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Unravelling the effects of age, period and cohort
on metabolic syndrome components in a
Taiwanese population using partial least squares
regression
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Abstract

Background: We investigate whether the changing environment caused by rapid economic growth yielded
differential effects for successive Taiwanese generations on 8 components of metabolic syndrome (MetS): body
mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG),
triglycerides (TG), high-density lipoprotein (HDL), Low-density lipoproteins (LDL) and uric acid (UA).

Methods: To assess the impact of age, birth year and year of examination on MetS components, we used partial
least squares regression to analyze data collected by Mei-Jaw clinics in Taiwan in years 1996 and 2006.
Confounders, such as the number of years in formal education, alcohol intake, smoking history status, and betel-
nut chewing were adjusted for.

Results: As the age of individuals increased, the values of components generally increased except for UA. Men
born after 1970 had lower FPG, lower BMI, lower DBP, lower TG, Lower LDL and greater HDL; women born after
1970 had lower BMI, lower DBP, lower TG, Lower LDL and greater HDL and UA. There is a similar pattern between
the trend in levels of metabolic syndrome components against birth year of birth and economic growth in Taiwan.

Conclusions: We found cohort effects in some MetS components, suggesting associations between the changing
environment and health outcomes in later life. This ecological association is worthy of further investigation.

Keywords: Metabolic syndrome obesity, age-period-cohort analysis, partial least squares, Taiwan

Background
Several Asian countries have achieved great economic
growth in the second half of the last century and experi-
enced rapid industrialization, urbanization and social
change. As a result, living environments in these coun-
tries have gone through a dramatic transformation, and
people started to adopt, gradually, western lifestyles and
food. The potential consequences and impacts of this
westernization on general health in the populations
within these newly developed countries have been much
discussed in the literature, especially around the
increased prevalence of obesity giving rise to greater

risks of chronic diseases, such as type-2 diabetes and
certain types of cancers thought to be related to western
diets [1-3].
Moreover, according to the developmental origins of

health and disease hypothesis [4-6], for people in coun-
tries who were born before or at the start of rapid eco-
nomic growth, there may be an increased risk of
developing chronic adult diseases due to a mismatch
between early and later environments. Those genera-
tions born after economic growth has achieved a certain
level of national wealth may, however, benefit from bet-
ter neonatal and postnatal nutrition and medical care
[7-9], thereby yielding better health outcomes in adult
life than observed for previous generations. While the
problems of obesity and related chronic diseases should
not be overlooked [10-13], the increased wealth and
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improved living standard due to economic growth may
exert a protective effect on health in later life [4-6].
Many studies have investigated the adverse impact of

changes in dietary patterns and lifestyles on the popula-
tion health in newly developed Asian countries such as
South Korea, Taiwan and Hong Kong [1,3,10-13], but
the potential beneficial impact of improved early nutri-
tion is still not well understood. For instance, Taiwan
has a population of over 23 million; whilst Taiwanese
economy has been growing steadily since the end of the
Second World War, it experienced spectacular economic
growth during the last three decades, and the living
environment (e.g. increased affordability and availability
of food, transportation, housing etc.) has been trans-
formed dramatically. Several studies have reported that
the prevalence of obesity has been increasing [14-16].
As obesity is shown to be associated with an increased
risk of cardiovascular diseases and diabetes in adults, it
is anticipated that the prevalence of obesity related dis-
eases in the Taiwanese population will also increase
[17-21].
The rapid economic and social transformations may

have differential impacts across generations who were
born and raised in different stages of economic develop-
ment in Taiwan [5,6,22]. Whilst many studies have
shown an increased prevalence of obesity and the poten-
tial public health implications, it remains to be ascer-
tained that the risks of chronic diseases have also been
growing across generations. The aim of this study is to
use health screening data collected in Taiwan in the
years 1996 and 2006 to disentangle the counteractive
effects on health caused by economic growth and social
change by undertaking an age-period-cohort analysis on
components of metabolic syndrome.

Methods
Mei-Jaw health screening data
Mei-Jaw (MJ) Corporation is a Taiwanese private orga-
nization providing health screening services for its mem-
bers. Details of the MJ Health Screening scheme and
data collection have been described elsewhere [23,24].
Data collected by its four clinics in Taiwan were compu-
terized from 1994 onwards and questionnaires about
personal and medical histories, lifestyles and diets were
collected from 1996. Weight and height were measured
by an auto-anthropometer, Nakamura KN-5000A (Naka-
mura, Tokyo, Japan). Weight was measured to the near-
est 0.1 kg with subjects standing barefoot and wearing
light indoor clothing. Height was recorded to the near-
est 0.1 cm. BMI was calculated as body weight divided
by height (in meters) squared and used as a proxy vari-
able for obesity. Overnight fasting blood was collected
and analyzed (Hitachi 7150 auto-analyzers, Tokyo,
Japan). In addition to BMI, seven other components of

the metabolic syndrome are investigated in this study:
fasting plasma glucose (FPG), triglycerides (TG), high-
density lipoprotein cholesterol (HDL), low-density lipo-
protein cholesterol (LDL), uric acid (UA), and systolic
and diastolic blood pressure. For the latter, the mean of
2 seated measurements taken at 10 minute intervals
using a computerized auto-mercury-sphygmomanometer
were used Citizen CH-5000 (Citizen, Tokyo, Japan). To
reduce potential biases caused by the use of medicines,
only people between 20 and 59 years, who reported no
history of chronic diseases such as diabetes, hyperten-
sion, and cancer, and who were not on long-term medi-
cation, were included in the analysis: 14,362 subjects
from the 71,233 examined in 1996 (20%), and 28,524
subjects from the 80,851 (35%) examined in 2006.

Ethics
Written consent for using the screening results for aca-
demic research was obtained from each participant,
when she/he attended the clinics for health screening,
and this research project has been approved by the
Research Ethics Committee at the University of Leeds.

Statistical analysis
Sex and year-specific adjusted values of the eight meta-
bolic syndrome components were first obtained by using
linear regression with adjustment for years in formal
education, history and frequency of cigarettes smoking,
alcohol intake and betel-quid chewing. An age-period-
cohort analysis was then undertaken separately for men
and women, combining the data from 1996 and 2006.
As age at examination (between 20 and 59), time period
(examination year 1996 or 2006), and cohort (year of
birth between 1937 and 1986) are mathematically
related (time period = age at examination + cohort), it
is well known that these three variables cannot be
entered into the same regression model due to perfect
collinearity. To resolve this problem, we used partial
least squares regression (PLSR) to separate the effects of
age, period and cohort.
PLSR is a statistical methodology widely used in che-

mometrics and bioinformatics for the analysis of data
with the number of variables exceeding the number of
observations [25-28]. Similar to principal component
analysis (PCA), PLSR extracts components that are a
weighted combination of the original variables; however,
whilst PCA aims to maximize the variances of succes-
sively extracted components, i.e. the variance of the first
component is larger than that of the second, and the
second is larger than the third etc., under the con-
straints that all the components are independent and
the sum of the squared weights is unity, PLSR aims to
maximize the covariance between the outcome and suc-
cessively extracted components, i.e. the covariance
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between the outcome and the first component is larger
than that between the outcome and the second, and the
covariance between the outcome and the second com-
ponent is larger than the covariance between the out-
come and the third etc., under the same two
constraints. This process leads to a unique partition of
covariance between the outcome and all covariates.
Usually, the first few components can explain most of
the covariance with the outcome, and this can substan-
tially reduce the problem of unstable regression coeffi-
cients caused by collinearity.
One advantage of PLSR over traditional regression

analysis is that perfectly collinear variables can be con-
sidered simultaneously as covariates in one model, i.e.
all the three variables, age at examination, time period,
and cohort can be entertained into the same model.
Consequently, it becomes possible to estimate their indi-
vidual effects on the outcomes. This is because PLS does
not use the original collinear covariates in the computa-
tional process; instead, it constructs weighted compo-
nent first and then maximizes the covariance between
the outcome and those weighted components succes-
sively extracted under the two constraints that all the
components are independent and the sum of the
squared weights is unity. Those constraints ensure that
the weights, and therefore the regression coefficients for
the covariates, are unique and maximize the covariance
extraction in the process [25-29]. A more detailed and
technical explanation for how PLSR resolves the identifi-
cation issue is provided in the appendix.
The use of PLSR aims to develop parsimonious mod-

els with the first few components only, hence incre-
ments in the explained variance in the outcome (e.g.
changes in R2) are used as a criterion for selecting the
number of PLSR components. This provides a measure
of predictive ability, the predictive residual error sum of
squares (PRESS) [29]. To obtain this, the data are first
split into a number of groups. For each, a prediction is
obtained using the model derived from all other groups.
For example, one observation is left out of the model,
and we use the remaining observations to predict the
outcome. PRESS is calculated as the sum of squares of
the differences between the prediction for each observa-
tion (when it is left out of the model) and the observed
value of the dependent variables.
We first tested linear relations between the outcomes

(each of the eight metabolic syndrome components) and
age at examinations (age) and cohort, i.e. year of birth
(birthyr). To improve stability in the iteration process
for PLSR, age was centred on 20 years and birthyr was
centred on 1937. The variable for the period effect, age
at examination (examyr), was a binary variable (1996
code 0, 2006 coded 1). To explore nonlinear relation-
ships, we constructed restricted cubic splines for age

and birthyr with five knots at ages 24, 30, 35, 41, and 53
years for age and at years 1949, 1961, 1968, 1973, and
1980 for birthyr. These knots represent the 0.05, 0.275,
0.5, 0.725 and 0.95 percentiles within each variable, as
suggested by Harrell [30].
Subjects with missing values (a few hundred for LDL

and HDL in 2006, and very few for the other variables;
see Tables 1 and 2 and Additional File 1 for greater
detail) were excluded from data analysis. Statistical ana-
lyses were undertaken using the statistical software
packages STATA (version 11.1, StataCorp, Texas, USA)
and XLSTAT (version 2009.6.04, Addinsoft). Confidence
intervals for PLSR coefficients were obtained using the
jack-knife method, because there is no distribution
assumption for PLSR coefficients [29].

Results
Comparison of Variables between 1996 and 2006
Tables 1 and 2 provide summary statistics for the eight
metabolic syndrome components and the anthropo-
metric variables for subjects examined in 1996 and
2006 for males and females, respectively. On average,
men had greater weight, height, BMI, SBP, FPG, but
lower DBP, lower TG, lower LDL, lower UA and
higher HDL in 2006 than in 1996. On average, women
were slightly taller in 2006 than in 1996, but they had
a similar weight, giving rise to a smaller BMI. For
women, SBP, DBP, TG, LDL and UA were lower and
HDL was higher in 2006, whilst FPG remained at a
similar level. Men had higher BMI, FPG, SBP, DBP,
TG, LDL and UA but lower HDL than women in both
1996 and 2006.
Younger participants tended to have higher educa-

tional attainment, and on average participants in 2006
had spent longer in formal education than those in
1996. Within each of the four age groups, men were
heavier and taller in 2006 than in 1996, as too were
women.
The kernel density plots of the eight metabolic syn-

drome components for men in Figure 1 show that there
was little difference in the distributions of BMI, FPG,
and TG between 1996 and 2006. The distributions of
SBP slightly shifted to the right in the younger age
groups in 2006, indicating a small increase in the mean,
whilst DBP slightly shifted to the left, showing a small
decrease in the mean. The distribution of HDL, how-
ever, shifted to the right in 2006 for all age groups, indi-
cating that men had a higher HDL in 2006. The
distributions of LDL and UA shifted to the left. The ker-
nel density plots in Figure 2 for women showed that the
distributions of BMI and DBP shifted slightly to the left,
indicating a small decrease in the means. There was also
a left shift in distribution of TG, LDL and UA, though a
right shift in HDL.
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Age-period-cohort analysis
Tables 3 showed the results of the linear PLSR, and
Figure 3 and Table 4 showed the results from nonlinear
(restricted cubic splines) PLSR. PRESS, the statistical
index for the selection of components, selected only the
first PLS component for all linear or nonlinear models.
Nevertheless, to examine the robustness of our findings,
we also look at results from models with the first two
components are also presented. In general, the one
component model explained more than 75% of the total
R2, and the two component models explained more
than 95% of the total R2. The greater the R2 in the one-
component models, the smaller the differences caused
by adding the second component to the models. As the
two-component models explained almost all the total
R2, adding more components yields little difference to
results, i.e. insubstantial changes to the estimated regres-
sion coefficients. Consequently, we concentrated on the
interpretation of results from two-component models.
Linear PLSR showed that men examined at 2006 had

nearly one-unit higher BMI, whilst women had nearly
one-unit lower BMI, and these results were consistent
with those from nonlinear PLSR. No substantive associa-
tion between BMI and the year of birth or age at exami-
nation was found in either men or women.

In both linear and nonlinear models, no substantive
association was found between SBP and any of the three
covariates for men. In both linear and nonlinear models,
there were small positive trends between SBP and age at
examination in women. There was a decrease in DBP by 2
to 3 mmHg for men in 2006 and a similar decrease for
women. Linear and nonlinear PLSR revealed small nega-
tive relationships between DBP and the year of birth in
both men and women with a further decline around 1970.
Linear PLSR showed that the mean FPG in men

examined at 2006 was about 5 mg/dl lower (1-compo-
nent model: -4.2, 95% confidence interval [CI]: -5.86 to
-2.55; 2-component model: -5.84, 95%CI: -7.72 to -3.95),
whilst there was a small increase in FPG in women.
These results were generally consistent with those from
the nonlinear PLSR. Linear PLSR showed a small nega-
tive association between FPG and the year of birth for
men and women. In the nonlinear PLSR, there was a
negative trend in FPG and a fall for men born after
1970. A similar negative trend was observed in women
with a smaller fall born at 1970. In both linear and non-
linear models, there were positive trends between FPG
and age at examination.
Linear PLSR showed a decrease in TG for women (2-

component model: -9.58, 95%CI: -12.71 to -6.45). Linear

Table 1 Body size, components of the metabolic syndrome, and aspects of lifestyle in 1996 and 2006 for men

Total 20-29 30-39 40-49 50-59

N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD

Year 1996

Body weight (kg) 6520 68.00 10.38 1940 66.70 10.97 2762 68.82 10.63 1192 69.10 9.23 626 66.35 8.69

Body height (cm) 6520 169.58 6.00 1940 171.04 5.97 2762 169.96 5.83 1192 168.42 5.60 626 165.56 5.42

BMI (kg/m2) 6520 23.63 3.22 1940 22.77 3.33 2762 23.80 3.25 1192 24.34 2.88 626 24.19 2.77

FPG (mg/dl) 6520 96.87 14.51 1940 94.13 11.68 2762 96.26 11.10 1192 99.76 17.30 626 102.52 24.21

SBP (mmHg) 6520 117.99 14.66 1940 117.87 13.83 2762 116.80 13.67 1192 118.08 15.23 626 123.46 18.55

DBP (mmHg) 6520 73.07 9.83 1940 71.06 9.29 2762 72.84 9.51 1192 75.26 10.32 626 76.11 10.36

TG (mg/dl) 6520 131.81 104.38 1940 106.65 79.54 2762 140.33 110.73 1192 148.19 111.83 626 140.95 114.63

HDL (mg/dl) 6519 41.27 12.18 1940 40.93 11.19 2762 41.04 12.49 1192 41.50 12.34 626 42.88 13.29

LDL (mg/dl) 6401 125.52 31.31 1924 116.94 28.45 2695 125.79 30.62 1165 134.24 32.52 617 134.60 33.18

UA (mg/dl) 6520 6.88 1.36 1940 6.93 1.36 2762 6.95 1.37 1192 6.81 1.32 626 6.60 1.37

Year 2006

Body weight (kg) 14261 70.76 10.79 3109 70.54 11.89 6292 71.55 10.90 3538 70.37 9.82 1322 68.53 9.53

Body height (cm) 14261 171.56 6.08 3109 173.02 5.88 6292 172.21 5.88 3538 170.52 5.90 1322 167.76 5.93

BMI (kg/m2) 14261 24.01 3.24 3109 23.54 3.65 6292 24.10 3.25 3538 24.18 2.94 1322 24.31 2.83

FPG (mg/dl) 14258 98.55 14.31 3109 94.80 9.07 6289 97.58 12.18 3538 101.42 17.90 1322 104.25 18.97

SBP (mmHg) 14259 119.72 13.69 3109 120.10 12.61 6291 119.19 13.12 3537 119.22 14.40 1322 122.65 16.22

DBP (mmHg) 14259 71.38 9.95 3109 68.76 9.02 6291 71.02 9.42 3537 72.98 10.47 1322 74.98 11.18

TG (mg/dl) 14259 128.30 98.03 3109 97.39 61.81 6290 131.77 92.44 3538 146.24 124.72 1322 136.44 95.74

HDL (mg/dl) 13300 48.05 10.89 2918 49.69 10.70 5843 47.30 10.77 3269 47.60 10.96 1270 48.93 11.34

LDL (mg/dl) 13294 122.29 30.96 2917 112.86 28.70 5837 122.56 30.32 3269 127.75 31.80 1271 128.66 31.56

UA (mg/dl) 14250 6.56 1.23 3109 6.68 1.24 6288 6.62 1.23 3532 6.41 1.20 1321 6.35 1.21

A more detailed version is provided in the online additional file 1. Abbreviation: body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure
(DBP), fasting plasma glucose (FPG), triglycerides (TG), high-density lipoprotein (HDL), Low-density lipoproteins (LDL), uric acid (UA).
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PLSR revealed small negative relationships between TG
and the year of birth in both men and women. Non-
linear PLSR also yielded negative trends, though with a
further decline around 1970. No substantive association
was found between TG and age at examination.
In both linear and nonlinear models, there were

increases in HDL in both men and women between
2006 and 1996. PLSR showed a small positive associa-
tion between HDL and the year of birth in men with a
sharp rise around 1970. The association between HDL
and the year of birth for women was less clear, as linear
and nonlinear models suggested different trends. Both
linear and nonlinear PLSR models suggested no strong
association between HDL and age.
The adjusted difference in mean LDL between 2006 and

1996 for men and women had very large confidence inter-
vals in both linear and nonlinear PLSR, yielding inconclu-
sive interpretation. Linear PLSR revealed very small
negative relationships between LDL and the year of birth
in both men and women. Nonlinear PLSR also yielded
negative trends, though with a further decline around 1970
(Figure 3). Linear and nonlinear PLSR suggested small
positive associations between LDL and age at examination.
The adjusted UA was lower in 2006 for men and

women in both linear and nonlinear PLSR. Linear PLSR

showed no relationships between LDL and the year of
birth in both men and women. Nonlinear PLSR, how-
ever, suggested a sudden increase in UA in women
around 1970 (Figure 3). Linear and nonlinear PLSR sug-
gested a weak negative association between UA and age
at examination in men.

Discussion
Our analyses suggest that whilst there was a small
increase in BMI from 1996 to 2006 amongst men, there
was a small decrease amongst women. One recent study
also found an increase in the prevalence of obesity in
Taiwanese men but not women between 1993/6 and
2005 [16]. This sex difference may be down to women
becoming taller whilst their weight remains similar,
though intriguingly the other seven metabolic syndrome
components either showed little change or became
slightly better for both men and women. It may be
hypothesized that social pressures to be maintain slim-
ness could be different in men and women and that this
is driving the differential effect of gender. While men
became taller and larger in 2006, women became taller
but with similar weights. The mean DBP was lower in
2006 than in 1996 in this population [22], but the pre-
sent study also observed lower TG, LDL, UA and higher

Table 2 Body size, components of the metabolic syndrome, and aspects of lifestyle in 1996 and 2006 for women

Total 20-29 30-39 40-49 50-59

N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD

Year 1996

Body weight (kg) 7841 54.68 8.15 2534 52.75 8.09 3102 54.30 7.50 1368 57.36 8.47 837 57.59 8.15

Body height (cm) 7841 157.46 5.36 2534 158.85 5.29 3102 157.84 5.11 1368 156.30 4.93 837 153.71 5.07

BMI (kg/m2) 7841 22.07 3.23 2534 20.90 3.00 3102 21.80 2.85 1368 23.47 3.24 837 24.36 3.17

FPG (mg/dl) 7841 93.64 12.23 2534 90.94 8.85 3102 92.79 9.31 1368 95.96 14.84 837 101.13 19.82

SBP (mmHg) 7841 111.16 15.41 2534 107.65 12.43 3102 107.96 12.98 1368 115.52 16.62 837 126.56 18.41

DBP (mmHg) 7841 69.32 9.62 2534 67.43 8.86 3102 68.11 8.98 1368 71.66 9.94 837 75.67 10.19

TG (mg/dl) 7841 87.77 58.81 2534 75.57 34.80 3102 83.70 48.70 1368 98.23 64.77 837 122.69 105.81

HDL (mg/dl) 7841 49.06 12.63 2534 49.07 12.38 3102 48.68 12.34 1368 49.13 13.11 837 50.38 13.59

LDL (mg/dl) 7819 119.96 30.36 2533 112.13 27.61 3095 117.94 27.74 1361 125.53 30.07 830 142.26 35.46

UA (mg/dl) 7841 5.08 1.16 2534 5.05 1.10 3102 5.00 1.11 1368 5.05 1.21 837 5.47 1.33

Year 2006

Body weight (kg) 14259 54.28 8.52 3335 52.76 9.07 5942 54.06 8.53 3289 55.21 7.92 1693 56.23 7.85

Body height (cm) 14259 158.86 5.42 3335 160.11 5.27 5942 159.57 5.16 3289 158.02 5.31 1693 155.52 5.25

BMI (kg/m2) 14259 21.51 3.23 3335 20.57 3.30 5942 21.22 3.12 3289 22.11 2.98 1693 23.25 3.03

FPG (mg/dl) 14259 93.54 11.06 3334 90.34 6.77 5943 92.43 9.81 3289 95.26 11.01 1693 100.39 17.03

SBP (mmHg) 14253 109.59 14.24 3333 106.55 11.73 5939 107.02 12.24 3289 111.65 14.74 1692 120.61 17.86

DBP (mmHg) 14253 64.11 9.63 3333 61.78 8.19 5939 63.03 8.74 3289 65.45 10.22 1692 69.87 11.26

TG (mg/dl) 14259 79.44 51.68 3334 65.37 32.21 5943 74.94 42.94 3289 86.24 55.08 1693 109.72 81.37

HDL (mg/dl) 13541 59.86 13.44 3060 60.84 13.56 5909 59.62 13.37 3197 59.29 13.16 1675 59.98 13.88

LDL (mg/dl) 13539 111.92 29.29 3059 103.04 26.16 5608 108.56 26.96 3198 115.66 28.31 1674 132.28 33.14

UA (mg/dl) 14258 4.66 1.01 3334 4.67 0.98 5943 4.59 0.97 3289 4.57 0.99 1692 5.04 1.12

A more detailed version is provided in the online additional file 1. Abbreviation: body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure
(DBP), fasting plasma glucose (FPG), triglycerides (TG), high-density lipoprotein (HDL), Low-density lipoproteins (LDL), uric acid (UA).
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HDL in all age groups. There was a small increase in
FPG for men in 2006 compared to 1996, and the differ-
ence was larger in older age groups than younger ones;
however, no difference in FPG was observed for women.

The increased BMI in men is consistent with the
increased prevalence of obesity suggested by other stu-
dies, but this did not necessarily reflect an increased risk
for metabolic syndrome in this study.
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Figure 1 Kernel density plots of body mass index (BMI), fasting plasma glucose (FPG), systolic blood pressure (SBP), diastolic blood
pressure (DBP), triglycerides (TG) and high-density lipoproteins (HDL) for men in 1996 (dashed line) and 2006 (solid line).
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Several authors have argued that obesity is not only a
serious public health issue for developed countries but
also for developing countries that are undergoing or
have recently undergone economic and social

transformation, when people gradually adopt western
lifestyles and diets. Our hypothesis was that changes in
lifestyles and the environment, arising due to economic
development, may have counteractive impacts on
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Figure 2 Kernel density plots of body mass index (BMI), fasting plasma glucose (FPG), systolic blood pressure (SBP), diastolic blood
pressure (DBP), triglycerides (TG) and high-density lipoproteins (HDL) for women in 1996 (dashed line) and 2006 (solid line).
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population health; this idea is new and to the best of
our knowledge has not been investigated before. While
attention has been focused on the potentially harmful
impact of the changing environment in adulthood on
health in later life, less is known about the potentially
protective effects of an improved early environment. For
people who experience a nutritional and lifestyle revolu-
tion due to economic and social transformation in early
and middle adulthood, the mismatch in the early and
later environments may increase their risks of chronic
diseases in later life probably mediated by obesity [4-6].
However, such a mismatch becomes small for later gen-
erations who grow-up in the later stage of economic

and social transformation, and moreover, the improved
nutrition and living standards for mothers and babies
may give these later generations improved health com-
pared to those before them.
Traditionally, to unravel the differential effects of the

changing environment on successive generations
requires a complex age-period-cohort analysis [31],
because three factors need to be considered simulta-
neously. The first is the period effect, i.e. the “current”
or later-life environment, and this is usually when health
data are collected. The second is the cohort effect, i.e.
the early environment for which the year of birth is
usually a proxy. The third factor, the participants’ age
when the data are collected, also needs to be taken into
account, because health changes with age. The long-
standing problem, however, in this age-period-cohort
analysis is that it has not been possible to separate the
independent effects of the three factors by undertaking
a standard regression analysis [31,32]. This is because
mathematically cohort + age = period, and the usual
regression analysis approach to estimating the “indepen-
dent” effect of one variable by adjusting for the other
two becomes impossible.
To overcome this problem, we used PLSR to separate

out the age-period-cohort effects. PLSR can estimate the
individual effects of the three variables by partitioning
the total effect according to the covariance structures
amongst them and the outcome. As there is no reason
to believe that these effects should be linear, we under-
took both linear and nonlinear PLSR. We examine
results from the one- and two-component models to
check the robustness of the nonlinear PLSR and to
avoid over-interpretation, even though PRESS indicated
a preference for the one-component models. For linear
PLSR, results from the one-component and the two-
component models are quite consistent (Table 3). For
nonlinear PLSR, most results were quite consistent
except for TG and FPG for men. It should be noted
that the trends plotted in Figure 4 were the average
based on the point estimates, but we should not forget
that these point estimates come with confidence inter-
vals and, therefore, there is always uncertainty associated
with these trends. This is why we present results from
both the one-component and two-component models to
examine the robustness of our findings. As it is not yet
possible to plot confidence intervals for the trends, since
both the one-component and two-component models
show similar results, this provides some reassurance
regarding the robustness of the one-component model;
however, if results from the one-component and two-
component models were inconsistent, we would need to
be conservative in the interpretation given to the trends
in either model. This also applies to the interpretation
of linear PLSR, where consistency within one-

Table 3 Results from linear partial least squares
regression analysis with 2 components: Exam year is a
binary variable [1996 coded 0, 2006 coded 1); Birth year
is centered at 1937; Age is centered at 20 years

Men Women

BMI

Birth year 0.00 (-0.02 to 0.01) -0.03 (-0.04 to -0.03)

Exam year 0.93 (0.09 to 1.77) -0.93 (-1.18 to -0.68)

Age 0.03 (0.01 to 0.04) 0.02 (0.01 to 0.02)

SBP

Birth year -0.02 (-0.05 to 0.01) -0.14 (-0.18 to -0.11)

Exam year -0.49 (-2.00 to 1.03) -3.14 (-4.89 to -1.40)

Age 0.01 (-0.01 to 0.02) 0.09 (0.05 to 0.12)

DBP

Birth year -0.11 (-0.13 to -0.09) -0.11 (-0.13 to -0.09)

Exam year -2.96 (-4.02 to -1.9) -4.12 (-5.37 to -2.87)

Age 0.05 (0.02 to 0.08) 0.02 (-0.02 to 0.05)

FPG

Birth year -0.19 (-0.23 to -0.15) -0.06 (-0.09 to -0.04)

Exam year -5.84 (-7.72 to -3.95) 1.81 (0.53 to 3.09)

Age 0.07 (0.01 to 0.12) 0.12 (0.09 to 0.15)

TG

Birth year -0.60 (-0.87 to -0.32) -0.49 (-0.56 to -0.42)

Exam year -2.08 (-21.7 to 17.55) -9.58 (-12.71 to -6.45)

Age 0.66 (0.41 to 0.92) 0.32 (0.22 to 0.43)

HDL

Birth year 0.08 (0.05 to 0.10) 0.07 (0 to 0.14)

Exam year 4.97 (2.60 to 7.33) 3.25 (0.24 to 6.27)

Age 0.05 (-0.01 to 0.10) 0.01 (-0.03 to 0.04)

LDL

Birth year -0.17 (-0.27 to -0.06) -0.32 (-0.39 to -0.25)

Exam year 8.71 (-24.51 to 41.92) -0.44 (-24.86 to 23.99)

Age 0.45 (-0.42 to 1.32) 0.32 (0.25 to 0.39)

UA

Birth year 0.00 (0.00 to 0.01) 0.00 (0.00 to 0.00)

Exam year -0.20 (-0.29 to -0.11) -0.27 (-0.37 to -0.17)

Age -0.01 (-0.01 to -0.01) 0.00 (0.00 to 0.00)

Abbreviation: body mass index (BMI), systolic blood pressure (SBP), diastolic
blood pressure (DBP), fasting plasma glucose (FPG), triglycerides (TG), high-
density lipoprotein (HDL), Low-density lipoproteins (LDL), uric acid (UA).
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component and two-component models should be
examined against not only point estimates, but also con-
fidence intervals. Where confidence intervals in general
overlap, this indicates consistency in the findings.
Some of the results from PLSR are consistent with the

simple summary statistics in Table 1, such as the asso-
ciation between age and some metabolic syndrome com-
ponents. We found that DBP was lower for both men
and women and SBP was lower for women in 2006.
However, we also found that TG was lower and HDL
higher in 2006. These results seem to suggest that the
risk for metabolic syndrome might not increase, as
expected, when the prevalence of obesity increases in
the context of economic growth continuing in Taiwan.
One explanation is that people who attended the health

screening clinics were more affluent and therefore have
a greater awareness of health-related issues, such as diet
and physical activity. Consequently, the association
between change in BMI and other components becomes
less clear. If this were true, the focus of public health
should therefore be around lifestyles and diet changes
rather than BMI or weight changes.
The most intriguing finding in this study is the associa-

tion between the year of birth and metabolic syndrome
components. Whilst there were general trends in the
many associations observed [usually better outcomes
amongst people born more recently], nonlinear PLSR
consistently showed a sudden shift in these associations
around the period of 1970 (Figure 3). One explanation is
that being mathematically related, people born earlier

Figure 3 Associations between adjusted values of components of metabolic syndrome and age at examinations/birth year .
Confounders adjusted for were years in formal education, history and frequency of cigarettes smoking, alcohol intake and betel-quid chewing.
Results are from partial least squares regression models with 2 components.
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Table 4 Results from restricted cubic splines partial least squares regression analysis with 1 or 2 components: Exam
year is a dummy variable (1996 coded 0 versus 2006 coded 1); restricted cubic splines create 4 variables for each of
Ages and Birthyr

Men (1-comp) Men (2-comp) Women (1-comp) Women (2-comp)

Coef 95%CIs Coef 95%CIs Coef 95%CIs Coef 95%CIs

FPG

Exam year -1.45 (-2.14 to -0.75) -4.24 (-5.26 to -3.23) 0.28 (0.00 to 0.56) 1.37 (0.54 to 2.21)

Ages_1 0.05 (0.03 to 0.06) 0.00 (-0.05 to 0.04) 0.03 (0.03 to 0.04) 0.05 (0.03 to 0.07)

Ages_2 0.05 (0.03 to 0.06) 0.00 (-0.03 to 0.03) 0.03 (0.03 to 0.04) 0.04 (0.03 to 0.05)

Ages_3 0.10 (0.06 to 0.14) 0.00 (-0.06 to 0.05) 0.07 (0.06 to 0.09) 0.09 (0.07 to 0.11)

Ages_4 0.24 (0.12 to 0.37) -0.03 (-0.14 to 0.08) 0.18 (0.15 to 0.22) 0.22 (0.16 to 0.27)

Birthyr_1 -0.07 (-0.10 to -0.05) -0.10 (-0.14 to -0.05) -0.02 (-0.03 to -0.02) -0.01 (-0.02 to 0.00)

Birthyr_2 -0.07 (-0.09 to -0.04) -0.09 (-0.11 to -0.06) -0.02 (-0.03 to -0.01) -0.01 (-0.03 to 0.00)

Birthyr_3 -0.31 (-0.45 to -0.18) -0.38 (-0.55 to -0.20) -0.09 (-0.13 to -0.05) -0.04 (-0.12 to 0.04)

Birthyr_4 -1.18 (-1.76 to -0.60) -1.29 (-2.24 to -0.34) -0.32 (-0.50 to -0.14) -0.09 (-0.42 to 0.24)

SBP

Exam year -0.18 (-0.43 to 0.07) -0.51 (-1.39 to 0.37) -0.76 (-1.19 to -0.33) -3.85 (-5.99 to -1.70)

Ages_1 0.01 (-0.03 to 0.05) -0.01 (-0.08 to 0.06) 0.04 (0.03 to 0.04) -0.01 (-0.05 to 0.04)

Ages_2 0.02 (-0.04 to 0.08) 0.03 (-0.06 to 0.11) 0.05 (0.04 to 0.06) 0.06 (0.04 to 0.09)

Ages_3 0.05 (-0.08 to 0.19) 0.09 (-0.09 to 0.26) 0.11 (0.09 to 0.13) 0.16 (0.11 to 0.21)

Ages_4 0.15 (-0.21 to 0.52) 0.29 (-0.13 to 0.71) 0.29 (0.25 to 0.33) 0.45 (0.31 to 0.59)

Birthyr_1 -0.01 (-0.04 to 0.02) 0.00 (-0.03 to 0.02) -0.05 (-0.06 to -0.04) -0.08 (-0.11 to -0.05)

Birthyr_2 0.00 (-0.01 to 0.02) 0.02 (-0.01 to 0.05) -0.04 (-0.05 to -0.02) -0.02 (-0.04 to 0.01)

Birthyr_3 0.01 (-0.04 to 0.07) 0.12 (-0.08 to 0.31) -0.15 (-0.21 to -0.09) 0.06 (-0.11 to 0.24)

Birthyr_4 0.06 (-0.12 to 0.25) 0.42 (-0.44 to 1.29) -0.54 (-0.77 to -0.30) 0.55 (-0.19 to 1.28)

DBP

Exam year -0.73 (-0.89 to -0.58) -1.97 (-2.40 to -1.53) -1.04 (-1.55 to -0.53) -3.28 (-4.38 to -2.18)

Ages_1 0.03 (0.02 to 0.04) 0.01 (-0.01 to 0.03) 0.02 (0.01 to 0.03) -0.02 (-0.04 to 0.01)

Ages_2 0.03 (0.02 to 0.04) 0.00 (-0.01 to 0.01) 0.02 (0.02 to 0.03) 0.00 (-0.02 to 0.01)

Ages_3 0.05 (0.03 to 0.08) 0.00 (-0.03 to 0.02) 0.05 (0.05 to 0.06) 0.00 (-0.02 to 0.03)

Ages_4 0.14 (0.06 to 0.21) -0.02 (-0.08 to 0.03) 0.14 (0.12 to 0.16) 0.01 (-0.05 to 0.07)

Birthyr_1 -0.04 (-0.05 to -0.03) -0.05 (-0.07 to -0.04) -0.04 (-0.05 to -0.03) -0.06 (-0.07 to -0.05)

Birthyr_2 -0.04 (-0.05 to -0.03) -0.05 (-0.06 to -0.04) -0.04 (-0.05 to -0.03) -0.04 (-0.06 to -0.03)

Birthyr_3 -0.19 (-0.26 to -0.12) -0.24 (-0.36 to -0.12) -0.18 (-0.23 to -0.12) -0.18 (-0.26 to -0.10)

Birthyr_4 -0.74 (-1.09 to -0.38) -0.92 (-1.64 to -0.20) -0.66 (-0.89 to -0.43) -0.62 (-0.95 to -0.28)

BMI

Exam year 0.36 (0.17 to 0.55) 0.98 (0.85 to 1.10) -0.30 (-0.40 to -0.20) -1.32 (-1.60 to -1.03)

Ages_1 0.01 (0.01 to 0.02) 0.02 (0.02 to 0.03) 0.01 (0.01 to 0.01) 0.01 (0.01 to 0.01)

Ages_2 0.01 (0.00 to 0.01) 0.01 (0.00 to 0.01) 0.01 (0.01 to 0.01) 0.01 (0.01 to 0.01)

Ages_3 0.01 (0.01 to 0.02) 0.00 (-0.01 to 0.01) 0.02 (0.02 to 0.02) 0.01 (0.00 to 0.01)

Ages_4 0.03 (0.01 to 0.05) -0.01 (-0.04 to 0.01) 0.05 (0.04 to 0.05) 0.00 (-0.01 to 0.01)

Birthyr_1 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.01) -0.01 (-0.01 to -0.01) -0.01 (-0.01 to -0.01)

Birthyr_2 0.00 (-0.01 to 0.00) 0.00 (0.00 to 0.00) -0.02 (-0.02 to -0.02) -0.03 (-0.03 to -0.02)

Birthyr_3 -0.02 (-0.04 to -0.01) -0.01 (-0.05 to 0.02) -0.12 (-0.13 to -0.10) -0.07 (-0.09 to -0.04)

Birthyr_4 -0.10 (-0.18 to -0.02) -0.11 (-0.31 to 0.10) -0.47 (-0.61 to -0.33) 0.49 (-0.13 to 1.11)

TG

Exam year -1.27 (-2.76 to 0.23) -0.05 (-2.23 to 2.13) -2.32 (-3.32 to -1.31) -7.62 (-9.39 to -5.85)

Ages_1 0.24 (-0.03 to 0.52) 0.28 (0.23 to 0.32) 0.13 (0.10 to 0.16) 0.06 (0.01 to 0.10)

Ages_2 0.13 (-0.16 to 0.42) -0.13 (-0.16 to -0.09) 0.14 (0.12 to 0.16) 0.08 (0.05 to 0.12)

Ages_3 0.20 (-0.38 to 0.78) -0.51 (-0.64 to -0.38) 0.30 (0.26 to 0.34) 0.19 (0.11 to 0.28)

Ages_4 0.36 (-1.00 to 1.72) -1.83 (-2.27 to -1.40) 0.78 (0.69 to 0.87) 0.51 (0.29 to 0.74)

Birthyr_1 -0.23 (-0.44 to -0.03) -0.23 (-0.26 to -0.20) -0.17 (-0.20 to -0.13) -0.22 (-0.26 to -0.19)

Birthyr_2 -0.29 (-0.44 to -0.13) -0.44 (-0.49 to -0.39) -0.15 (-0.19 to -0.11) -0.18 (-0.24 to -0.12)
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were also older at the time of examination, so they
tended to have less favorable metabolic syndrome profile.
Whilst this might be plausible as “residual” confounding
of age cannot be completely ruled out in PLSR or in any
observational studies, it does not explain why in HDL,
for women, age and birth year had the same positive
trend and why there is the sudden decline/increase
around 1970. The effect of age tended to become stron-
ger after age 40, corresponding to people born before
1956 or 1966 who undertook health checks in 1996 or
2006, respectively. Therefore, any residual confounding
of age would suggest a sudden increase/decline in the
relation with year of birth taking place during this period,
not around the period of 1970 or thereafter.
An alternative explanation is the protective effect of

improved early environment. Figure 4 shows the trend
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Figure 4 Trends in the real gross domestic product (GDP) in
Taiwan between year 1951 and 2007.

Table 4 Results from restricted cubic splines partial least squares regression analysis with 1 or 2 components: Exam
year is a dummy variable (1996 coded 0 versus 2006 coded 1); restricted cubic splines create 4 variables for each of
Ages and Birthyr (Continued)

Birthyr_3 -1.53 (-2.21 to -0.84) -2.52 (-3.19 to -1.84) -0.69 (-0.90 to -0.48) -0.73 (-1.08 to -0.37)

Birthyr_4 -6.10 (-8.48 to -3.72) -10.16 (-13.80 to -6.53) -2.59 (-3.45 to -1.72) -2.41 (-3.93 to -0.88)

HDL

Exam year 1.79 (0.59 to 2.99) 3.16 (1.47 to 4.84) 8.02 (2.95 to 13.09) 12.06 (10.39 to 13.74)

Ages_1 0.00 (-0.03 to 0.02) 0.04 (0.00 to 0.07) 0.05 (0.02 to 0.08) 0.00 (-0.02 to 0.02)

Ages_2 0.00 (-0.01 to 0.02) 0.04 (0.03 to 0.06) 0.05 (0.02 to 0.07) 0.00 (-0.02 to 0.02)

Ages_3 0.01 (-0.02 to 0.04) 0.09 (0.06 to 0.13) 0.10 (0.05 to 0.15) 0.00 (-0.05 to 0.06)

Ages_4 0.03 (-0.04 to 0.09) 0.24 (0.16 to 0.32) 0.25 (0.12 to 0.37) 0.00 (-0.18 to 0.18)

Birthyr_1 0.05 (0.03 to 0.06) 0.04 (0.03 to 0.06) -0.05 (-0.08 to -0.02) 0.00 (-0.02 to 0.02)

Birthyr_2 0.05 (0.03 to 0.07) 0.05 (0.04 to 0.07) -0.09 (-0.17 to -0.01) 0.00 (-0.07 to 0.08)

Birthyr_3 0.29 (0.18 to 0.40) 0.31 (0.23 to 0.39) -0.80 (-1.42 to -0.18) -0.07 (-0.64 to 0.50)

Birthyr_4 1.17 (0.73 to 1.61) 1.29 (0.97 to 1.62) -5.80 (-10.19 to -1.42) -2.31 (-7.51 to 2.89)

LDL

Exam year 1.62 (-5.73 to 8.96) 10.45 (-27.47 to 48.38) 0.15 (-4.56 to 4.86) -0.12 (-21.55 to 21.30)

Ages_1 0.13 (-0.13 to 0.39) 0.29 (-0.45 to 1.04) 0.11 (0.08 to 0.14) 0.12 (0.02 to 0.22)

Ages_2 0.10 (-0.04 to 0.24) 0.08 (-0.02 to 0.18) 0.12 (0.09 to 0.15) 0.13 (0.06 to 0.20)

Ages_3 0.19 (-0.05 to 0.43) 0.05 (-0.15 to 0.25) 0.26 (0.21 to 0.31) 0.28 (0.18 to 0.38)

Ages_4 0.45 (-0.02 to 0.91) -0.16 (-1.49 to 1.16) 0.67 (0.56 to 0.78) 0.73 (0.54 to 0.91)

Birthyr_1 -0.07 (-0.12 to -0.02) 0.00 (-0.27 to 0.27) -0.11 (-0.14 to -0.08) -0.12 (-0.22 to -0.02)

Birthyr_2 -0.08 (-0.17 to 0.02) -0.08 (-0.18 to 0.02) -0.18 (-0.22 to -0.13) -0.16 (-0.27 to -0.05)

Birthyr_3 -0.40 (-0.99 to 0.20) -0.57 (-1.71 to 0.57) -1.22 (-2.02 to -0.42) -0.83 (-4.83 to 3.16)

Birthyr_4 -1.61 (-4.36 to 1.14) -2.63 (-9.70 to 4.43) -6.38 (-15.05 to 2.28) -2.57 (-47.86 to 42.72)

UA

Exam year -0.04 (-0.08 to 0.00) -0.16 (-0.24 to -0.08) -0.17 (-0.27 to -0.06) -0.22 (-0.37 to -0.07)

Ages_1 0.00 (0.00 to 0.00) 0.00 (-0.01 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Ages_2 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Ages_3 -0.01 (-0.01 to 0.00) -0.01 (-0.01 to 0.00) 0.01 (0.01 to 0.01) 0.01 (0.01 to 0.01)

Ages_4 -0.01 (-0.02 to -0.01) -0.02 (-0.02 to -0.01) 0.03 (0.02 to 0.03) 0.03 (0.02 to 0.03)

Birthyr_1 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00)

Birthyr_2 0.00 (0.00 to 0.00) 0.00 (0.00 to 0.00) 0.01 (0.00 to 0.01) 0.01 (0.01 to 0.01)

Birthyr_3 0.01 (0.00 to 0.01) 0.00 (-0.01 to 0.01) 0.06 (0.02 to 0.10) 0.06 (0.01 to 0.10)

Birthyr_4 0.02 (0.00 to 0.03) 0.00 (-0.03 to 0.03) 0.36 (0.14 to 0.58) 0.29 (-0.20 to 0.79)
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in the mean real gross domestic product (GDP) in Tai-
wan between 1951 and 2006 (from the website at the
University of Pennsylvania: http://pwt.econ.upenn.edu,
accessed on 13th June 2010). There is a strikingly similar
pattern between the trend in GDP growth and in many
of the relationships of metabolic syndrome components
with the year of birth. If the year of birth is taken as a
proxy variable for the nutritional and social environment
in early life, our results suggest that the impact of eco-
nomic and social transformation on public health may
not be always deleterious in countries with rapidly
growing economy. Such transformations may have two
possible effects working counteractively, and public pol-
icy should aim to enhance or at least embrace the bene-
ficial impacts, whilst working against the negative
impacts.
The similarity in the trends was observed in only some

metabolic syndrome components, which may suggest a
differential effect of early environment on metabolic syn-
drome by sex and differential effects on the components.
It is likely that there may be a threshold effect, i.e. when
economic growth and the accompanying social transfor-
mation attain a certain level, the effect on population
health becomes notable. While the economy started
growing since 1950s, Taiwanese economy only really
took off in the early 1970s. Increased wealth improved
living standards, such as housing and nutrition, and it
also provided more investment in education and medical
care. People started to think how to live not only longer
but better, and this is why private health screening ser-
vices became popular in Taiwan since the 1990s.
There are also some limitations in this study: first,

participants with previous medical histories or medica-
tions were excluded from the analyses, and this may
give rise to selection bias [33]. Second, while PLSR can
separate the effects of age, period and cohort, there may
be interactions among them that have not been evalu-
ated here. To test for these potential interactions would
substantially increase the complexity of our statistical
models and is beyond the scope of this study. Third,
although the cubic splines method provides an elegant
way of examining nonlinear relationships, there are
more sophisticated ways of specifying nonlinear associa-
tions in PLSR, such as penalized PLSR [34], which is
more advanced mathematically but less intuitive in the
interpretation of results.
There has been a debate about whether the impact of

an obesity epidemic on diseases, such as type 2 diabetes
and cardiovascular diseases, has been exaggerated
[35-37]. For instance, one study on secular trends in
cardiovascular disease risk factors in US adults found
that the prevalence of obesity has increased in recent
decades; however, whilst the prevalence of diabetes has
also increased, cardiovascular risk factors, such as high

cholesterol and high blood pressure level, have declined
considerably [38]. Another study showed a decreased
magnitude of association between blood pressure and
BMI in a survey undertaken in 1989 and 2005 in the
Seychelles, a rapidly developing country in Africa [39],
whilst the average BMI in 2006 was greater than that in
1989. In both economically developed and developing
countries, there have been changes in deleterious and
beneficial factors, such as physical activities, smoking,
consumption of fruit and vegetables, dietary patterns
and education [38]. There may be differential changes in
those factors across different populations. For example,
whilst people living in the cities may on average have
lower physical activity, the more affluent can afford
access to facilities such as sports gymnasiums, whilst the
poor do not. People with higher education are likely to
steer clear of processed food and consume more fresh
fruits and vegetables. The risk for diabetes and cardio-
vascular diseases is a result of interactions amongst
many factors, and may not be captured well by a single
obesity index, such as adult BMI. To inform effective
policy for implementing public health programs, a com-
prehensive, life course approach is required to identify
variables working at different (population, personal and
genetic) levels and their impact on health at different
phases throughout the life course.

Conclusions
Our age-period-cohort analysis of a Taiwanese cohort
suggests that changing environment might have two
possible effects working counteractively in a country
with rapid economic and social changes; the risk for
metabolic syndrome does not necessarily increase with
the prevalence of obesity. Public policy should therefore
aim to enhance or at least embrace the beneficial
impacts, whilst working against the negative impacts.

Appendix
Identification problem in the Age-Period-Cohort (APC)
analysis
The main problem with the APC analysis is the intrinsic
mathematical relation amongst Age, Period and Cohort.
For instance, the relationship between systolic blood
pressure (SBP) and the three variables, Age (chronologi-
cal age at examination), Period (year at examination)
and Cohort (year of birth) in an ordinary least squares
(OLS) regression are written as:

SBP = b0 + b1Age + b2Period + b3Cohort + e, (A� 1)

where b0 is the intercept, b1, b2 and b3 are the
regression coefficients for Age, Period and Cohort,
respectively, and e is the residual error term. To sim-
plify our discussion, we assume that all the four
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variables are centered, i.e. their means have been sub-
tracted from initial individual values for each variable.
Therefore, we can exclude the intercept in equation
(A-1) from the model. In matrix notation, equation
(A-1) can be expressed as:

y = Xb + e, (A� 2)

where y is a vector for body weight, and X is the
design matrix for Age, Period, and Cohort, b is a vector
for b1, b2 and b3, and e is a vector for the residuals. The
estimation for b is to solve the following equation
[40-43]:

b =
(
XTX

)−1
XTy, (A� 3)

where XT is the transposed matrix of X, and (XTX)-1 is
the inverse of XTX.
Since Age + Cohort = Period, statistical software

packages cannot proceed with computation unless at
least one of the three covariates is removed from the
model [31,32]. This is because the product matrix XTX
is not full-rank and consequently (XTX)-1 does not exist.
However, the problem is not that there is no solution to
b, but that there are “too many” solutions, i.e. there is
no unique solution to b1, b2 and b3, unless some con-
straints are imposed on the estimation of b [31,32].
From a mathematical viewpoint, this is because whilst
(XTX)-1 does not exist, there are indefinite numbers of
generalized inverse matrices for XTX, (XTX)-. When XTX
is full-rank, it can be shown that (XTX)- is unique and is
equivalent to (XTX)-1 [40,41].
Amongst the indefinite number of generalized

inverse matrices, one special and unique generalized
inverse matrix of XTX, known as the Moore-Penrose
inverse, (XTX)+, has been widely used in statistics to
resolve the identification problem [40,41]. The Moore-
Penrose inverse is closely related to a mathematical
technique known as singular value decomposition
(SVD) in matrix algebra [40-43]. It is well known that
results from the use of the Moore-Penrose inverse is
equivalent to those from principal component regres-
sion (PCR) and partial least squares regression (PLSR)
when the maximum number of components is retained
[44-46].
For the APC analysis, obtaining any solution requires

the imposition of a constraint in the estimation of b in
equation (A-1), and whether or not the solution is
meaningful depends upon the choice of constraint, i.e.
the conditions imposed in estimation. This principle
applies in general to all the “solutions” proposed in the
literature on the APC analysis. In the next sections, we
seek to explore the statistical conditions imposed by
PLSR.

Partial Least Squares Regression (PLSR) and perfect
collinearity
In PCR, the extraction of components is independent of
the outcome variable, i.e. the same components are
extracted in the same order as new covariates irrespec-
tive of the outcome. From a data reduction point of
view, this is not always desirable if the aim is to find a
parsimonious model for predicting the outcome, because
sometimes principal components with large variances
may have low correlations with the outcome [47]. This
potential weakness is amended in PLSR, as the extrac-
tion of components in PLSR aims to maximize the cov-
ariance with the outcome y:

max [cov(t, y)]2 = max [corr(Xw, y)]2 var(Xw), (A� 4)

under the same constraints for PCR that |wi| = 1 and
wi ⊥ wj (i ≠ j) [44-46].
The first partial least squares component therefore has

the largest covariance with the outcome and the second
component has the second largest covariance, etc. PLSR
is also a data-dimension reduction method, and usually
only the first few components are retained as new cov-
ariates, which therefore explain most of the variance in
the outcome that can be explained by the original cov-
ariates. When there is no perfect collinearity in X and n
>>p, results from OLS, PCR and PLSR are equivalent if
p components are retained as covariates; otherwise, they
will yield different results. If there is perfect collinearity
in X, or if n <p, results from PCR and PLSR are equiva-
lent when r components are retained, where r is the col-
umn rank of X [44-46]; otherwise, results are different.
PLSR was first developed as a set of algorithms to

extract components in an iterative process, but it was
then shown that PLSR is related to a series of SVD of
XTy [45,48]. Taking the association between SBP and
the Age, Period, and Cohort in men as an example, the
matrix XTy (where all four variables are centred) is:

XTy =
[
Age Period Cohort

]T
[SBP] =

⎡
⎣ 35105.27

−27746.77
−62852.03

⎤
⎦

Astute readers may notice that 35105.27 + (-
62852.03) = (-27746.77), i.e. the sum of the first and
third elements is equal to the second, which corre-
sponds to the simple mathematical relation Age +
Cohort = Period. The proof for this observation is sim-
ple: let us call Age x1, Period x2, Cohort x3 and SBP y, i.
e. x1 + x3 = x2. After subtracting the mean from each
variable, we find:

(x1 − x1) + (x3 − x3) = (x2 − x2); (A� 5)

where x1, x2 and x3 are the means of x1, x2, and x3,
respectively. Multiplying both sides of equation (A-5) by
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y (where y is the mean of y), we obtain the equality
observed in XTy. We now undertake singular value
decomposition (SVD) for XTy:

SVD(XTy) = SVD

⎛
⎝

⎡
⎣ 35105.27

−27746.77
−62852.03

⎤
⎦

⎞
⎠

=

⎡
⎣ 0.455

−0.360
−0.815

⎤
⎦ [77153.36] [1] .

The singular value 77153.36 is the squared root of
the sum of squares of each element in XTy: (35105.27)
2 + (-27746.77)2 + (-62853.03)2 = (77153.36)2. 77153.36
divided by 20707 (the sample size minus 1) is 3.726,
and its square 13.88 is the sum of the variance of the
three projected vectors of X on y (if we undertake the
singular value analysis for XTyyTX instead, the first
singular value will be 13.88 and the other singular
values are zero)[45,48]. Image we project x1, x2, and x3
on y, and obtain three orthogonally projected vectors
ŷ1, ŷ2, and ŷ3, respectively. These three vectors will be
either in the same or the opposite direction, and ŷ1+
ŷ3= ŷ2, as they only span 1 dimension. The total var-
iance of the three vectors is then 13.88, i.e.∥∥ŷ1

∥∥2 +
∥∥ŷ2

∥∥2 +
∥∥ŷ3

∥∥2 = 13.88. Note that the left singu-

lar vector [0.455, -0.360, -0.815]T contains the weights
for the first PLS component (t1), i.e.:

t1 = 0.455Age − 0.360Period − 0.815Cohort

When SBP is regressed on t1, the regression coeffi-
cient is 0.026, and the PLSR model with 1 component
can be written as:

SBP = 0.026(0.455Age − 0.360Period − 0.815Cohort)
= 0.012Age − 0.009Period − 0.021Cohort

Therefore, the PLSR coefficients b1, b2 and b3, also
satisfy the simple mathematical relation b1 + b3 = b2 (i.
e. 0.012 + (-0.021) = -0.009). Although partial least
squares algorithms as described in the literature
[44-46,48] do not make explicit constraints on the esti-
mation of regression coefficients, the mathematical rela-
tion amongst the three covariates give rise to an implicit
constraint. In fact, such a constraint in the estimation of
b has been proposed in the literature based on a geo-
metric idea [49].

Scaling of covariates
In PLSR and PCR, covariates are usually scaled to have
unit variance, because PLSR and PCR penalizes covari-
ates with small variances. For instance, Period (the year
of examination) in our study has the smallest variance
because it has only a range of 10 years. In order not to

penalize Period, we scaled the three covariates, and this
is equivalent to giving differential weighting in the con-
straint during the estimation process, i.e. the simple
constraint that b1 + b3 = b2 becomes:

w1b1c + w3b3c = w3b2c; (A� 6)

where b1c, b2c and b3c, are PLSR coefficients when
covariates are scaled in the extraction of partial least
square components. Simple algebra shows that the dif-
ferential weighting is:

b1c

(
s1

s2s3

)
+ b3c

(
s3

s1s2

)
= b2c

(
s2

s1s3

)
. (A� 7)

where s1, s2 and s3 are the standard deviations of Age,
Period and Cohort, respectively. For example, in Table 3,
PLSR coefficients for Age, Period and Cohort are 0.01,
-0.49 and -0.02. It can be verified that:

0.01
(

8.742
4.641 ∗ 9.605

)
+ (−0.02)

(
9.605

8.742 ∗ 4.641

)

≈ −0.49
(

4.641
8.742 ∗ 9.605

)
.

The small inconsistency is due to rounding errors.
Thus, PLSR makes an implicit constraint to achieve
identification for linear models with perfectly collinear
variables and this knowledge is essential for the inter-
pretation of the results from analyses using these
methods.
In summary, PLSR partitions the total effect of Age,

Period and Cohort on SBP according to the relationships
between SBP and the three covariates and the relation-
ships amongst the perfectly collinear covariates by
imposing an implicit constraint on the relationship
amongst the regression coefficients. We call the con-
straint implicit because this constraint is not intention-
ally imposed by the algorithms; instead, the constraint
arises from the intrinsic mathematical relationship
amongst the perfectly collinear covariates. As explained
at the start of the appendix, any solution to the identifi-
cation problem must impose some constraint on the
estimation of regression coefficients. Our theoretical
exploration shows that the constraint imposed for APC
analyses by PLSR seems to be a justifiable one. For
instance, since Age + Cohort = Period, it seems quite
reasonable to assume that the sum of the effects of Age
and Cohort should be equal to the effect of Period.
When the variances of the three variables are not equal,
we give differential weighting to the constraint.
For the nonlinear analyses in this study, where polyno-

mial spline terms were used to model the nonlinear rela-
tionships, the partial least squares regression coefficients
for those polynomial terms were not affected by the
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collinearity amongst the linear functional terms. For exam-
ple, when one of Age, Period and Cohort is removed from
the model, this will not change the regression coefficients
for the polynomial terms. This is because the identification
problem is local to the linear terms, and this does not
affect the estimation of polynomial terms [40,41].

Additional material

Additional file 1: Complete Tables for Body size, components of the
metabolic syndrome, and aspects of lifestyle in 1996 and 2006 for
men (Table 1) and women (Table 2).
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