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Abstract: Tick-borne encephalitis virus (TBEV) infection can lead to inflammation of the central
nervous system. The disease can be effectively prevented by whole inactivated virus vaccines. Here,
we investigated the innate immune profile induced in vitro by the antigen component of the vaccines,
inactivated TBEV (I-TBEV), to gain insights into the mechanism of action of the TBE vaccine as
compared to the live virus. To this end, we exposed human peripheral blood mononuclear cells
(PBMCs) to inactivated and live TBEV and assessed cellular responses by RNA sequencing. Both
inactivated and live TBEV significantly induced an interferon-dominated gene signature and an
increased RIG-I-like receptor (RLR) expression. Using pathway-specific inhibitors, we assessed the
involvement of pattern recognition receptors in the sensing of inactivated or live TBEV. Only RLR
pathway inhibition significantly suppressed the downstream cascade induced by I-TBEV, while
responses to the replicating virus were impacted by the inhibition of RIG-I-like, as well as Toll-like,
receptors. Our results show that inactivated and live TBEV predominantly engaged an interferon
response in our in vitro PBMC platform, and indicate RLRs as the main pattern recognition receptors
involved in I-TBEV sensing.

Keywords: tick-borne encephalitis virus; TBE vaccine; peripheral blood mononuclear cells; RNA
sequencing; interferon; RIG-I; TLR

1. Introduction

Tick-borne encephalitis is an inflammation of the central nervous system caused by the
tick-borne encephalitis virus (TBEV), a flavivirus endemic in parts of Europe and Asia [1].
The virus is responsible for thousands of cases of human encephalitis every year, and its
incidence in Western Europe has been growing in the past decades [2,3]. Currently there
are no specific treatments for TBE, but inactivated virus vaccines containing aluminum
hydroxide as adjuvant are available and effectively prevent infection also from heterologous
TBEV strains [4,5]. The use of TBE vaccines has led to successful containment of the disease
in countries with high immunization coverage [6].

The development of adaptive responses evoked by the TBE vaccine has been inves-
tigated in detail, showing the induction of envelope protein-directed antibodies and of
TBEV-specific CD4+ T cells [7]. However, a full picture of the innate immune responses
induced by the vaccine is yet to be presented [8]. A better insight into the molecular
pathways activated by the TBE vaccine could shed light on the mechanisms involved in
the generation of vaccine-conferred protection. Indeed, the successful induction of innate
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immune responses has repeatedly been shown to correlate with the potency of several
vaccines [9–12]. As the TBE vaccine has been proven to have a high field effectiveness [13],
the investigation of the specific pathways it induces could help delineate vaccine-induced
innate immune functions associated with a favorable vaccination outcome.

Several studies have highlighted how specific innate immune pathways activated by
certain vaccine components, such as viral RNA, can determine the efficacy of influenza
and other vaccines [14–16]. Here, we aimed to delineate pattern recognition receptors
(PRRs) and immune signaling pathways engaged by the TBE vaccine, in particular by
inactivated TBEV, the main component of the vaccine. To this end, we employed an in vitro
system consisting of human peripheral blood mononuclear cells (PBMCs) which we had
developed to assess the conformity of different TBE vaccine batches [17]. We exposed
the human PBMCs to I-TBEV (of high or low quality) or live TBEV and assessed the
response by RNA sequencing. Our results show that TBEV (live or inactivated) induced a
distinct interferon-dominated transcriptomic signature, but not a generalized inflammatory
response. Using pathway-specific inhibitors and reporter cell lines, we showed that both
I-TBEV and live TBEV activated the cells through engagement of RIG-I-like receptors
(RLRs), but only live TBEV was also able to trigger selected Toll-like receptors (TLRs) in
reporter cell lines and frozen-thawed PBMCS.

This study brings new insights into the innate response elicited and the signaling path-
ways engaged in vitro by live TBEV and by the inactivated virus, the primary constituent
of the TBE vaccine.

2. Materials and Methods
2.1. Vaccine and Virus

Vaccine formulations. Formalin-inactivated TBEV of the K23 strain (I-TBEV; 60 µg/mL
protein) was kindly provided by GlaxoSmithKline (GSK, Marburg, Germany). I-TBEV, the
antigen-containing fraction of the Encepur vaccine, consists of whole, formalin-inactivated
TBEV in a 42% sucrose solution and thus contains virions including structural proteins and
viral genomes. To produce non-conforming batches, a strategy that reduces binding by
TBEV-specific antibodies [18] was followed: I-TBEV was heat-treated at 42 ◦C for 4 weeks
in glass vials (HT I-TBEV). A 42% low-endotoxin sucrose (Sigma-Aldrich, St. Louis, MO,
USA) solution in DMEM medium (Gibco, Life Technologies; Paisley, UK) was used as
control (matrix), as per indications of GSK.

Culture and quantification of TBEV. Live TBEV (European strain Neudörfl) was obtained
from the European Virus Archive (Marseille, France). The European strain K23 used for
the GSK vaccine could unfortunately not be obtained; however, nucleotide and protein
blasting of the two strains revealed a 97% and 99% identity, respectively. The virus seed
was expanded on Vero E6 cells (ATCC, Rockville, MD, USA) as previously described [17].
The infectious particles in the supernatant were quantified by a plaque assay on A549 cells
(ATCC), which are highly susceptible to the virus cytopathic effect [19]. Briefly, monolayers
of A549 cells cultured in 12-well culture plates were inoculated with 10-fold dilutions of
TBEV-containing supernatants for 4 h at 37 ◦C. The cells were overlaid with 2% agarose in
2×MEM medium and were incubated for 4 days at 37 ◦C with 5% CO2. The cells were
then fixed with 10% formaldehyde for 1 h and the overlay was discarded and the cells
stained with crystal violet to visualize the plaques. The virus titers were expressed as
plaque-forming units (PFU) per mL.

2.2. Cells

PBMCs. Buffy coats were purchased from the Dutch blood bank (Sanquin, Groningen,
The Netherlands) who had obtained consent of the donors to use the cells for scientific
research. It should be noted that the TBE vaccination status of the donors in this study
was unknown; however, given the absence of a governmental recommendation and the
very low incidence of TBE in The Netherlands (with a total of only 12 cases reported so
far), it is highly unlikely that the donors had been previously exposed to the virus or the
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vaccine [20]. Peripheral blood mononuclear cells were isolated as previously described [21].
Briefly, buffy coats were mixed with RPMI-1640 (Gibco, Life Technologies; Paisley, UK)
and were layered on Ficoll Paque (GE Healthcare, Uppsala, Sweden). After centrifugation,
PBMC fractions were collected and red blood cells were lysed with Ammonium-Chloride-
Potassium (ACK) lysis buffer (ThermoFisher Scientific, Waltham, USA). PBMCs were then
stored in cryopreservation medium (90% FCS, 10% DMSO) in liquid nitrogen until needed.
For the experiments, PBMCs were thawed as previously described [21], and seeded at a
density of 2 × 106 cells/mL in 24-well plates in RPMI-1640 supplemented with 10% fetal
calf serum (FCS; Life Science Production, Bedford, UK), 50 µM β-mercaptoethanol, and 1%
penicillin/streptomycin (all from Gibco). Cells were incubated at 37 ◦C, 5% CO2.

Reporter cells. HEK-Blue™ cells (InvivoGen, Toulouse, France) co-express PRRs and an
NF-kB-inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene that can be
monitored using the detection medium QUANTI-Blue™. Human HEK-Blue™ TLR2, TLR3,
TLR4, TLR5, TLR7, TLR8, TLR9, and NOD2 cells (and parental Null cells) were cultured at
37 ◦C in 5% CO2 according to the manufacturer’s instructions and 50.000 cells/well were
plated in a 96-well plate and stimulated. After 48 h of incubation, 50 µL of supernatant
were added to 150 µL of QUANTI-Blue™. After 30 min of incubation at 37 ◦C, the plates
were read in an ELISA reader (630 nm). The results are expressed as relative activation of
cells in comparison to the activation level obtained upon stimulation with 2.5 µg/mL of
TNF-α (ProsPec, Rehovot, Israel), which was set as 100%.

2.3. Cell Stimulation

PBMCs and reporter cell lines were stimulated for 24 or 48 h with I-TBEV, HT I-TBEV
(or the matrix control) at dilutions from 1:4000 to 1:16 (equivalent to antigen concentrations
from 0.015–4 µg/mL). Incubation with live TBEV was performed for 24 or 48 h at a
multiplicity of infection (MOI) from 1 to 100.

Inhibitors. Amlexanox and BX795, inhibitors for TBK1/IKKε (kinases involved in the
RLR pathway), and Pepinh-MYD, an inhibitor peptide for MyD88 (signal transducer for
TLR pathways), were used to pre-treat the cells for 1 or 6 h at 37 ◦C in 5% CO2 before sub-
sequent stimulation with I-TBEV or positive controls. All inhibitors were purchased from
Invitrogen, and were used according to the manufacturer’s specifications at a concentration
of 5–50 µg/mL (Amlexanox), 0.1–2 µM (BX795) and 5–50 µM (Pepinh-MYD).

Positive controls. TLR7/8 ligand R848 (10 µg/mL) and poly I:C-HMW/LyoVec
(0.5 µg/mL) (both from Invitrogen) were used as controls to assess the stimulation of
the cell platforms.

2.4. Cell Lysis and RNA Isolation

To detect changes in the gene expression of stimulated cells, cell lysates of PBMCs
were collected and the mRNA was isolated for subsequent analysis by RT-qPCR or RNA
sequencing. Cells were lysed by adding 350 µL RLT buffer (Qiagen, Hilden, Germany) +
1% β-mercaptoethanol. The lysates were then stored at −20 ◦C until further analysis. RNA
isolation from the lysates was performed using the RNeasy Mini Kit (Qiagen) following
the instructions of the manufacturer.

2.5. RT-qPCR

cDNA from the isolated RNA was generated using the Primescript RT Reagent kit
(Takara, Saint-Germain-en-Laye, France) according to the manufacturer’s instructions.
The cDNA was then analyzed by qPCR: the reaction (10 µL 2× ABsolute qPCR SYBR®

Green Mix (ThermoFisher Scientific), 1 µL 10 mM forward primer, 1 µL 10 mM reverse
primer, 1.5 µL cDNA and 6.5 µL H2O) was carried out for 10 min at 95 ◦C, 40 cycles of 15 s
at 95 ◦C and 1 min at 60 ◦C in a CFX96 Touch Real-Time PCR Detection System (Biorad,
Hercules, CA, USA). The gene expression levels of the target genes were normalized against
the housekeeping gene GAPDH and were quantified relative to the expression levels in
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non-treated cell cultures (primer sequences shown in Appendix A Table A1). Data were
analyzed according to the comparative Ct method [22] and are expressed as fold change.

2.6. RNA Sequencing

Library preparation and next generation sequencing (NGS). All NGS experiments (per-
formed on RNA isolated from PBMCs of a healthy donor) were conducted by QIAGEN
Genomic Services, using the QIAseq UPX 3′ Transcriptome Kit. Sequence reads were
mapped to the human genome (version: hg38, annotation: NCBI RefSeq GRCh38.p11) us-
ing CLC Genomics Workbench (version 12.0.4) and CLC Genomics Server (version 11.0.3).
This resulted in a table with gene count data for 54.362 genes and 24 samples.

Data analysis. Gene count data were further analyzed in R statistical software (ver-
sion 3.6.2, www.r-project.org, accessed on 1 June 2020) using the following packages:
DESeq2, limma, gplots, and rgl. Genes that had zero counts in all samples were con-
sidered unexpressed and were discarded from further analysis. Gene count data were
normalized using a variance stabilizing transformation (VST) on the remaining genes.
Differentially expressed genes (DEGs) were selected by one-way ANOVA. p-values were
corrected for multiple testing using the Benjamini–Hochberg False Discovery Rate (FDR).
Genes were considered differentially expressed if they had an FDR ≤ 5% and a Fold
Change (FC) ≥ 2 (determined as the maximum vs. minimum average group value across
the compared groups). Differences in gene expression compared to the control group were
visualized by a heatmap combined with hierarchical clustering (using Euclidean distance
and Ward.D linkage) as well as by Principal Component Analysis (PCA). Functional an-
notation and over-representation analysis of DEGs was carried out by using DAVID [23].
Additional functional analyses were conducted using the software packages Cytoscape
plug-in ClueGO [24,25], Ingenuity Pathway Analysis (QIAGEN) and Reactome [26].

2.7. Quantification of Cytokines and Chemokines

Culture supernatants were harvested after 24 h of PBMC stimulation with I-TBEV, HT
I-TBEV, matrix (all diluted at 1:250 v/v) and live TBEV (MOI of 10) and stored at −80 ◦C.
The production of CXCL-10, MCP-1, and IL-8 was quantified by Cytometric Bead Assay
(BD Biosciences, San Diego, CA, USA) according to manufacturer instructions.

2.8. Statistical Analysis

Statistically significant differences across groups in qPCR, cytokines and HEK Blue
cell analyses were determined using two-way ANOVA followed by Tukey’s post-hoc test
for multiple comparisons. A p-value of p < 0.05 was considered significant and indicated
by *; ** stand for 0.01 and *** for 0.001. Statistical analyses were performed with GraphPad
Prism version 8.0 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. RNA-Seq Identifies an I-TBEV-Specific IFN-Dominated Signature in Human PBMCs

To investigate the molecular factors and pathways involved in the human innate
response to the antigen component of the TBE vaccine, we analyzed the transcriptional
profile induced by I-TBEV in PBMCs from a healthy donor. The PBMCs, isolated and
kept in liquid nitrogen until use, were thawed and stimulated for 24 h—unless otherwise
specified—with high quality (conforming) I-TBEV, non-conforming (heat-treated) I-TBEV
(HT I-TBEV), matrix or live TBEV, or were left untreated. For each treatment group,
5 replicates were included (except for the non-stimulated control group, consisting of
4 replicates), their RNA was extracted and RNA sequencing (RNA-Seq) was performed.
Gene expression was quantified with sequencing reads mapped to the human genome.
Variance-stabilizing normalized gene read counts were used to identify differentially
expressed genes (DEGs) following treatment (see Section 2). From these data, two RNA-
Seq analyses were conducted: one examining the responses in cells treated with I-TBEV (or
with its negative controls HT I-TBEV and matrix, or not stimulated—Analysis 1), and one

www.r-project.org


Vaccines 2021, 9, 664 5 of 23

comparing the transcription profiles of I-TBEV-treated, live TBEV-treated and untreated
cells (Analysis 2).

In Analysis 1, among the four treatment groups, 333 genes were considered differen-
tially expressed based on the specified threshold level (fold change ≥2 and false discovery
rate≤5% for the average expression across the different groups; Figure 1); 264 genes (79.3%)
were found to be upregulated upon I-TBEV treatment; and 69 (20.7%) were downregu-
lated. Principal component analysis (PCA) of differentially expressed genes (Figure 1A)
showed a distinct profile for I-TBEV samples, while samples in the matrix and HT I-TBEV
groups clustered closer to the non-stimulated (control) group. Upon further selection of
DEGs with a strong change in expression compared to the control group (minimal fold
change of 2), 255 genes were found to be uniquely represented in the I-TBEV group; in
the matrix and control groups, instead, only very few genes showed more than 2-fold
changes in expression (Figure 1B). A heatmap representation of the differences in expres-
sion of all 333 DEGs demonstrates that I-TBEV triggered stronger up- or downregulation
of DEGs (compared to the non-stimulated cells) than treatments with HT I-TBEV or matrix
(Figure 1C for the average profile per treatment group, Appendix A Figure A1 for sample-
specific responses). Interestingly, although HT I-TBEV induced a quantitatively weak re-
sponse compared to treatment with I-TBEV, the profiles of up- and down-regulated genes were
qualitatively similar for the two formulations. This was not the case for the matrix control.

Three main gene clusters were identified, and selected genes within each cluster
were chosen for validation by RT-qPCR. Fold change in gene expression was assessed in
three donors (Appendix A Figure A2). The RT-qPCR data for the three donors showed
a comparable I-TBEV-induced regulation of the selected genes (with expected donor-
dependent differences in the extent of responses) and confirmed the upregulation for
clusters a and b and the downregulation for cluster c observed in the RNA sequencing
analysis. We also assessed, in PBMCs from four additional donors, the cellular responses at
the protein level after 24 h treatment with I-TBEV, HT I-TBEV, matrix and in untreated cells
(Appendix A Figure A3). While not statistically significant, a trend became apparent in which
incubation of cells with I-TBEV resulted in increased MCP-1, IL-8 and CXCL10 production
compared to non-stimulated and matrix-stimulated cells. HT I-TBEV treatment resulted in
responses mostly below those to I-TBEV, with, however, donor-dependent variations.

To identify the biological pathways and processes associated with I-TBEV stimulation,
we performed functional enrichment analysis of the identified gene clusters using the
Database for Annotation, Visualization and Integrated Discovery (DAVID) [23]. The top
fifteen hits for each cluster are shown in Figure 1D.

This analysis revealed that, within the clusters a and b (comprising DEGs strongly
and mildly upregulated upon I-TBEV treatment, respectively), the most over-represented
functions and pathways were Defense response to virus, Type I interferon signaling pathway,
Interferon gamma-mediated signaling pathway, and Innate immune response. With a lower
but still significant p-value, we found activation of the KEGG pathway RIG-I-like receptor
signaling pathway in cluster a, that comprised differentially expressed genes such as RIG-I,
MDA5, LGP2 and IRF7. In cluster b, the JAK-STAT cascade was identified as upregulated,
with DEGs such as JAK2, STAT1, STAT2, and SOCS.
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Figure 1. Transcriptional analysis of PBMCs stimulated with conforming and non-conforming I-TBEV (Analysis 1). PBMCs
from a healthy donor were stimulated for 24 h with inactivated TBEV (I-TBEV), heat-treated I-TBEV (HT I-TBEV) or sucrose
matrix at a concentration of 0.24 µg/mL (or an equivalent volume for the matrix). After treatment, the cells were lysed and
processed for RNA sequencing. (A) Principal component analysis based on differentially expressed genes (DEGs) showing
relative (dis)similarity for the samples. (B) Venn diagram showing DEGs with a fold change (FC) > 2 in expression between
the different treatment groups and the control group. Outside the circles, the number of DEGs with a FC < 2. (C) Heatmap
representing the fold change of DEGs in the three treatment groups, normalized to the control group (set as FC = 1). (D) Top
15 GO terms and KEGG pathways identified in each cluster following functional enrichment. The bar shows the –log10 of
the raw p-value.
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The genes in cluster c, downregulated in PBMCs treated with I-TBEV, were enriched
for processes associated with the Extracellular exosome, Extracellular space and Extracellular
region. Additionally, many DEGs in this cluster were enriched for functions related to
lipid metabolism, with GO terms such as Long-chain fatty acid transport, Fatty acid binding,
Lipid metabolic process and Lipid catabolic process. Interestingly, the function Inflammatory
response was found enriched for both cluster b and c: selected molecules involved with
chemokine, cytokine and interleukin signaling were identified as upregulated (in cluster b)
or downregulated (in cluster c) following treatment with I-TBEV. Thus, while activation
of the IFN pathway was identified as an unequivocal signature induced by the main
component of the TBE vaccine, genes associated with the inflammatory response were
regulated in a highly selective way.

Additional analysis performed using other enrichment tools, such as Cytoscape, Inge-
nuity Pathway Analysis and Reactome, identified similar pathways associated with the
stimulation of PBMCs with I-TBEV, in particular its induction of IFN responses, upregula-
tion of RLRs and downregulation of genes associated with lipid metabolism and selected
inflammatory responses (Appendix A Figures A4–A6). Overall, functional enrichment
of differentially expressed genes in PBMCs treated with I-TBEV showed an interferon-
dominated immune profile, and indicated a role for cytosolic pattern recognition receptors
belonging to the RIG-I-like family.

3.2. PBMCs Treated with Live and Inactivated TBEV Share Similar Transcriptional Profiles

To compare the innate immune signature of cells treated with the inactivated TBEV to
that of cells incubated with the live virus, a second RNA-Seq analysis was performed on
the data from the control, I-TBEV- and live TBEV-treated groups (Analysis 2). The tran-
scriptional profile for the live virus group was assessed with cells incubated at a multi-
plicity of infection of 10 for 48 h, since experiments indicated that an infection of 24 h
induced minimal changes in the expression of IFN stimulated genes (ISGs) (Appendix A
Figure A7) [17].

After discarding unexpressed and non-differentially expressed genes, 337 DEGs were
obtained from the analysis of the control group, I-TBEV- and TBEV-treated cells. The PCA
for differentially expressed genes shows distinctive clustering of the three treatment groups
(Figure 2A). Stimulation with I-TBEV and live virus induced partially overlapping expres-
sion signatures (Figure 2B): the DEGs showing similar regulation in both treatment groups
accounted for 71.5% of the total, while 28.5% of the genes showed opposite transcriptional
signatures in I-TBEV- and live virus-treated cells. The heatmap representation in Figure 2C
displays the DEGs organized by hierarchical clustering, which identifies 5 major clusters:
3 include genes similarly up- (clusters c and e) or downregulated (cluster b) in both treat-
ment groups, while 2 include DEGs that are downregulated in I-TBEV-treated cells and
upregulated in live TBEV-treated cells (cluster a), or vice versa (cluster d).

To validate these findings, and confirm that the differential profile induced by the
live virus was not resulting from the extended incubation time, the expression of selected
genes within each cluster was validated by RT-qPCR in PBMCs (from the aforementioned
3 donors, including the donor whose cells were analyzed by RNA-Seq) treated with I-TBEV
or live TBEV for 24 h. The changes in gene expression, averaged for the 3 donors, are
shown and compared to the results from the RNA sequencing (Figure 2D). The expression
signature induced by the virus was confirmed, as the genes in each cluster showed a similar
up- or downregulation as observed in the NGS results.

Again, we evaluated the cytokine production in PBMCs from 4 donors in response to
I-TBEV and live TBEV stimulation (Appendix A Figure A3). On average, production of
IL-8 and CXCL10 was increased with both treatments, while the protein level of MCP-1
appeared to be higher following incubation with the live virus (compared to inactivated
TBEV) in all but one donor.
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Figure 2. Transcriptional analysis of PBMCs stimulated with I-TBEV and live TBEV (Analysis 2). PBMCs from a healthy
donor were stimulated for 24 h with inactivated TBEV (I-TBEV) at a concentration of 0.24 µg/mL or 48 h with live TBEV at
an MOI of 10. After treatment, the cells were lysed and processed for RNA sequencing. (A) Principal component analysis
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the two treatment groups, normalized to the control group (set as FC = 1) and hierarchically clustered. (D) Validation of
RNA-Seq results by RT- qPCR. The fold change in PBMCs was analyzed in duplicate for each gene and treatment, and was
averaged for all 3 donors. Results are shown as heatmap and compared to the RNA sequencing data.

Functional enrichment analysis of the clusters was performed as previously described,
and the top 7 hits for each cluster are shown in Figure 3. Cluster a, which included genes
downregulated following I-TBEV treatment and upregulated upon incubation with the
live virus, comprises functions related to lipid metabolism, a process already identified
in Analysis 1. Cluster b, including DEGs downregulated in both sample groups, shows
enrichment of terms involved with RNA metabolism. Clusters c and e, both including genes
upregulated in I-TBEV- and live virus-treated cells, show an over-representation of pathways
related to the antiviral and IFN response and RLR signaling. Cluster d, comprising DEGs
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upregulated upon treatment with I-TBEV and downregulated by the live virus incubation,
includes functions involved in the immune response.
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In summary, the analysis of DEGs identified in inactivated and live virus-treated
PBMCs showed that the transcriptional profiles induced by the two treatments were mostly
similar, with the exception of selected immune pathways (induced by the inactivated
virus only) and of functions involved in the lipid metabolism (upregulated only upon
incubation with the live virus). These differences may be ascribed to the intrinsic nature of
the replicating virus, which acts to suppress certain immune responses [27] and to induce
intracellular membrane rearrangements [28,29].
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3.3. Inhibition of RLRs, But Not of TLRs, Reduces I-TBEV-Induced Responses

To gain a further insight into the molecular cascade engaged by I-TBEV, we assessed
the cellular responses in the presence of inhibitors of downstream molecules in selected
PRR signaling pathways.

Given the suggestion from the RNA sequencing data of the involvement of RIG-I-like
receptors, we first assessed the expression of biomarkers associated with I-TBEV stimula-
tion upon treatment with Amlexanox (ALX) and BX795 (BX), two specific inhibitors of the
noncanonical IkB kinases IKKε and TANK-binding kinase 1 (TBK1) [30,31] downstream of
RLRs [32]. By monitoring the expression of ISG56 in PBMCs from 3 healthy donors upon
treatment with the positive control Poly I:C, we established 50 µg/mL to be the optimal
concentration of ALX and 2 µM that of BX in terms of inhibitory capacity of the compounds
(Appendix A Figure A8A). ALX and BX did not induce off-target effects such as activation
of the inflammatory pathway (assessed as IL12-p40 expression, Figure 4A). The presence of
ALX or BX during stimulation with inactivated TBEV resulted in a decreased expression of
ISG56 and CXCL10, two I-TBEV-induced biomarkers [17], indicating the involvement of
the RIG-I pathway in the transduction of I-TBEV-associated signals (Figure 4B,C). At the
conditions used, ALX imposed the strongest reduction, and the reduction was enhanced
when both inhibitors were used in combination (Appendix A Figure A9). We also assessed
the effect of the two inhibitors on signaling by live TBEV; both ALX and BX significantly
decreased the expression of CXCL10 (Figure 4C) and, albeit not significantly, of ISG56
(Figure 4B).Vaccines 2021, 9, x  11 of 25 
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3 healthy donors were pre-incubated with RLR inhibitors (ALX, 50 µg/mL, and BX, 2 µM) for 1 h (A–C) or with MyD88
inhibitor (Pepinh-MYD, 10 µM) and its peptide control (Control) for 6 h (D–F). Afterwards, the cells were treated for 24 h
with Poly I:C (0.5 µg/mL), R848 (10 µg/mL), I-TBEV (0.24 µg/mL) or live virus (MOI 10). Following stimulation, the cells
were lysed and changes in gene expression were analyzed by RT-qPCR. Results are from 3 replicates. Levels of significance:
ns: p > 0.05; *: p ≤ 0.05 and ***: p ≤ 0.001. Absence of labels indicates non-significant differences.

Next, we sought to analyze the possible involvement of TLRs, as I-TBEV contains
intact viral RNA reported to stimulate plasmacytoid dendritic cells through TLR7/8 activa-
tion [33]. To do this, we used a MyD88 inhibitor peptide, Pepinh-MYD, interfering with the
transduction of the respective TLR signaling cascade [34]. Using R848 as ligand for TLR7/8
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and expression of IL12-p40 as readout [17,35–37], we first established a concentration of
10 µM Pepinh-MYD as capable of significant and specific inhibition of the TLR signaling
cascade (Appendix A Figure A8B). When used at this concentration, Pepinh-MYD did not
have an effect on the induction of ISG56 by I-TBEV (Figure 4E). Expression of CXCL10
was affected by Pepinh-MYD as well as by the peptide control to an equal extent, pointing
to an unspecific effect (Figure 4F). Thus, the MyD88 pathway was likely not involved
in I-TBEV-evoked responses. In contrast, the upregulation of ISG56 and CXCL10 upon
incubation with the live virus was affected by Pepinh-MYD in a specific manner, pointing
to an involvement of the MyD88 pathway in live TBEV signaling.

3.4. TLR and NOD Reporter Cells Do Not Respond to I-TBEV, But Can Be Activated by
Live TBEV

To further investigate the involvement of selected PRRs in the sensing of (I-)TBEV,
we turned to HEK Blue cells, human cells engineered to express a reporter construct upon
ligand binding to various PRRs (individually expressed in each cell line). The cells were
incubated for 48 h with increasing concentrations of I-TBEV or its matrix control, and their
level of stimulation is reported as a percentage of activation of the cells compared to the
response to a fixed amount of TNF-α (set as 100% activation).

While the different HEK Blue cell lines responded to their specific TLR and NOD2
ligands, none of the receptors were triggered specifically by I-TBEV (Figure 5A). The pro-
duction of the reporter protein, found only at the highest concentration of I-TBEV used,
was also induced by the same dose of sucrose-containing matrix solution alone, and, more
importantly, the activation of the NF-κB pathway was also observed in the parental ‘Null’
cell line lacking all PRRs. Interestingly, when incubated with the live virus, TLR3, 7, 8 and
NOD2-expressing cells did show the expression of the reporter protein in a dose-dependent
manner (Figure 5B). Thus, while some receptors could be activated by the live TBEV, the in-
activated virus was unable to trigger PRR-specific responses in any of the reporter cell
lines, corroborating the findings obtained in the frozen-thawed PBMCs.
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Figure 5. Activation of HEK Blue reporter cells by I-TBEV and live TBEV. (A) HEK Blue cells were stimulated with the indicated
amounts of I-TBEV for 48 h at different concentrations. Subsequently, supernatants were added to the detection medium for assessment
of NF-κB-induced production of the reporter protein. The stimulation of the cells is presented as a percentage of activation relative to
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to the matrix. (B) HEK Blue cells were stimulated with live TBEV virus for 48 h at the indicated multiplicity of infection (MOI),
and activation was assessed as described above. Levels of significance: ns: p > 0.05; *: p≤ 0.05; **: p≤ 0.01 and ***: p≤ 0.001 (compared
to the level of activation in the Null cells stimulated with the same MOI). Results are from 3 replicates.

4. Discussion

In this study, we assessed the cellular responses and pathways induced by I-TBEV,
the main component of the TBE vaccine, and by the replicating virus in human primary
cells and reporter cell lines. Our first aim was to extensively characterize the innate immune
signature induced by I-TBEV in our human PBMC platform in comparison to untreated
cells, as well as to cells treated with low-quality I-TBEV or live virus. The second aim was
to identify the pattern recognition receptors responsible for (I-)TBEV sensing.

Addressing the first aim, we found that I-TBEV induced an interferon-dominated
immune profile and the upregulation of selected inflammatory genes. The low-quality
formulation, HT I-TBEV, triggered a qualitatively similar expression signature; however,
it had much lower response magnitudes. While the sequencing results were obtained in
cells derived from only one donor, the same expression pattern emerged in the valida-
tion of the results with 2 additional donors, and the findings are in line with previous
results on selected I-TBEV-induced responses in primary human immune cells from several
donors [17,33]. Indeed, the induction of IFN responses has been identified as a common
early signature for several vaccines [38]. Interestingly, selected genes involved in antigen
presentation, interleukin signaling and interactions between lymphoid and non-lymphoid
cells were underexpressed following treatment of PBMCs with I-TBEV. This downreg-
ulation of certain immune functions was for us unexpected, and were in contrast with
results from studies on whole inactivated influenza virus, which found some of the same
molecules upregulated in primary cells [21,39,40]. Thus, induction of selected inflammatory
markers in vitro can be highly pathogen-specific. Nevertheless, the successful activation of
an interferon cascade appears to be a general feature of promising vaccine candidates and
was shown to correlate with favorable antibody titers [41,42] and T cell responses [11,43]
in vivo.

Comparing the immune profiles in cells incubated with live or inactivated TBEV,
we observed that the live virus induced a transcriptional signature overlapping in large
parts with that induced by I-TBEV, with the exception of replication-related genes distinctly
regulated in live virus-treated cells. Similarities in immune responses to live and whole
inactivated viruses were previously observed in other studies [39,40], but the signature
identified is of course cell- and pathogen-specific. TBEV, as many other (flavi)viruses, tries
to evade the immune system during infection through (1) replication in membrane vesicles
hindering the activation of PRRs, (2) inhibition of signaling cascades by non-structural proteins.
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and (3) impairment of antigen-presenting cell (APC) maturation [44–48]. Downregulation
of IFN production, a known TBEV defense mechanism, is restricted to the early stages
of infection, and—as was also evident in this study—interferon signaling recovers after
24 h [29,49]. However, suppression of certain functions is still ongoing at this timepoint.
Downregulation in the expression of adhesion molecules was previously reported in
TBEV-infected cells [50,51]; our results extend this finding also to cells incubated with
the inactivated virus. The induction of membrane rearrangements appears instead to be
specific for the replicating virus, as in our platform only live TBEV induced upregulation
of the cellular pathways involved in lipid metabolism. Overall, given the induction of
interferon responses by the inactivated virus at similar or higher levels than those induced
by the live virus, I-TBEV stands out as a potent vaccine component.

After having established the distinctive transcriptional profile of (I-)TBEV-stimulated
cells, we sought to determine which pattern recognition receptors, once triggered, led to the
identified responses. Using inhibitors of downstream factors of PRRs, we demonstrated the
involvement of RLRs in I-TBEV sensing in cryopreserved PBMCs. Inhibition of MyD88—an
adapter protein downstream of TLRs—did not affect the expression of I-TBEV-induced
genes such as ISG56 and CXCL10, while inhibition of TBK1/IKKε—factors downstream of
RLRs—halted the signaling cascade.

Activation of RIG-I-like receptors is a predominant mechanism for cellular recognition
of flaviviruses [52,53]; expression of RIG-I and MDA5 is enriched in human neural cells
following TBEV infection [54], and inhibition of RLR signaling was found to suppress
TBEV-induced interferon production [28,46,55]. RIG-I detects uncapped (with an exposed
5′-triphosphate group) single-stranded RNAs (ssRNAs) and, together with MDA5, double
stranded RNAs (dsRNAs), which are both produce during viral replication [56]. As such,
RLRs should not be triggered by the inactivated virus, since the viral genome is packaged
once mature and is capped [57]. However, activation of RIG-I by panhandle RNA (a par-
tially circularized structure) lacking a 5′-PPP moiety has been demonstrated for influenza
A virus [58]. Given the presence of cyclization elements in TBEV (and other flaviviruses)
RNA [59,60], we hypothesize that, after the uncoating of the (inactivated) virus, such
structures can be recognized by RIG-I in the cytosol.

The role of the viral genome in the immunogenicity of I-TBEV was previously assessed
in plasmacytoid dendritic cells (pDCs) derived from freshly isolated PBMCs, which were
found to sense I-TBEV through TLR7/8 [33]. The discrepancy with the results described
here could be explained by the fact that cryopreserved PBMCs were used in this study.
Cryopreservation can alter the relative proportions of APCs [61] and decrease the amount
of pDCs [62], or affect cellular responses to TLR agonists [63,64]. Furthermore, the RIG-I
pathway is dispensable for IFN production in pDCs, while it is of crucial importance in
other DCs and in non-dendritic APCs [49]. A comparison of the responses to I-TBEV in fresh
and frozen-thawed PBMCs and in the presence of RLR and TLR inhibitors could confirm
that distinct pathways are predominant in different cell subtypes. Overall, the contribution
of the viral ssRNA to the activation of APCs appears to be a prominent feature of the
TBE vaccine. For influenza, it has been shown that vaccines containing the viral genome—
able to activate endosomal ssRNA receptors [65]—induce stronger immune responses
than formulations lacking it [21,39,66], presumably through the activation of more diverse
molecular pathways. These considerations should therefore be taken into account more
widely during vaccine development, as also for TBEV, the presence of the viral genome is
shown to provide self-adjuvanting properties.

Our study provides new insights into how I-TBEV activates the innate immune system
in vitro. Understanding the mechanism of action through which a virus particle interacts
with the immune system can offer several benefits. Firstly, comparison between the live
and the inactivated virus could, for example, indicate whether critical viral components
are retained during the manufacturing process of inactivated virus vaccines. Secondly, the
identification of key pathways might allow the selection or design of cellular platforms
which express the relevant components. Such platforms would be particularly suited for
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assessing the potential of the vaccine in vitro. Thirdly, given that the TBE vaccine is highly
effective, knowledge of the innate pathways engaged by this vaccine provides a lead for
the design of effective vaccines for other pathogens.

However, it has to be realized that the TBE vaccine contains aluminum hydroxide as
an adjuvant, which by itself also affects the innate immune system [67–70]. Unfortunately,
the responses to the final vaccine formulation could not be analyzed in our platform
since the alum adjuvant appeared not to be compatible with the viability of PBMCs [17].
Therefore, while some conclusions can be drawn from an I-TBEV-based analysis of the
immune signature in human PBMCs, a complete picture of the in vitro responses to the
final TBE vaccine can be achieved only once an adjuvant-tolerating platform is found.
An additional limitation of the study is that these innate responses were only analyzed
in vitro. While several of the genes identified in this study had earlier been described
to be involved in the responses to live TBEV in vivo [44,71–73], the findings concerning
vaccine-specific responses have yet to be confirmed in mouse models and in immune cells
from vaccinated individuals.

As the scientific community strives to bring safe and effective SARS-CoV-2 vaccines
to the market, the process of vaccine development and assessment needs global attention
now more than ever. While vaccine potency and effectiveness can be assessed relatively
easily, knowledge of which host pathways should be activated for mounting a sufficient
(but not excessive) immune response is not yet solid. This is especially the case with
‘difficult’ vaccines (for rapidly mutating pathogens, as well as for viruses and bacteria
with complex interactions with the host’s immune system), where traditional “isolate,
inactivate and inject” strategies might be inappropriate for vaccine development. Next
generation sequencing techniques have been proposed as tools eventually enabling rational
and directed vaccine design [74–76]. As such, the present study contributes to the growing
evidence of their applicability for understanding the mechanisms of action of vaccines and
their components.
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Appendix A

Table A1. Primer list for the genes assessed through RT-qPCR.

Gene Forward Reverse Source

IL12-p40 CTGCCCAGAGCAAGATGTGTC CATTTCTCCAGGGGCATCCG Own design
ISG56 CCTGGAGTACTATGAGCGGGC TGGGTGCCTAAGGACCTTGTC Holzinger et al., J Virol (2007)
CCL-8 GTTTCTGCAGCGCTTCTGTG TGGCTGAGCAAGTCCCTGA Ma et al., Exp Terap Med (2016)
CXCL-10 TGAAATTATTCCTGCAAGCCAA CAGACATCTCTTCTCACCCTTCTTT Ma et al., Exp Terap Med (2016)
STAT1 TGCAAATGCTGTATTCTTCTTTGG TATGCAGTGCCACGGAAAGC Zhang et al., Immunol (2009)
IL4I1 GCTGAAGAAAGAAGAAACCCACC CCTAACTGCCACAGAAGGGA Own design
CHI3L1 TGCCCTTGACCGCTCCTCTGTACC GAGCGTCACATCATTCCACTC Erdman et al., MalariaJ (2014)
JAK2 TTCAGAAGCAGGCAACAGG TCTGTCATCGTAAGGCAGGC Warby et al., J Virol (2003)
APOC1 TTCTGTCGATCGTCTTGGAA TCAGCTTATCCAAGGCACTG Ko et al., ThoracicCan (2014)
CYBB TAGTGGGTCCCATGTTTCTGTATC ACATCACCACCTCATAGCTGAA Okura et al., J Clin Immunol (2015)
EIF4B GGCTGATGAAACGGATGACCT GGTCGATATTGGGTTCCCGA Nowak et al., EBioMedicine (2019)
GBP4 CCGGCCTACAAATGACAAGC AGCCGCTTTCCAGTGACAAT Own design
COL4A2-AS2 CTCTCAGGTCATGCCCATCC CTGAGTCCTGTGCACGTCTT Own design
GPNMB TGCTGACTGTGAGACGAACC CACCAAGAGGGAGATCACAGT Own design
BASP1 CAACTGGCTCCTCGCTCC TGAGCTTGCCTCCCATCTTG Own design
GAPDH AGGGCTGCTTTTAACTCTGGT CCCCACTTGATTTTGGAGGGA Abubaker et al., PLOS One (2013)Vaccines 2021, 9, x  16 of 25 
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Figure A3. Cytokine production in PBMCs stimulated with conforming, non-conforming I-TBEV
and live TBEV. PBMCs from 4 donors were stimulated with the indicated compounds for 24 h, after
which the supernatants were collected and the cytokine concentration assessed by Cytometric Bead
Assay. Bars represent the average value and dots the individual value per donor.
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Figure A5. Canonical pathways identified by functional analysis on IPA. Two canonical pathways associated with DEGs
upregulated upon I-TBEV treatment are shown: “Role of RLRs in antiviral innate immunity” (A) and “Role of PKR in
interferon induction and antiviral response” (B). DEGs identified by the RNA-Seq are highlighted.
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Figure A9. Upregulation of ISG56 in PBMCs incubated with RLR inhibitors. PBMCs from 3 healthy
donors were pre-incubated with RLR inhibitors (ALX at 50 µg/mL and BX at 2 µM) for 1 h. Afterwards,
the cells were treated for 24 h with I-TBEV (0.24 µg/mL), or left untreated. Following stimulation,
the cells were lysed and changes in gene expression were analyzed by RT-qPCR.
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