with 

95% confidence intervals. A) Correlation of models to MEG data. B) Comparison of MEG-model correlation 

for the deep scene network and all other models. 95% confidence intervals are reported in brackets.

A

Onset latency Peak latency

GIST 47 (45–149) 80 (76–159)

HMAX 48 (25–121) 74 (61–80)

Deep object network 55 (20–61) 97 (83–117)

Deep scene network 47 (23–59) 83 (79–112)

B

Deep scene network minus GIST 58 (50–78) 108 (81–213)

Deep scene network minus HMAX 75 (62–86) 108 (97–122)

Deep scene network minus deep object network – –
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