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Abstract. Serous ovarian cancer (SOC) accounts for >50% 
of all epithelial ovarian cancers. However, patients with SOC 
present with various degrees of response to platinum-based 
chemotherapy and, thus, their survival may differ. The present 
study aimed to identify the candidate genes involved in the 
carcinogenesis and drug resistance of SOC by analyzing 
the microarray datasets GDS1381 and GDS3592. GDS1381 
and GDS3592 were downloaded from the Gene Expression 
Omnibus database (https://www.ncbi.nlm.nih.gov/gds/). A total 
of 219 differentially expressed genes (DEGs) were identified. 
Potential genes that may predict the response to carboplatin 
and, thus, the prognosis of SOC were analyzed. The enriched 
functions and pathways of DEGs included extracellular region, 
extracellular space and extracellular exosome, among others. 
Upon screening the upregulated and downregulated genes on 
the connectivity map, 10 small‑molecule drugs were identified 
that may be helpful in improving drug sensitivity in patients 
with ovarian cancer. A total of 30 hub genes were screened 
for further analysis after constructing the protein-to-protein 
interaction network. Through survival analysis, comparison 
of genes across numerous analyses, and immunohistochem-
istry, GNAI1, non-structural maintenance of chromosomes 
(non-SMC) condensin I complex subunit H (NCAPH), matrix 
metallopeptidase 9 (MMP9), aurora kinase A (AURKA) and 
enhancer of zeste 2 polycomb repressive complex 2 subunit 
(EZH2) were identified as the key molecules that may be 

involved in the carcinogenesis and carboplatin resistance of 
SOC. In conclusion, GNAI1, NCAPH, MMP9, AURKA and 
EZH2 should be examined in further studies for the possibility 
of their participation in the carcinogenesis and carboplatin 
response of SOC.

Introduction

Ovarian cancer is the most lethal gynecological cancer (1). 
Among all ovarian cancer cases, the histological type in >50% 
of cases is serous adenocarcinoma. Although patients with 
serous ovarian cancer (SOC) usually exhibit a fairly good 
response to paclitaxel and carboplatin at diagnosis, the majority 
of the patients relapse over time (2). The 5-year survival rate 
of SOC patients has remained extremely low for decades 
due to the high rate of delayed diagnosis, bulky residual foci 
following primary surgery and secondary chemoresistance (2). 
Recent studies on the use of poly (ADP-ribose) polymerase 
(PARP) inhibitors indicated their utility in the treatment of 
ovarian cancer, due to most patients carrying a pathogenic 
mutation of BRCA1/2 (3-5). However, these patients accounted 
for only a small proportion of all SOC cases. Thus, a profound 
understanding of the molecular mechanisms underlying the 
progression of ovarian cancer may uncover new pathways with 
high clinical relevance.

Cisplatin (CDDP) and carboplatin have been the main 
drugs used for the therapy of ovarian cancer for decades. 
Unfortunately, ovarian cancer cells, with their unstable 
genomes, are initially sensitive to these drugs, but invariably 
become resistant (6). Thus, novel therapeutic strategies are 
urgently needed (7). Investigating and identifying the genetic 
aberrations that participate in the basic molecular mecha-
nisms of cancer progression and drug resistance in ovarian 
cancer may provide innovative therapeutic choices with novel 
agents (8).

The identification of novel biomarkers is currently a prom-
ising approach to designing new diagnostic and therapeutic 
strategies (9). Various technologies have been adopted to 
identify biomarkers. Furthermore, the use of bioinformatics 
is growing rapidly in cancer biology (6). Therefore, the 
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present study used two gene chips downloaded from the 
meta-database Gene Expression Omnibus (GEO). GDS3592 
was designed for comparing normal ovarian tissue and ovarian 
cancer and GDS1381 for comparing carboplatin-resistant and 
carboplatin-sensitive ovarian cancers. The present study was 
designed to identify differentially expressed genes (DEGs) 
that may affect ovarian cancer development and platinum 
sensitivity.

Materials and methods

Data collection. The GEO database is a public functional 
genomics dataset that helps users download experiments 
and create gene expression profiles. In the present study, the 
key words ‘ovarian cancer’ and ‘carboplatin resistance’ were 
searched in the GEO datasets (http://www.ncbi.nlm.nih.
gov/geo/). After filtering out repeated experiments, relevant 
studies were reviewed to screen the comparison data of control 
and treated groups. The expression matrix or CEL file was 
downloaded for subsequent analysis.

Data pretreatment and identification of DEGs. All data 
were processed using the R software (software for statistical 
computing and graphics) (https://www.r-project.org/). The 
logarithm (base 2) of the expression value was considered for 
the microarray expression data. The Affy package (http://www.
bioconductor.org/packages/release/bioc/html/affy.html) 
was used to read the expression data for CEL files. The 
l imma package (ht tp://www.bioconductor.org/pack-
ages/release/bioc/html/limma.html) for standardization was 
used for experimental data. After the limma analysis, the 
genes were sorted according to the log fold-change values. 
Subsequently, the RANK analysis (adjusted P‑value <0.05 
using the Bonferroni correction method) was conducted. 
The null hypothesis of the rank method was that each gene 
was randomly sorted in every experiment; the smaller 
the P-value of the gene, the higher ranking it would have. 
Secondly, the pheatmap package was used to draw the top 
20 genes.

Gene Ontology (GO) analysis. The Gene Ontology Consortium 
aimed to produce a dynamic, controlled vocabulary of gene 
roles in cells (10). The GO enrichment analysis was performed 
using the DAVID database (https://david.ncifcrf.gov/). The 
F-value of the GO terms of DEGs and the FDR value of the 
P-value (Q-value) were calculated through statistical analysis 
of GO terms, positioning the most possible GO terms of 
DEGs. Subsequently, the GOplot R package was used to draw 
the chord plot.

Kyoto encyclopedia of genes and genomes (KEGG) analysis. 
KEGG is a database resource for understanding the interac-
tions between molecular biology and the underlying chemical 
elements, allowing for analysis of high-level functions and 
uses of the biological system (11) (http://www.kegg.jp/). The 
KOBAS online tool (http://kobas.cbi.pku.edu.cn/) was used 
for gene annotation and KEGG pathway analyses. A P-value 
of <0.05 was considered to indicate statistically significance 
differences. Subsequently, the clusterProfiler R package was 
used to draw the barplot and dotplot.

Protein‑protein interaction (PPI) network. PPIs are the physical 
contacts among protein molecules. Exploring the interactions 
between proteins is crucial to achieve a detailed description 
of their mechanisms and functions in living organisms (12). 
Currently, PPIs are annotated at a number of online resources, 
including the STRING database (http://string-db.org/), 
providing a comprehensive perspective for several organisms. 
The PPI network of DEGs was constructed using the STRING 
database (https://string-db.org/). Cytoscape (version 3.6.0) is 
a bioinformatics software platform for visualizing molecular 
interaction networks (13). The PPI networks were drawn by 
Cytoscape.

Connectivity map (CMAP) analysis. CMAP is a gene expres-
sion database based at the Broad Institute of MIT and Harvard 
in Cambridge (MA, USA). It currently contains data on >1,000 
small molecules. CMAP uses the gene expression differences 
after treating human cells with small molecules to establish a 
biological application database that links small molecule drugs, 
gene expression and disease (14). This database suggests gene, 
disease and drug relevance, thereby helping in drug research 
and development. DEGs were uploaded to the CMAP to iden-
tify the relevance between genes and small-molecule drugs.

Kaplan‑Meier survival analysis. The Kaplan-Meier esti-
mator, a non-parametric statistic, is used to estimate the 
survival function from lifelong data. In medical research, 
it is used to measure a certain amount of time after patient 
treatment (15). Each hub gene was entered into the online 
tool (http://kmplot.com/analysis/) to assess the overall and 
progression-free survival of patients with ovarian cancer 
for the Kaplan-Meier curve. This tool was built using gene 
expression and survival data of 1,287 patients with ovarian 
cancer, which were downloaded from GEO and The Cancer 
Genome Atlas (Affymetrix HG-U133A, HG-U133A 2.0 and 
HG-U133 plus 2.0 microarrays) (16). As every gene mapped to 
a different Affy ID, each Affy ID was entered into the online 
tool to obtain the survival curves. One was selected for the 
experiment, while others were presented as supplementary 
data.

Immunohistochemistry (IHC) analysis. An online tool, 
‘Human Tissue Proteomes’ (http://www.proteinatlas.org/), was 
used to assess the gene expression in the ovaries of patients 
with ovarian cancer. The ‘Human Tissue Proteomes’ is a data-
base that can provide protein expression of all protein-coding 
genes in all major tissues and organs of the human body (17).

Results

Characteristics of the datasets. GDS1381 and GDS3592 
were obtained from the GEO database. GDS1381 and 
GDS3592 were based on the GPL8300 and GPL570 platforms, 
respectively. GDS1381 included 9 carboplatin-sensitive and 
9 carboplatin-resistant ovarian cancer cells from 6 cases with 
carboplatin-sensitive (n=3) and carboplatin-resistant (n=3) 
ovarian cancers, respectively, each of which included the 
primary ovarian cancer cells and metastatic ovarian cancer 
cells to the liver and omentum, respectively. Cancer cells 
were prepared from primary cultures. The results of GDS1381 
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provided insight into potential markers associated with carbo-
platin-resistant ovarian cancer. GDS3592 contained 12 normal 
ovarian surface epithelial (OSE) cells and 12 ovarian cancer 
epithelial cells (CEPIs). CEPIs were isolated from serous 
papillary ovarian adenocarcinomas (Table I).

Identification of DEGs. After normalization, 722 DEGs in 
GDS1381 and 3,003 DEGs in GDS3592 were identified. The 
intersection of the two datasets contained 219 genes (Fig. 1A). 
The heat map for DEG expression (top 15 upregulated and 
downregulated genes) is displayed in Fig. 1B.

GO analysis of DEGs. DEGs were imported into the online 
software DAVID to identify GO categories. According to the 
result, these DEGs were found to be mainly enriched in the 
extracellular region, extracellular space, extracellular exosome, 
proteinaceous extracellular matrix, heparin binding, negative 
regulation of cell proliferation, growth factor activity, extracel-
lular matrix and extracellular matrix organization (Fig. 2).

KEGG pathways of DEGs. DEGs were uploaded into 
the KEGG database to conduct the KEGG analysis. The 
significantly enriched KEGG terms were pathways in cancer, 
phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway, 
Rap1 signaling pathway, proteoglycans in cancer, axon 
guidance, cell cycle, fluid shear stress and atherosclerosis, 
small-cell lung cancer, complement and coagulation cascades, 
and arrhythmogenic right ventricular cardiomyopathy (Fig. 3).

PPI network of DEGs. All the DEGs were screened using the 
STRING database to further investigate the property of these 

distinct genes and the internal link of DEGs. The PPI network 
of DEGs was constructed by Cytoscape (Fig. 4A). The number 
of strings for every single gene was counted to identify the 
hub genes. The top 30 genes are displayed in the bar chart 
in Fig. 4B, which helped identify the most important genes 
among DEGs.

Related small‑molecule drugs. The CMAP is a web-based 
tool collecting genome-wide transcriptional expression data 
that provides insight into functional connections between 
drugs, genes and diseases through the transitory feature 
of common gene expression changes. Through comparing 
microarray data from 1,300 small molecules with selected 
genes in a pattern-matching algorithm, those compounds 
with a gene expression pattern highly correlated with the 
selected genes would be screened, with the aim to identify a 
novel, potentially effective treatment for a disease (7). The 
present study screened the upregulated and downregulated 
genes on the CMAP and found 10 related small-molecule 
drugs. These small molecules may prove to be benefi-
cial in terms of drug sensitivity in patients with ovarian 
cancer (Table II).

Comparison of hub genes across numerous analyses. An 
Oncomine analysis of cancer vs. normal tissue of hub genes 
in ovarian cancer was performed. The results revealed 
that GANI1, non-structural maintenance of chromosomes 
(non‑SMC) condensin I complex subunit H (NCAPH), fibro-
blast growth factor 2 (FGF2), matrix metallopeptidase 9 
(MMP9), aurora kinase A (AURKA), enhancer of zeste 2 
polycomb repressive complex 2 subunit (EZH2) and BUB1 

Table I. Characteristics of the two datasets of the present analysis.

ID GSE Acc GPL Organism Control Case Country PMID

1 GDS1381 GPL8300 Homo sapiens 9 9 USA 16227411
2 GDS3592 GPL570 Homo sapiens 12 12 USA 20040092

Table II. Top 10 relevant small-molecule drugs.

Rank Cmap name Mean n Enrichment P‑value Specificity Percent non‑null

  1 Thioridazine ‑0.48 20 ‑0.555 0 0.0645 90
  2 Tanespimycin ‑0.576 62 ‑0.486 0 0.0672 87
  3 Trichostatin A ‑0.5 182 ‑0.468 0 0.2475 87
  4 LY‑294002 ‑0.344 61 ‑0.301 0.00004 0.3436 67
  5 Etiocholanolone 0.452 6 0.817 0.00008 0 100
  6 Thioperamide 0.489 5 0.83 0.0003 0 100
  7 Geldanamycin ‑0.568 15 ‑0.512 0.00034 0.0859 86
  8 Carbenoxolone 0.457 4 0.87 0.0004 0 100
  9 Cloxacillin 0.538 4 0.856 0.00056 0 100
10 8‑Azaguanine ‑0.7 4 ‑0.857 0.00072 0.007 100

Upregulated and downregulated genes were screened on the Cmap and 10 related small-molecule drugs were found. Cmap, connectivity map. 
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mitotic checkpoint serine/threonine kinase B (BUB1B) were 
upregulated among different analysis datasets (Fig. 5).

Kaplan‑Meier survival analysis. The overall survival analysis 
of hub genes was performed using the Kaplan-Meier curve. 
The results demonstrated that high expression levels of 
GNAI1, SPARC, NCAPH, MMP9, FGF2, AURKA, EZH2 and 

BUB1B were associated with worse survival of ovarian cancer 
patients. The overall and progression-free survival analyses of 
hub genes are displayed in Fig. 6A and B, respectively.

IHC. An online website (http://www.proteinatlas.org/) was 
used to search for the IHC results. Immunostaining of certain 
hub genes yielded positive results in ovarian cancer tissue. The 

Figure 2. GO analysis of DEGs. Each gene and their correspondent GO terms are linked by different color lines on the image. GO, Gene Ontology; DEGs, 
differentially expressed genes.

Figure 1. Venn diagram and heat map. (A) Venn diagram depicts the DEGs of GEO chips relatively and the overlapping genes. DEGs were selected through 
fold change >2.0 and P‑value <0.05 within both GEO chips by R software. The number on the image shows the quantity of DEGs of each and overlap. (B) Heat 
map representation of top 40 DEGs (20 upregulated and 20 downregulated). Red modules denote upregulation, green modules denote downregulation. DEGs, 
differentially expressed genes; GEO, Gene Expression Omnibus.
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staining intensity of GNAI1 in 12 patients with ovarian cancer 
included 3 weak and 9 negative staining cases using anti-
body CAB022449 (antibody dilution:1:1,000) (18), 1 low and 

10 negative staining cases using antibody HPA042141 (anti-
body dilution:1:75) (18,19). The staining intensity of NCAPH 
in 12 ovarian cancer samples included 4 moderate, 3 weak 

Figure 3. KEGG pathway analysis of DEGs. (A) Barplot and (B) dotplot were performed by R software. KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEGs, differentially expressed genes.



ZHAN et al:  POTENTIAL INDICATORS FOR PLATINUM RESISTANCE IN PATIENTS WITH SOC2658

and 5 negative staining cases using antibody HPA003008 
(antibody dilution:1:150) (18), whereas 3 moderate, 3 weak and 

5 negative staining cases in 11 ovarian cancer samples using 
antibody HPA002647 (antibody dilution: 1:100) (18,20). The 

Figure 4. PPI network of DEGs. (A) The gene co‑expression network of DEGs. (B) Top 30 genes with most connection nodes. DEGs, differentially expressed 
genes.
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staining intensity of MMP9 in 12 patients with ovarian cancer 
included 3 strong and 9 negative staining cases using antibody 
CAB000348 (antibody dilution:1:1,000) (18), whereas all were 
negative staining using other antibodies (21). The staining 
intensity of AURKA in 24 ovarian cancer samples included 
1 strong, 1 moderate, 3 weak and 7 negative staining cases 
using antibody CAB001454 (antibody dilution:1:25) (18), 

1 moderate, 3 weak and 8 negative staining cases using antibody 
HPA002636 (antibody dilution:1:100) (18,22). The staining 
intensity of EZH2 in 10 ovarian cancer samples included 
4 strong, 5 moderate and 1 weak staining cases using antibody 
CAB009589 (antibody dilution:1:100) (18,23). IHC analysis 
further demonstrated the unknown connection between hub 
genes and ovarian cancer. An illustration of the weak staining 

Figure 5. Gene expression within ovarian cancer across multiple datasets.
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Figure 6. Kaplan Meier survival curve of hub genes. (A) Overall survival analyses. (B) Progression-free survival analyses were performed using Kaplan Meier-plotter.
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of GNAI1 (19), strong staining of EZH2 (23), moderate 
staining of NCAPH (20), strong staining of MMP9 (21) and 
strong staining of AURKA (22) are displayed in Fig. 7.

Discussion

Microarray analysis of gene expression profiles is widely used to 
identify genes and biological pathways associated with multifac-
torial diseases. However, such studies on ovarian cancer have been 
scarce to date. Thus, in the present study, integrated analyses were 
performed and 219 DEGs common between OSE and CEPIs, as 
well as genes common between carboplatin-sensitive and carbo-
platin-resistant ovarian cancer cells, were detected to identify the 
key platinum-resistant genes in SOC, which is the most common 
type of epithelial ovarian cancer. The results provided evidence 
that the 219 DEGs were probably involved in cancer development 
and the molecular mechanism underlying carboplatin resistance, 
which were enriched in the PI3K-Akt signaling pathway, Rap1 
signaling pathway, proteoglycans in cancer, axon guidance, 
cell cycle, fluid shear stress and atherosclerosis, small‑cell lung 
cancer, and complement and coagulation cascades.

Overall, 30 DEGs were identified as hub genes with high 
node degrees. Among these hub genes, interleukin (IL)6 
exhibited the highest node degree with 51. IL6 belongs to the 
IL6 cytokine family and was recently reported to promote 
lung and pancreatic tumorigenesis (24‑26). Systemic and 
pulmonary production of IL6 was commonly elevated in 
patients with lung adenocarcinoma and was correlated with 
poor survival (27-30). A mouse model revealed specific 
targeting of IL6 trans-signaling, which suppressed the 
pathogenesis of lung adenocarcinoma (31). Subsequently, the 
screened genes that may be closely associated with ovarian 
cancer were further analyzed. The present study identified 
five genes, namely GANI1, NCAPH, MMP9, AURKA and 
EZH2, that were closely associated with ovarian cancer. 
NCAPH encodes a member of the Barr gene and a regula-
tory subunit of the condensin complex that contributes to the 
conversion of interphase chromatin into condensed chromo-
somes (32). NCAPH is one of the three non-SMC subunits 
in condensin I that is a superfamily of proteins termed klei-
sins (16) and it was found to be crucial for condensin complex 
stability and resolution of sister chromatids. It promotes 

Figure 7. Representative images of immunostaining of certain hub genes. Immunohistochemistry was used to identify gene expression in ovarian cancer. 
Typical examples were selected to show. The case displays positive staining for GANI1, NCAPH, MMP9, AURKA and EZH2.
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colonic cancerous cell proliferation and migration, affects cell 
cycle transition, and inhibits cellular apoptosis. Knockdown 
of NCAPH decreased the xenograft tumor growth of HCT116 
in vivo (33). MMP9 is one of the members of the MMP family 
that participates in the breakdown of extracellular matrix in 
normal physiological processes. The majority of MMPs are 
converted to their active forms from inactive protein precur-
sors after being cleaved by extracellular proteinases (32). 
MMP9 was found to be involved in the metastasis of lung 
cancer, hepatocellular carcinoma (HCC), prostate and breast 
cancer (34‑37). MMP9 was also found to be involved in 
cancer progression and was identified in patients with ovarian 
cancer. Therefore, MMP9 may be a candidate biomarker 
for high-grade ovarian cancer (38). AURKA, also referred 
to as aurora kinase A, is a cell cycle-regulated kinase that 
participates in microtubule formation and stabilization at the 
spindle pole during chromosome segregation (32). Aurora A 
mapped to chromosomal region 20q13.2, which was amplified 
in a number of cancer cell lines and primary tumors (39‑41). 
Previous studies demonstrated that AURKA was involved in 
the susceptibility to hepatitis B virus-related HCC and the 
progression of head and neck and gastric cancer. High expres-
sion of AURKA promoted cisplatin resistance by activating 
p‑eIF4E, c‑MYC and HDM2 (42,43). AURKA was found 
to be amplified in >15‑25% of ovarian cancer cell lines and 
primary tumors (40,41). The expression of BRCA1/2 may be 
increased by AURKA in ovarian carcinoma cells (44), and 
several studies revealed a physical and functional associa-
tion between AURKA and BRCA1/2 (45‑47). Clinical data 
demonstrated that patients with BRCA1 and BRCA2 muta-
tions exhibited a higher response rate to cisplatin (48,49). 
Thus, AURKA was hypothesized to exert a synergistic effect 
with BRCA1/2 in platinum resistance. EZH2 encoded one 
of the polycomb-group family members. The protein EZH2 
encoding was involved in the hematopoietic and central 
nervous systems (32). Mutation or overexpression of EZH2 
was reported to be associated with a wide variety of cancers. 
As in ovarian cancer, an increased expression of EZH2 
was reported to promote cancer cell metastasis and migra-
tion (50,51), whereas inhibitors of EZH2 were assessed in 
clinical trials as potential therapeutic targets (52).

GANI1 and the interaction between ovarian cancer and 
NCAPH have not been widely reported and, hence, need 
further investigation.

The present study integrated two gene expression data-
sets to lower the false-positive rate of the single microarray 
analysis. This process also stabilized the effects of the 
study with a small sample size. Finally, five DEGs were 
identified, namely GNAI1, NCAPH, MMP9, AURKA and 
EZH2, which may be considered as potential novel targets 
for ovarian cancer therapy and drug resistance reversal 
agents. However, further experiments in vivo and in vitro 
are needed to explicate the biological function of these 
genes and the complex molecular processes underlying 
the platinum resistance of ovarian cancer require further 
investigation.
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