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Abstract
Extracellular	 vesicles	 (EVs)	 transport	 biological	 content	 between	 cells	 to	 me-
diate	 physiological	 processes.	 The	 association	 between	 EVs	 and	 resilience,	 the	
ability	 to	 cope	 with	 stress,	 is	 unknown.	 Using	 unbiased	 machine	 learning	 ap-
proaches,	we	aimed	to	identify	a	biological	profile	of	resilience.	Twenty	service-
men	 (27.8 ±  5.9 years)	 completed	 the	 Connor	 Davidson	Resilience	 (CD-	RISC)	
questionnaire	 and	 were	 exposed	 to	 daily	 physical	 and	 cognitive	 exertion	 with	
48-	hr	sleep	and	caloric	restriction.	Blood	samples	from	baseline	and	the	second	
day	 of	 stress	 were	 analyzed	 for	 neuroendocrine	 biomarkers	 impacted	 by	 mili-
tary	stress.	EVs	were	isolated	from	plasma	and	stained	with	antibodies	associated	
with	exosomes	(CD63),	microvesicles	(VAMP3),	and	apoptotic	bodies	(THSD1).	
Individuals	were	separated	into	high	(n = 10,	CD-	RISC > 90)	and	low	(n = 10,	
CD-	RISC < 79)	resilience.	EV	features	were	stratified	by	size,	then	down-	selected	
using	regression	trees	and	compared	between	groups.	Diagnostic	accuracy	was	as-
sessed	using	receiver	operating	characteristic	curves.	Compared	to	low	resilience,	
high	 resilience	 demonstrated	 a	 greater	 increase	 in	 variability	 of	 THSD1  local	
bright	 spot	 intensities	 among	 large-	sized	 EVs	 in	 response	 to	 stress	 (p  =  0.002,	
Hedges’	g = 1.59).	Among	medium-	sized	EVs,	high	resilience	exhibited	a	greater	
decrease	in	side	scatter	intensity	(p = 0.014,	Hedges’	g = 1.17).	Both	features	dem-
onstrated	high	to	moderate	diagnostic	accuracy	for	high	resilience	(AUC = 0.90	
and	 0.79).	 In	 contrast,	 neuroendocrine	 biomarker	 concentrations	 were	 similar	
between	groups.	The	increase	in	variability	among	THSD1 + EVs	in	high,	but	not	
low,	resilient	individuals	following	stress	may	suggest	high	resilience	is	accom-
panied	by	stress-	triggered	apoptotic	adaptations	to	the	environment	that	are	not	
detected	in	neuroendocrine	biomarkers.
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1 	 | 	 INTRODUCTION

Resilience	represents	the	ability	to	manage	stress	and	ad-
versity	 through	 positive	 adaptation	 (Kalisch	 et	 al.,	 2017;	
Windle	 et	 al.,	 2011).	 Modern-	day	 military	 operations	
involve	 physical	 exertion-	induced	 fatigue,	 cognitive	
overload,	 and	 psychological	 strain,	 often	 accompanied	
by	 periods	 of	 sleep	 and	 caloric	 restriction—	making	 re-
silience	 a	 desirable	 attribute	 among	 military	 personnel	
(Lieberman	et	al.,	2016;	Nindl	et	al.,	2018).	Resilience	can	
be	acquired	through	personal	attributes,	family	dynamics,	
supportive	networks,	as	well	as	spiritual	and	cultural	val-
ues	 (Kalisch	 et	 al.,	 2017).	 As	 a	 result,	 resilience	 is	 often	
considered	a	 trait	encompassing	an	array	of	characteris-
tics	 including	 commitment,	 self-	efficacy,	 adaptability	 to	
change,	and	patience,	among	others	(Connor	&	Davidson,	
2003;	Liu	et	al.,	2018a).	Resilience	can	also	be	viewed	as	a	
positive	physiological	stress	adaptation	when	confronted	
with	adversity	(Liu	et	al.,	2018a;	Nindl	et	al.,	2018).	The	
latter	suggests	that	resilience	could	also	be	considered	an	
active	process,	rather	than	a	static	property	of	personality	
or	trait	(Kalisch	et	al.,	2017;	Russo	et	al.,	2012).

Self-	report	 questionnaires	 are	 currently	 one	 of	 the	
most	 widely	 used	 tools	 to	 assess	 trait-	like	 resilience	 and	
have	been	developed	from	content	themes	and	constructs	
of	characteristics	presumed	to	embody	resilience	(Connor	
&	Davidson,	2003).	Though	there	is	currently	no	consen-
sus	on	the	best	self-	report	measurement	of	resilience,	the	
Connor–	Davidson	 Resilience	 Scale	 (CD-	RISC)	 (Connor	
&	 Davidson,	 2003)	 received	 among	 one	 of	 the	 highest	
ratings	 in	 a	 methodological	 review	 of	 resilience	 scales	
based	 on	 validity,	 internal	 consistency,	 reproducibility,	
and	 interpretability	 (Windle	 et	 al.,	 2011).	 The	 CD-	RISC	
questionnaire	was	developed	based	on	the	ability	to	cope	
with	 stress	 by	 examining	 acceptance	 of	 change,	 secure	
relationships,	the	strengthening	effect	of	stress,	personal	
competence,	 and	 sense	 of	 control	 (Connor	 &	 Davidson,	
2003;	Windle	et	al.,	2011).	Farina	et	al.	 (2019)	evaluated	
CD-	RISC	 scores	 among	 US	 Army	 Soldiers	 enrolled	 in	
Special	Forces	Assessment	and	Selection	(SFAS)	and	iden-
tified	 that	 an	 increase	 in	 one	 standard	 deviation	 in	 CD-	
RISC	score	predicted	soldiers	were	1.36	times	more	likely	
to	be	selected	(Farina	et	al.,	2019).	Similarly,	Bezdjian	et	al.	
(2017)	 reported	 that	 active-	duty	 enlisted	 U.S.	 Air	 Force	
Service	Members	who	separated	from	service	within	the	
first	 6  months	 due	 to	 unsuitability	 attrition	 had	 signifi-
cantly	 lower	 CD-	RISC	 scores	 (76.9  ±  15.5)	 compared	 to	
those	who	did	not	(84.1 ± 10.5),	with	modest	discrimin-
ability	 (AUC = 0.64;	95%	CI:	0.62–	0.65)	 (Bezdjian	et	al.,	
2017).

To	 examine	 whether	 resilience	 is	 an	 active	 process,	
researchers	 have	 turned	 to	 biology	 to	 identify	 underly-
ing	neurotrophic	mechanisms	that	are	linked	to	resilient	

outcomes	 (Russo	 et	 al.,	 2012).	 Several	 neuroendocrine	
biomarkers	 involved	 in	 stress	 adaptation,	 including	 cor-
tisol	(Farina	et	al.,	2019;	Lieberman	et	al.,	2005;	Morgan	
et	 al.,	 2000a;	 Szivak	 et	 al.,	 2018),	 neuropeptide-	Y	 (NPY)	
(Morgan	et	al.,	2000b;	Reichmann	&	Holzer,	2016),	brain-	
derived	neurotrophic	factor	(BDNF)	(Ledford	et	al.,	2020;	
Rothman	 &	 Mattson,	 2013),	 insulin-	like	 growth	 factor-	I	
(IGF-	I)	 (Nindl	 et	 al.,	 2007,	 2012),	 and	 α-	klotho	 (Prather	
et	al.,	2015),	have	been	associated	with	resilience.	Within	
the	past	several	decades,	extracellular	vesicles	(EVs)	have	
emerged	as	a	pivotal	means	of	cell-	to-	cell	communication	
to	aid	 in	regulating	normal	physiological	processes	such	
as	tissue	repair	and	immune	regulation,	as	well	as	the	pa-
thology	of	several	diseases	(Meldolesi,	2018).	Unlike	cir-
culating	biomarkers	that	activate	a	cell	through	separate	
signaling	pathways,	EVs	can	transfer	biological	 informa-
tion	that	can	act	on	multiple	targets	 in	a	cell	simultane-
ously	 (Beninson	 &	 Fleshner,	 2014).	 EVs	 are	 released	 by	
nearly	all	cell	types	and	are	comprised	of	a	heterogeneous	
group	of	nano-		to	micro-	sized,	membrane-	bound	vesicles	
capable	of	delivering	biological	content	or	cargo	(i.e.,	pro-
teins,	lipids,	nucleic	acids)	from	parent	to	the	recipient	cell.	
EVs	are	generally	categorized	based	on	size	and	biogenesis	
into	 three	 subpopulations:	 exosomes,	 microvesicles,	 and	
apoptotic	bodies	(Akers	et	al.,	2013).	Exosomes	are	formed	
through	a	series	of	invaginations	of	the	cell	plasma	mem-
brane	prior	to	entering	into	circulation,	ranging	in	diam-
eter	from	30–	150 nm	(Meldolesi,	2018).	Microvesicles	are	
released	into	circulation	via	outward	budding	and	fission	
of	the	plasma	membrane,	with	varying	diameters	between	
100−1000  nm	 (Meldolesi,	 2018).	 Apoptotic	 bodies	 are	
larger-	sized	EVs	(500−5000 nm)	formed	only	during	cell	
death	via	membrane	blebbing,	 initiated	by	condensation	
of	 nuclear	 chromatin	 (Akers	 et	 al.,	 2013;	 Willms	 et	 al.,	
2018).	EVs	and	their	cargo	hold	promising	predictive,	di-
agnostic,	and	therapeutic	capabilities	yet	to	be	fully	eluci-
dated	(Beninson	&	Fleshner,	2014).

As	noted	by	Battistelli	and	Falcieri	(Battistelli	&	Falcieri,	
2020),	each	subpopulation	of	EVs	may	provide	key	contri-
butions	to	intracellular	communication	involved	in	health	
and	disease;	therefore,	it	is	important	that	all	EV	subpopu-
lations	are	examined.	Due	to	the	complexity	and	diversity	
of	 information	that	can	be	extracted	from	EVs,	machine	
learning	 approaches	 are	 often	 superior	 to	 conventional	
analyses	 to	 handle	 complex	 multi-	dimensional	 data	 and	
discriminate	patterns	not	easily	detected	by	a	few	param-
eters	 (Sommer	 &	 Gerlich,	 2013).	 Thus,	 the	 purpose	 of	
this	study	was	to	identify	a	biological	profile	of	resilience	
among	individuals	with	high	CD-	RISC	scores	compared	to	
individuals	with	 low	CD-	RISC	scores.	Machine	 learning	
approaches	were	implemented	for	an	unbiased	approach	
to	 determine	 a	 subset	 of	 features	 among	 the	 EV	 profile,	
combined	 with	 neuroendocrine	 biomarkers,	 to	 compare	
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between	 groups.	 We	 hypothesized	 that	 EVs	 would	 be	 a	
more	 sensitive	 indicator	 of	 high	 resilience	 when	 com-
pared	 to	neuroendocrine	biomarkers	at	baseline,	as	well	
as	in	response	to	a	controlled	stress	scenario.

2 	 | 	 METHODS

2.1	 |	 Participants

A	 subset	 of	 participants	 from	 a	 larger	 study	 investigat-
ing	 the	 impact	 of	 simulated	 military	 operational	 stress	
(Beckner	et	al.,	2021)	was	selected	for	the	present	explora-
tory	 study	 of	 the	 relationship	 between	 biomarkers	 and	
resilience.	 The	 original	 cohort	 was	 divided	 into	 tertiles	
based	on	CD-	RISC	scores	collected	at	baseline	 (Beckner	
et	al.,	2021).	For	the	present	study,	ten	participants	from	
the	 top	 tertile	 (CD-	RISC	 Score  >  90	 out	 of	 100)	 and	 10	
participants	from	the	bottom	tertile	(CD-	RISC	score ≤ 79)	
were	randomly	selected	to	compare	biological	profiles	be-
tween	high	and	low	resilience	at	baseline	and	in	response	
to	stress.

Participants	 were	 recruited	 through	 in-	person	 brief-
ings	 at	 local	 Reserve	 centers	 and	 various	 website	 adver-
tisements.	Interested	individuals	contacted	the	study	team	
to	 receive	 further	 information	 and	 complete	 eligibility	
screening.	Participants	were	men	between	the	ages	of	18	
and	41 years	currently	serving	in	the	U.S.	military	through	
Active	Duty,	Reserve,	National	Guard,	or	Reserve	Officer	
Training	Corps	(ROTC).	Eligible	participants	had	no	his-
tory	 of	 sleep,	 psychotic,	 or	 neurological	 disorders	 and	
passed	an	annual	physical	fitness	test	within	the	last	year.	
An	 extensive	 list	 of	 inclusion	 and	 exclusion	 criteria	 has	
been	previously	reported	(Beckner	et	al.,	2021).	The	study	
received	approval	from	the	Institutional	Review	Board	at	
the	University	of	Pittsburgh	and	 the	U.S.	Army	Medical	
Research	and	Development	Command's	Human	Research	
Protection	 Office	 (HRPO)	 and	 was	 carried	 out	 in	 accor-
dance	 with	 the	 Declaration	 of	 Helsinki.	 All	 participants	
provided	written	informed	consent	prior	to	testing.

2.2	 |	 Simulated military operational 
stress protocol

The	 simulated	 military	 operational	 stress	 protocol	 has	
been	described	in	detail	elsewhere	(Beckner	et	al.,	2021;	
Conkright	 et	 al.,	 2021).	 Briefly,	 the	 study	 protocol	 was	
completed	over	five	consecutive	days	and	nights	in	cohorts	
of	 up	 to	 four	 participants	 at	 a	 time.	 The	 5-	day	 protocol	
consisted	of	a	familiarization	day	(D0),	baseline	day	(D1),	
two	 days	 and	 nights	 of	 caloric	 and	 sleep	 restriction	 (D2	
and	D3),	followed	by	a	final	day	of	testing	after	a	night	of	

uninterrupted	sleep	(D4).	Participants	arrived	the	evening	
prior	to	D0	to	complete	baseline	psychological	evaluations	
and	one	night	of	familiarization	sleep	in	the	accommoda-
tions	provided	by	the	sleep	laboratory.	Each	day	consisted	
of	 cognitive	 testing	 conducted	 in	 a	 human	 performance	
lab,	 simulated	 marksmanship	 on	 a	 Reserve	 installation,	
and	 physical	 exertion	 in	 the	 form	 of	 a	 military	 obstacle	
course	and	ruck	march	on	an	indoor	turf	field.	During	the	
restriction	phase	(D2	and	D3),	participants	were	permitted	
to	sleep	only	50%	of	baseline	sleep	time	(from	01:00–	03:00	
and	05:00–	07:00 h)	and	receive	only	50%	of	their	individ-
ualized	 caloric	 needs,	 according	 to	 sleep	 polysomnogra-
phy	and	estimated	energy	expenditure	using	whole-	body	
densitometry	 (Bod	 Pod®	 Body	 Composition	 System,	 Life	
Measurement	 Instruments,	 Concord,	 CA),	 respectively.	
On	 all	 other	 days,	 participants	 were	 permitted	 to	 sleep	
from	 11:00–	07:00  h	 and	 allotted	 their	 full	 caloric	 needs.	
Water	was	permitted	ad libitum	throughout	the	study.

2.3	 |	 Psychological measures

The	CD-	RISC	scale	is	a	25-	item	self-	assessment	that	uses	
a	5-	point	scale	(0–	4)	to	measure	resilience	based	on	pre-
viously	 identified	 characteristics	 shared	 among	 resilient	
people.	 Total	 scores	 range	 from	 0	 to	 100	 with	 higher	
scores	 being	 associated	 with	 higher	 resilience	 (Connor	
&	 Davidson,	 2003).	 The	 CD-	RISC	 has	 good	 internal	
consistency	 (Cronbach's	 α  =  0.89),	 test-	retest	 reliability	
(ICC = 0.87),	and	convergent	validity	with	the	Perceived	
Stress	Scale	(r = −0.76,	p < 0.001)	(Connor	&	Davidson,	
2003).	Therefore,	we	 interpreted	 resilience	as	 the	ability	
to	cope	with	stress	in	accordance	with	the	CD-	RISC	ques-
tionnaire	developed	by	Connor	and	Davidson	(Connor	&	
Davidson,	2003).

To	 better	 characterize	 psychological	 differences	 be-
tween	high	and	low	resilient	individuals,	combat	experi-
ence,	 coping	 strategies,	 and	 personality	 traits	 were	 also	
assessed.	Combat	experience	was	evaluated	using	a	sub-
scale	of	the	Deployment	Risk	and	Resilience	Inventory-	2	
(DDRI-	2)	 that	 included	 17	 objective	 combat-	related	 cir-
cumstances	(Vogt	et	al.,	2012).	Participants	were	instructed	
to	indicate	how	often	they	experienced	each	circumstance	
on	a	scale	of	1–	6	(i.e.,	never	to	daily or almost daily).	Total	
scores	 ranged	 from	 17	 to	 102	 with	 higher	 scores	 indi-
cating	 greater	 combat	 exposure.	 The	 Coping	 Styles	 and	
Strategies	(COPE)	60-	item	scale	assesses	15	types	of	strat-
egies	to	manage	and	react	to	adverse	or	unexpected	situ-
ations:	Positive	reinterpretation,	active	coping,	planning,	
seeking	of	 social	 support	 for	emotional	 reasons,	 seeking	
of	social	support	for	instrumental	reasons,	suppression	of	
competing	 activities,	 religion,	 acceptance,	 mental	 disen-
gagement,	 focus	on	and	venting	of	emotions,	behavioral	
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disengagement,	denial,	restraint	coping,	alcohol/drug	use,	
and	humor	(Carver	et	al.,	1989).	The	questionnaire	con-
tains	four	questions	per	coping	strategy.	Participants	were	
instructed	 to	 rate	 how	 they	 handle	 stressful	 events	 on	 a	
scale	from	one	to	four	(i.e.,	I don't do this at all	to	I usually 
do this a lot)	(Carver	et	al.,	1989).	Ratings	for	each	strategy	
were	then	totaled	for	a	minimum	score	of	four	(not at all)	
to	16	(does a lot).	Personality	was	assessed	using	the	NEO	
Five-	Factor	 Inventory-	3	 (NEO-	FFI-	3TM),	 a	 60-	item	 ques-
tionnaire	 that	measures	 the	 five	domains	of	personality:	
Neuroticism,	 extraversion,	 openness,	 agreeableness,	 and	
conscientiousness	 (McCrae	 &	 Costa,	 2010).	 Individuals	
rate	each	statement	on	a	5-	point	Likert	scale	from	0	to	4	
(i.e.,	disagree strongly	to	agree strongly).	The	12	items	for	
each	 domain	 were	 summed,	 ranging	 from	 0	 to	 48,	 with	
higher	scores	indicating	higher	levels	of	that	personality	
trait.

Participants	 completed	 all	 questionnaires	 after	 sign-
ing	 consent	 and	 prior	 to	 any	 physical	 testing	 or	 stress	
intervention.

2.4	 |	 Biological specimens

Fasted	 blood	 was	 drawn	 from	 an	 upper	 extremity	 vein	
using	 a	 21-		 or	 23-	gauge	 needle	 (BD	 Vacutainer	 Eclipse	
22 g	and	Vacutainer	one-	use	holder,	Becton,	Dickinson,	
and	 Company,	 Franklin	 Lakes,	 NJ)	 the	 first	 morning	
(~08:00)	 of	 the	 5-	day	 protocol	 as	 a	 baseline	 assessment	
(i.e.,	Day	0),	and	repeated	the	morning	after	two	consecu-
tive	nights	of	sleep	restriction,	considered	the	peak	stress	
day	(i.e.,	Day	3).	Using	standard	venipuncture	procedures,	
10 ml	of	serum	in	an	SST	tube,	10 ml	of	blood	plasma	in	an	
EDTA	collection	tube,	and	2 ml	in	EDTA	with	a	protease	
inhibitor	(BDTM	P100)	(BD	Vacutainer	Becton,	Dickinson,	
and	Company,	Franklin	Lakes,	NJ),	were	collected.	EDTA	
and	 protease	 inhibitor	 tubes	 were	 centrifuged	 immedi-
ately	after	collection	at	1500 × g	 for	15 min	at	4°C.	SST	
tube	was	centrifuged	under	the	same	conditions	following	
30 min	at	 room	temperature	 to	allow	blood	 to	clot.	The	
supernatant	was	aliquoted	and	stored	at	−80°C	until	fur-
ther	analysis.

ELISA	 assays	 were	 used	 to	 measure	 IGF-	I	 (APLCO,	
Salem,	 USA)	 and	 α-	Klotho	 (Immuno-	Biological	
Laboratories,	Takasaki,	Japan)	using	plasma	samples	from	
EDTA	 collection	 tubes.	 BDNF	 was	 analyzed	 from	 blood	
plasma	using	MILLIPLEX	Magnetic	Bead	Panel	3	(EMD	
Millipore,	 Burlington,	 Massachusetts).	 Plasma	 obtained	
from	EDTA	tubes	with	a	protease	inhibitor	was	used	for	
NPY	 analysis	 (R&D	 Systems,	 Minneapolis,	 MN,	 USA).	
Cortisol	was	analyzed	using	serum	samples	(Alpco	Salem,	
USA).	 Kit	 sensitivity	 is	 as	 follows:	 IGF-	I:	 0.09  ng/ml;		
α-	Klotho:	6.15 pg/ml;	BDNF:	10 pg/ml;	cortisol:	0.4 µg/dl.	

This	information	was	not	available	for	NPY.	All	samples	
were	run	in	duplicate	with	intra-	assay	coefficients	of	vari-
ation	of	10%	or	less.

2.5	 |	 Size exclusion chromatography

A	visual	overview	of	 the	EV	analysis	process	 is	depicted	
in	Figure	1.	First,	EVs	were	isolated	from	plasma	samples	
(ETDA	collection	tubes)	using	70 nm	size	exclusion	chro-
matography	 (SEC)	columns,	per	manufacturer's	 instruc-
tions	(qEVoriginal,	Izon,	Medford,	MA).	Plasma	samples	
were	 brought	 to	 room	 temperature	 and	 centrifuged	 at	
1500 × g	for	10 min.	SEC	columns	were	first	flushed	with	
10  ml	 of	 0.22  µm	 filtered	 EV-	free	 phosphate-	buffered	
saline	 (PBS)	 solution,	 after	 which	 450  µl	 of	 the	 plasma	
sample	 was	 loaded	 into	 the	 column,	 and	 fractions	 were	
collected	as	they	eluted.	The	first 3 ml	of	eluate	was	dis-
carded,	 and	 the	 subsequent	 1.5  ml	 EV	 fraction	 was	 col-
lected	 in	 a	 microcentrifuge	 tube.	 The	 following	 4.5  ml	
after	the	EV	fraction,	primarily	plasma	protein	eluate,	was	
discarded.	Columns	were	flushed	with	15 ml	PBS	between	
samples,	with	the	same	column	used	for	up	to	five	sam-
ples.	Isolated	EV	samples	were	stored	at	4°C	and	EV	size	
and	concentration	were	analyzed	within	48 h,	after	which	
time	EV	samples	were	frozen	until	subsequent	analysis.

2.6	 |	 Nanoparticle tracking analysis

Nanoparticle	 tracking	 analysis	 (NTA)	 is	 a	 commonly	
used	method	to	measure	EV	concentration	and	size	dis-
tribution,	 based	 on	 light	 scattering	 from	 particles	 under	
Brownian	 motion,	 captured	 by	 a	 charge-	coupled	 device	
camera	 (CCD)	 (Dragovic	 et	 al.,	 2011).	 EV	 concentration	
and	 size	 were	 analyzed	 using	 NS300  NanoSight	 device	
equipped	 with	 a	 green	 laser	 (Malvern	 Panalytical).	 Ten	
microliters	of	 isolated	EVs	were	diluted	1:100	 in	Type	1	
EV-	free	water	and	loaded	into	the	sample	chamber	using	
a	syringe.	Total	EV	size	and	average	concentration	were	
derived	from	3 × 45 s	video	captures	with	the	camera	set	
to	 Level	 14	 (NTA	 3.4	 Build	 3.4.003).	 The	 flow-	cell	 was	
washed	with	1 ml	of	Type	1	water	between	each	sample.

2.7	 |	 Immunofluorescence staining of EV 
subpopulations for imaging flow cytometry

Frozen	 EV	 samples	 were	 thawed	 at	 room	 temperature,	
vortexed,	 and	 140  µl	 from	 each	 sample	 was	 placed	 into	
a	 new	 Eppendorf	 tube	 and	 fixed	 with	 an	 equal	 volume	
of	 4%	 paraformaldehyde	 solution.	 Samples	 were	 incu-
bated	at	room	temperature	for	10 min,	then	centrifuged	at	
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16,000 × g	at	4ºC	for	30 min	(Thermo	Scientific	Fiberlite	
F21-	48 × 1.5/2/.0	rotor).	Afterwards,	140 µl	of	supernatant	
was	extracted	and	discarded	from	each	sample	and	140 µl	
of	 blocking	 buffer	 (3%	 bovine	 serum	 albumin	 and	 0.1%	
Triton-	X)	 was	 added.	 Samples	 were	 placed	 on	 a	 rocker	
plate	and	incubated	at	room	temperature	for	1 h,	then	cen-
trifuged	at	16,000 × g	for	30 min	at	4ºC,	after	which	140 µl	
of	 supernatant	was	 removed	and	discarded.	EV	samples	
were	then	stained	with	fluorescently	conjugated	antibod-
ies	 associated	 with	 EV	 subpopulation	 surface	 markers	
as	 follows	 (Akers	 et	 al.,	 2013):	 Exosomes,	 CD63	 (Novus	
Biologicals,	NBP2-	42225AF700)	1:280	dilution;	microvesi-
cles,	 VAMP3	 (Novus	 Biologicals,	 NBP1-	97948AF405)	
1:280	 dilution;	 and	 apoptotic	 bodies,	 THSD1	 (Novus	
Biologicals,	FAB5178T-	100UG)	1:1000	dilution.	Following	
an	overnight	incubation	in	the	dark	at	4ºC,	samples	were	
centrifuged	at	16,000 × g	 for	30 min	at	4ºC	and	60 µl	of	
supernatant	was	removed	and	discarded.	EVs	were	resus-
pended	with	20 µl	of	PBS	and	analyzed	using	imaging	flow	
cytometry.	Compensation	beads	 (Invitrogen,	UltraComp	
eBeads,	01-	2222-	42)	for	each	EV	marker	were	also	stained	
following	 the	 same	 procedure,	 beginning	 with	 blocking	
buffer	 and	 using	 half	 the	 dilution	 for	 antibody	 staining,	
in	order	to	apply	fluorescence	compensation	for	analysis.

Imaging	flow	cytometry	(IFC)	combines	flow	cytometry	
and	single-	cell	imaging,	to	capture	up	to	12 spatially	regis-
tered	multi-	spectral	images	per	cell	as	it	passes	through	the	
system	(Gorgens	et	al.,	2019;	Hennig	et	al.,	2017;	Lannigan	
&	 Erdbruegger,	 2017).	 The	 60x	 objective,	 longer	 signal	

integration	times,	and	slower	flow	rates	with	IFC	lead	to	
increased	sensitivity	for	characterization	of	EVs	compared	
to	conventional	flow	cytometry	(Lannigan	&	Erdbruegger,	
2017).	EV	samples	were	imaged	on	ImageStreamX	Mk	II	
system	 (Luminex	 Corporation,	 Seattle,	 WA)	 at	 the	 flow	
cytometry	core	of	the	Department	of	Immunology	at	the	
University	of	Pittsburgh.	Fluorescently	labeled	EVs	in	solu-
tion	were	run	through	the	ImageStreamX	Mk	II	and	data	
were	acquired	using	the	INSPIRE	control	software.	Laser	
settings	were	set	to	maximum	intensity,	magnification	set	
to	60x,	and	fluidics	set	to	low	speed/high	sensitivity	with	
a	 core	 size	 of	 7  µm	 for	 optimal	 detection	 of	 nano-	sized	
vesicles.	SpeedBeads®	were	removed	from	event	detection	
by	plotting	a	histogram	of	side-	scatter	(SSC)	intensity	and	
removing	events	with >1e + 5	SSC	intensity.	All	samples	
were	 acquired	 for	 a	 run	 time	 of	 3  min.	 Compensation	
beads	 for	each	antibody	were	collected	until	a	 threshold	
of	2000	events	was	met.	The	INSPIRE	acquisition	software	
generated	data	in	the	form	of	raw	image	files	for	all	sam-
ples	and	controls.

2.8	 |	 Image data exploration and 
analysis software

Image	Data	Exploration	and	Analysis	Software	(IDEAS)	
is	 the	 most	 common	 analysis	 software	 for	 IFC	 and	
IDEAS	 allows	 the	 user	 to	 employ	 a	 range	 of	 features	
derived	from	each	event	detected	(Hennig	et	al.,	2017).	

F I G U R E  1  Overview	of	extracellular	vesicle	(EV)	analysis.	(a)	EVs	were	isolated	from	plasma	samples	using	size	exclusion	
chromatography	(SEC).	(b)	EV	concentrations	and	size	were	measured	using	nanoparticle	tracking	analysis	(NTA).	(c)	EV	samples	were	
stained	with	immunofluorescence	markers	associated	with	exosomes	(CD63),	microvesicles	(VAMP3),	and	apoptotic	bodies	(THSD1)	and	
then	assessed	using	imagine	flow	cytometry	to	collect	multispectral	images	of	each	EV.	(d)	Quantitative	information	from	the	images,	
known	as	features,	were	exported	for	analysis.	Figure	created	with	BioRe	nder.com

http://BioRender.com
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A	 spectral	 compensation	 of	 all	 antibody	 stained	 con-
trol	 image	 files	 was	 applied	 to	 sample	 images	 to	 cor-
rect	 for	 variances	 in-	camera	 background,	 flow	 speed,	
and	 fluorescence	 compensation	 by	 subtracting	 light	
emitted	 by	 fluorochromes	 in	 the	 neighboring	 channel	
(IDEAS,	 2020).	 The	 IDEAS	 software	 extracts	 over	 100	
features,	 or	 quantitative	 information	 about	 the	 image,	
that	 are	 categorized	 based	 on	 size,	 shape,	 texture,	 and	
signal	strength.	All	sample	image	files	with	feature	val-
ues	 were	 exported	 as	 a.csv	 file	 for	 statistical	 analysis	
(IDEAS,	2020).

2.9	 |	 IDEAS data reduction

Individual.csv	files	for	each	sample	were	reduced	to	re-
move	 6	 of	 the	 12  spectral-	image	 channels	 that	 did	 not	
correspond	 to	 the	 fluorochromes	 used	 for	 this	 study.	
Three	 redundant	 features	 were	 removed,	 and	 five	 fea-
tures	 were	 removed	 as	 they	 were	 deemed	 irrelevant	
to	 the	 research	 question.	 An	 object	 (i.e.,	 EV)	 with	 a	
Saturation	Count	≥1	 in	 the	 fluorescence	channels	was	
removed	as	possible	debris	or	fluorochrome	aggregates	
A	new	feature	was	generated	for	each	object	to	capture	
the	range	of	pixel	intensities	within	an	object,	calculated	
as	the	Raw	Max	Pixel	minus	the	Raw	Min	Pixel	for	each	
object.

To	further	examine	the	heterogeneity	within	each	EV	
sample,	 objects	 detected	 were	 stratified	 by	 the	 area	 of	
the	brightfield	 image	to	capture	changes	that	may	occur	
in	specific	EV	size	ranges.	“Small”	EVs	were	categorized	
as	objects	with	a	brightfield	 image	area <0.031416 µm2,	
“medium”	 EVs	 with	 an	 area	 ≥0.031416  µm2	 but	
≤0.785398  µm2,	 and	 “large”	 EVs  >  0.785398  µm2.	 Size	
stratification	 cut-	offs	 were	 derived	 from	 diameters	 typi-
cally	used	in	EV	literature	to	characterize	exosomes,	mi-
crovesicles,	 and	 apoptotic	 bodies,	 respectively	 (Willms	
et	al.,	2018).	The	addition	of	size	stratification	allowed	the	
use	of	both	size	and	antibody	to	distinguish	EV	subpop-
ulations.	 Descriptive	 statistics	 (i.e.,	 mean,	 median,	 and	
standard	 deviation)	 were	 then	 calculated	 for	 every	 fea-
ture	at	each	stratum	as	well	as	 for	 the	total	sample	(i.e.,	
without	 stratification)	 to	 account	 for	 the	 overlap	 in	 size	
ranges	of	EV	subpopulations.	The	data	reduction	process	
yielded	a	total	of	four	variables	per	feature	(i.e.,	small,	me-
dium,	large,	and	total	EVs)	for	each	of	the	three	antibodies	
(i.e.,	CD63,	VAMP3,	and	THSD1).	For	example,	the	mean	
intensity	 feature	 was	 determined	 for	 small	 EVs/CD63+,	
mediums	 EVs/CD63+,	 large	 EVs/CD63+,	 and	 all	 EVs/
CD63+.	The	same	four	variables	were	determined	for	the	
mean	intensity	of	VAMP3+	and	THSD1+	EVs.	Therefore,	
12	 variables	 were	 generated	 for	 a	 given	 feature,	 totaling	
1116	variables	per	sample.

2.10	 |	 Feature selection using 
machine learning

Considering	 that	 1116	 unique	 features	 were	 generated	
from	each	EV	sample,	regression	tree	(RT)	models	were	
implemented	 as	 a	 data	 mining	 methodology	 for	 feature	
selection	 to	 identify	 the	 most	 salient	 input	 variables	 for	
statistical	 analyses	 to	 characterize	 resilience.	 The	 RT	
model	 is	 a	 binary	 decision	 tree	 that	 uses	 variable	 selec-
tion	to	identify	subgroups	of	a	population	and	ultimately	
generate	 homogenous	 terminal	 nodes	 in	 relation	 to	 the	
dependent	 variable	 (Machuca	 et	 al.,	 2017;	 Mendeş	 &	
Akkartal,	2009).	The	decision	tree	begins	with	a	root	node	
containing	all	subjects	which	are	then	split	into	two	mutu-
ally	exclusive	subsets	based	on	an	independent	variable,	
followed	by	internal	nodes	(i.e.,	subsequent	subdivisions	
of	the	subset	based	on	other	independent	variables),	and	
ending	with	terminal	nodes	or	subsets	that	can	no	longer	
be	split	due	to	homogeneity	or	due	to	stopping	criteria	to	
avoid	the	model	from	becoming	overly	complex	(Mendeş	
&	Akkartal,	2009;	Song	&	Lu,	2015).

The	risk	estimate	value	is	an	estimation	of	the	within-	
node	 variance	 for	 a	 continuous	 dependent	 variable	 (i.e.,	
CD-	RISC	score)	(Mendeş	&	Akkartal,	2009).	The	indepen-
dent	variable	(i.e.,	EV	feature)	used	to	split	a	node	is	de-
termined	by	the	Least	Squared	Deviation	(LSD)	method	to	
measure	the	variance	within	a	node	(Mendeş	&	Akkartal,	
2009).	The	independent	variable	with	the	lowest	risk	esti-
mate	value	is	the	best	splitter	variable	as	it	produces	the	
lowest	within	node	variance.	The	unit	of	the	risk	estimate	
value	is	based	on	the	dependent	variable	unit	and	was	nor-
malized	by	dividing	the	risk	estimate	value	by	the	variance	
of	 the	 dependent	 variable	 (Mendeş	 &	 Akkartal,	 2009).	
The	RT	workflow	for	EV	feature	selection	 is	depicted	 in	
Figure	 2.	 All	 regression	 trees	 were	 obtained	 using	 the	
Classification	Regression	Tree	(CRT)	model	in	IBM	SPSS	
Statistics	for	Macintosh,	Version	27	(IBM	Corp.,	Armonk,	
NY).

For	assessing	a	biological	profile	of	resilience	at	base-
line,	EV	samples	from	D0	were	used.	Data	reduction	of	
the	ImageStream	features	generated	372	features	based	
on	the	average	(AVG)	of	all	events	within	a	sample,	372	
features	based	on	the	median	(MED)	of	all	events	within	
a	sample,	and	372	features	based	on	the	standard	devi-
ation	(SD)	of	all	events	within	a	sample	to	capture	the	
variability	 of	 events	 within	 the	 sample.	 Features	 were	
categorized	into	four	categories	as	defined	in	the	IDEAS	
User	 Manual	 Version	 6.3	 (IDEAS,	 2020):	 Size	 (96	 fea-
tures),	 shape	 (12	 features),	 texture	 (72	 features),	 and	
signal	 strength	 (192	 features).	 For	 each	 statistic	 (i.e.,	
AVG,	MED,	SD),	RTs	were	made	 for	each	 feature	cate-
gory	with	CD-	RISC	score	as	the	continuous	dependent	
variable	to	identify	the	most	discriminatory	EV	features	
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of	resilience	within	each	subtype.	Due	to	the	small	total	
number	 of	 observations	 (N  =  20),	 the	 following	 stop-
ping	 rules	 were	 implemented:	 (a)	 A	 minimum	 of	 five	
observations	(i.e.,	25%	of	the	total	sample)	in	a	terminal	
node,	 (b)	minimum	of	10	observations	 in	a	node	prior	
to	splitting,	and	(c)	a	maximum	tree	depth	of	three	lev-
els.	The	features	identified	from	the	four	feature	subtype	
RTs	were	then	used	as	the	independent	variables	in	an	
RT	model	to	identify	the	most	discriminatory	features	of	
resilience	across	all	feature	subtypes	for	a	given	statistic.	
This	process	was	repeated	for	each	statistic	to	generate	
three	final	RT	models:	One	for	AVG,	one	for	MED,	and	
one	for	SD.	The	features	identified	in	the	three	final	RT	
models	were	then	used	as	the	input	variables	for	statis-
tical	 analysis	 comparing	 differences	 in	 the	 EV	 profile	
at	 baseline	 between	 high	 and	 low	 resilient	 individuals	
based	on	CD-	RISC	Score.

For	 assessing	 a	 biological	 profile	 of	 resilience	 based	
on	 the	 stress	 response,	 absolute	 change	 scores	 were	

calculated	 to	assess	 the	change	 in	EV	profile	 from	base-
line	to	peak	stress	by	subtracting	feature	values	of	the	D0	
EV	sample	from	the	feature	values	of	the	D3	EV	sample	
(i.e.,	 D3–	D0).	 The	 same	 RT	 model	 workflow	 previously	
described	was	 followed	using	 the	change	scores	 to	 iden-
tify	feature	changes	able	to	discriminate	between	high	and	
low	resilience,	which	were	then	subsequently	used	as	the	
input	variables	for	statistical	analysis.

2.11	 |	 Statistical analysis

Normality	of	distribution	for	the	independent	variables	
was	assessed	using	Shapiro–	Wilk	tests.	The	p-	value	was	
set	at	0.05	(two-	sided),	a priori,	 for	all	analyses.	To	ex-
amine	 the	 overall	 impact	 of	 the	 stressor	 from	 baseline	
to	peak	stress,	neuroendocrine	responses,	and	EV	con-
centration	were	assessed	using	paired	samples	t-	test	or	
Wilcoxon	signed	rank	test,	as	appropriate.	To	compare	

F I G U R E  2  Extracellular	feature	selection	using	regression	decision	trees.	Four	regression	tree	(RT)	models	based	on	feature	category	
were	generated	based	on	the	average,	median,	and	standard	deviation	of	features.	The	features	that	were	identified	in	each	RT	model	at	the	
first	level	for	a	given	statistic	(i.e.,	average,	median,	or	standard	deviation)	were	then	used	as	input	variables	for	a	final	RT	model	for	each	
statistic	at	the	second	level.	The	EV	features	identified	from	each	of	the	three	final	RT	models	were	analyzed	using	statistical	comparisons	to	
determine	differences	between	high	and	low	resilient	individuals
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baseline	and	change	scores	of	neuroendocrine	biomark-
ers	 and	 EV	 features	 between	 high	 and	 low	 resilience,	
independent	samples	t-	test	were	used	for	normally	dis-
tributed	 variables	 and	 the	 Mann–	Whitney	 U	 test	 was	
used	with	an	exact	sampling	distribution	for	U	for	non-	
normal	variables.	Hedges’	g	 values	were	calculated	 for	
significant	 outcomes	 from	 independent	 samples	 t-	test	
to	 measure	 the	 magnitude	 of	 the	 difference	 between	
groups.	 Data	 analyzed	 using	 non-	parametric	 statistics	
are	 reported	as	median	(MED)	and	 interquartile	 range	
(IQR).	Figures	are	displayed	as	mean	with	standard	de-
viation.	Outcomes	with	a	significant	difference	between	
groups	were	evaluated	using	receiver	operating	charac-
teristic	(ROC)	curve	analysis	to	determine	the	diagnos-
tic	accuracy	of	the	variable	to	discriminate	between	high	
resilient	and	low	resilient	individuals	as	determined	by	
CD-	RISC	 score.	 The	 area	 under	 the	 curve	 (AUC)	 with	
95%	CI	was	calculated	to	determine	the	overall	diagnos-
tic	 accuracy	 of	 the	 variable,	 with	 an	 AUC	 of	 0.5	 indi-
cating	random	chance	and	AUC = 1	indicating	perfect	
discrimination	 (Hajian-	Tilaki,	 2013).	 Likelihood	 ratio	
(LR),	the	likelihood	a	positive	result	will	be	identified	in	
a	person	with	high	resilience	compared	to	a	person	with	
low	resilience,	was	also	calculated.	A	LR > 10	is	consid-
ered	a	large	conclusive	change,	a	LR	between	5	and	10	is	
regarded	as	moderate,	and	an	LR < 2	is	seldomly	recog-
nized	as	important	or	a	valuable	diagnostic	test	(Hajian-	
Tilaki,	 2013).	 The	 optimal	 cut	 point	 of	 the	 curve	 was	
determined	by	the	maximum	value	of	the	Youden	index	
(J)	for	each	variable	(Hajian-	Tilaki,	2013).	All	statistical	
measures	 were	 obtained	 using	 IBM	 SPSS	 Statistics	 for	
Macintosh,	Version	27	(IBM	Corp.,	Armonk,	NY);	ROC	
curves	 and	 analyses	 were	 obtained	 using	 GraphPad	
Prism,	Version	9.1.1	(GraphPad	Software	LLC,	La	Jolla,	
CA).

2.12	 |	 Steps to ensure rigor

To	reduce	bias,	investigators	performing	data	acquisition	
including	 ELISA	 assays,	 EV	 isolation,	 immunofluores-
cence	staining,	and	imaging	flow	cytometry	were	blinded	
to	group	allocation	(i.e.,	high/low	resilience).	All	sample	
conditions	 (i.e.,	 D0	 and	 D3)	 for	 a	 given	 subject	 and	 an	
equal	number	of	high	and	low	resilient	samples	were	ana-
lyzed	on	the	same	day.	An	investigator	not	involved	with	
data	acquisition	selected	and	coded	the	appropriate	sam-
ples	for	analysis	each	day.

3 	 | 	 RESULTS

3.1	 |	 Baseline characteristics and impact 
of simulated military operational stress

High	 resilient	 individuals	 had	 an	 average	 CD-	RISC	
score	 of	 94.90  ±  3.04	 out	 of	 a	 maximum	 score	 of	 100	
whereas	 the	 average	 score	 of	 low	 resilient	 individuals	
was	70.00 ± 5.89.	The	demographic	information	for	the	
sample	 included	 in	 this	 study	 is	 provided	 in	 Table	 1.	
The	two	groups	were	similar	in	age,	combat	experience,	
years	of	service,	aerobic	fitness,	and	body	composition.	
Low	resilient	 individuals	were	slightly	taller	 than	high	
resilient	 individuals	 [p  =  0.02,	 Hedges’	 g  =  1.09	 (95%	
CI	0.16,	1.99)].	Individuals	with	high	resilience	reported	
engaging	 in	coping	strategies	pertaining	 to	positive	 re-
interpretation	 (p  <  0.001),	 active	 coping	 (p  =  0.007),	
planning	 (p  <  0.001),	 seeking	 of	 instrumental	 social	
support	 (p  =  0.01,	 Hedges’	 g  =  2.68),	 and	 suppression	
of	 competing	 activities	 (p  =  0.002,	 Hedges’	 g  =  2.01)	
to	 a	 greater	 extent	 than	 low	 resilient	 individuals.	 No	
other	 significant	 differences	 in	 coping	 strategies	 were	

Low resilience 
(n = 10)

High resilience 
(n = 10) All (N = 20)

Age	(years) 28.13 ± 5.81 27.47 ± 6.22 27.80 ± 5.87

Height	(cm)a 181.13 ± 5.76 174.05 ± 6.67 177.59 ± 7.07

Weight	(kg) 92.46 ± 18.80 80.45 ± 14.63 86.45 ± 17.50

BMI	(kg/m2) 28.20 ± 5.71 26.51 ± 4.40 27.36 ± 5.03

Body	fat	(%) 23.26 ± 7.18 20.24 ± 6.70 21.75 ± 6.93

VO2peak	(ml∙kg∙min−1) 47.73 ± 7.04 47.66 ± 11.04 47.69 ± 9.00

CD-	RISC	scorea 70.00 ± 5.89 94.90 ± 3.04 82.45 ± 13.56

DRRI-	2 score 21.80 ± 7.12 23.00 ± 13.02 22.40 ± 10.23

Total	years	of	service 7.08 ± 6.23 8.73 ± 6.15 7.90 ± 6.08

Note: Data	presented	as	mean ± standard	deviation.
Abbreviations:	BMI,	body	mass	index;	CD-	RISC,	Connor	Davidson	resilience	scale;	DDRI-	2,	deployment	
risk	and	resilience	inventory-	2.
aSignificant	difference	between	groups	(p < 0.05).

T A B L E  1 	 Participant	characteristics	
(N = 20)



   | 9 of 18BECKNER et al.

observed.	High	 resilient	 individuals	also	demonstrated	
significantly	 higher	 levels	 of	 conscientiousness	 (i.e.,	
self-	discipline,	p < 0.001,	Hedges’	g = 4.36)	and	extra-
version	 (i.e.,	 outgoing,	 p  <  0.001)	 than	 low	 resilient	
individuals.	Conversely,	 low	resilient	 individuals	dem-
onstrated	 significantly	 higher	 levels	 of	 neuroticism,	 or	
the	tendency	to	experience	negative	emotion	(p < 0.001,	
Hedges’	g = 5.68).

At	 baseline,	 participants	 consumed	 2378.4  ±  420.2	
kcal∙d−1	 (32%	 fat,	 56%	 carbohydrate,	 12%	 protein)	 and	
slept	7.3 ± 0.4 h.	In	contrast,	participants	consumed	on	av-
erage	1447.5 ± 194.4 kcal∙d−1	(29%	fat,	60%	carbohydrate,	
11%	protein)	and	slept	3.8 ± 0.2	during	the	stress	scenario	
(i.e.,	days	2	and	3).

3.2	 |	 Neuroendocrine biomarkers

To	assess	if	concentrations	of	circulating	neuroendocrine	
biomarkers	were	differentially	expressed	in	high	and	low	
resilient	individuals,	we	analyzed	α-	Klotho,	BDNF,	NPY,	
IGF-	I,	and	cortisol	at	the	onset	of	the	5	d	SMOS	protocol	as	
a	baseline	measure	as	well	as	the	second	consecutive	day	
of	sleep	and	caloric	restriction,	considered	the	peak	stress	
of	the	5	d	protocol.	No	group	differences	were	observed	for	
neuroendocrine	biomarkers	at	baseline	between	high	and	
low	resilience	groups	(Table	2).

Overall,	the	48 h	of	restricted	sleep	and	caloric	intake	
elicited	significant	declines	in	α-	Klotho	(p = 0.01),	IGF-	I	
(p = 0.006,	Hedges’	g = 0.681),	and	NPY	(p = 0.002)	among	
all	participants.	No	significant	changes	were	observed	in	
BDNF	 or	 cortisol	 from	 baseline	 to	 peak	 stress.	 Similar	
changes	 in	 biomarker	 concentrations	 were	 observed	 be-
tween	 groups,	 with	 no	 significant	 differences	 between	
high	and	low	resilience	(Figure	3).

3.3	 |	 EV characterization

EV	 concentration	 and	 mean	 size	 were	 similar	 between	
high	and	low	resilient	 individuals	at	baseline	(p = 0.823	
and	p = 0.148,	respectively)	(Table	3).	Overall,	there	was	
no	significant	change	from	baseline	to	peak	stress	in	EV	
concentration	(p = 0.222)	or	EV	size	(p = 0.575).	Likewise,	
there	was	no	significant	difference	in	change	scores	for	EV	
concentration	(p = 0.353)	or	average	EV	size	(p = 0.205)	
between	high	and	low	resilience	(Figure	4).

3.4	 |	 Feature selection based on EV 
features at baseline

Next,	 we	 sought	 to	 take	 an	 unbiased	 approach	 to	 select	
baseline	 EV	 features	 that	 were	 best	 able	 to	 discriminate	
between	 high	 and	 low	 resilient	 individuals	 using	 regres-
sion	tree	(RT)	models,	based	on	the	average,	median,	and	
standard	deviation	of	EV	features.	Separate	RT	models	for	
the	mean,	median,	and	standard	deviation	of	EV	 features	
at	baseline,	as	well	as	the	final	RT	model,	are	presented	in	
the	Supplemental	Material	(Figures	S1–	S4).	Ultimately,	the	
regression	tree	models	selected	five	features	of	interest	to	de-
cipher	resilience:	(a)	The	average	and	(b)	median	raw	maxi-
mum	pixel	intensity	of	brightfield	image	in	large-	sized	EVs,	
(c)	the	average	intensity	of	THSD1+	EVs	among	medium-	
sized	EVs,	(d)	the	median	bright	detail	intensity	of	THSD1+	
among	large-	sized	EVs,	and	(e)	the	variability	of	side	scatter	
aspect	ratio.	We	subsequently	analyzed	these	five	features	to	
determine	if	there	was	a	significant	difference	between	high	
and	low	resilient	individuals	for	each	feature.

3.5	 |	 Comparison of baseline EV features 
between high and low resilient individuals

Four	 of	 the	 five	 baseline	 EV	 features	 were	 non-	normally	
distributed	 and	 analyzed	 using	 the	 Mann–	Whitney	 U	 test	
to	compare	between	high	and	low	resilience.	Independent	
samples	t-	test	was	used	to	assess	the	median	bright	detail	in-
tensity	of	THSD1	among	large-	sized	EVs,	as	this	variable	was	
normally	 distributed.	 Similar	 to	 baseline	 neuroendocrine	

T A B L E  2 	 Baseline	neuroendocrine	concentrations

Low resilience 
(n = 10)

High resilience 
(n = 10)

α-	Klotho	(pg/ml)

Mean ± SD 1013.69 ± 332.89 956.37 ± 341.04

Median	[IQR] 852.02	[527.03] 871.19	[542.84]

BDNF	(pg/ml)

Mean ± SD 5595.60 ± 6548.55 6273.00 ± 4592.35

Median	[IQR] 2638.00	[5778.75] 4917.50	[6567.75]

NPY	(pg/ml)

Mean ± SD 2210.53 ± 993.55 3594.32 ± 2496.45

Median	[IQR] 1782.01	[1751.00] 2684.44	[4718.89]

IGF-	I	(ng/ml)

Mean ± SD 273.57 ± 64.37 293.05 ± 91.62

Median	[IQR] 278.49	[112.41] 276.77	[98.44]

Cortisol	(µg/dl)

Mean ± SD 26.15 ± 11.63 28.21 ± 9.57

Median	[IQR] 22.23	[20.40] 23.84	[12.99]

Note: Independent	samples	t-	test	or	Mann–	Whitney	U	test	(as	appropriate)	
indicated	there	were	no	significant	differences	between	high	and	low	
resilient	individuals	at	baseline.
Abbreviations:	BDNF,	brain-	derived	neurotrophic	factor;	IGF-	I,	insulin-	like	
growth	factor	I;	NPY,	neuropeptide-	Y.
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markers,	 no	 significant	 group	 differences	 were	 identified	
among	the	EV	features	at	baseline	(Figure	5).	However,	the	
average	intensity	of	THSD1	among	medium-	sized	EVs	ap-
proached	significance	(p = 0.052),	with	low	resilient	individ-
uals	having	the	greater	average	intensity	of	THSD1	among	
medium-	sized	EVs	(MED:	10.54;	IQR:	2.32,	20.95)	compared	
to	high	resilient	individuals	(MED:	3.29;	IQR:	0.97,	5.24).

3.6	 |	 Feature selection based on EV 
feature changes in response to stress

Provided	that	many	definitions	of	resilience	rest	on	how	
an	 individual	 responds	 to	 a	 stressor,	 we	 investigated	

whether	 changes	 in	 the	 EV	 profile	 in	 response	 to	 48  h	
of	 sleep	 and	 caloric	 restriction	 would	 differ	 between	
those	that	are	highly	resilient	compared	to	low	resilient	
peers.	 We	 repeated	 the	 same	 feature	 selection	 decision	
tree	 process	 as	 executed	 with	 baseline	 EV	 features,	 ex-
cept	EV	feature	absolute	change	scores	were	used	as	the	
independent	 variables.	 Individual	 RT	 models	 for	 the	
mean	 change,	 median	 change,	 and	 standard	 deviation	
of	 change	 for	 EV	 features	 in	 response	 to	 stress,	 as	 well	
as	the	final	RT	model	using	absolute	change	scores,	are	
presented	in	the	Supplemental	Material	(Figures	S5–	S8).	

F I G U R E  3  Changes	in	
neuroendocrine	biomarker	concentrations	
from	baseline	to	peak	stress	between	
high	and	low	resilient	(Res)	individuals.	
Absolute	change	scores	were	compared	
between	low	resilient	(n = 10)	and	high	
resilient	(n = 10)	individuals	using	
independent	samples	t-	test	or	Mann-	
Whitney	U	test,	as	appropriate.	No	
significant	differences	in	response	to	
stress	were	observed	in	(a)	α-	Klotho,	
(b)	brain-	derived	neurotrophic	factor	
(BDNF),	(c)	neuropeptide-	Y	(NPY),	(d)	
insulin-	like	growth	factor	I	(IGF-	I),	or	(e)	
cortisol.	Data	are	presented	as	mean	and	
standard	deviation	of	the	change	score

T A B L E  3 	 Baseline	EV	characterization

Low resilience 
(n = 10)

High resilience 
(n = 10)

Concentration	(×1010	
nanoparticles/ml)

Mean ± SD 2.78 ± 1.81 2.60 ± 1.67

Median	[IQR] 2.95	[3.00] 2.12	[2.00]

Mean	size	
(nanometers)

Mean ± SD 112.63 ± 24.86 97.68 ± 18.96

Median	[IQR] 102.55	[46.15] 96.05	[20.03]

Note: Independent	samples	t-	test	or	Mann–	Whitney	U	test	(as	appropriate)	
indicated	there	were	no	significant	differences	in	EV	characterization	
between	high	and	low	resilient	individuals	at	baseline.	Data	presented	as	
mean ± standard	deviation	(SD)	and	median	with	interquartile	range	[IQR].

F I G U R E  4  Changes	in	extracellular	vesicle	(EV)	
characterization	from	baseline	to	peak	stress.	Absolute	change	
scores	were	compared	between	low	resilient	(n = 10)	and	high	
resilient	(n = 10)	individuals	using	independent	samples	t-	test	or	
Mann-	Whitney	U	test,	as	appropriate.	No	significant	differences	
were	observed	in	response	to	stress	between	low	and	high	resilient	
(Res)	individuals	in	(a)	EV	concentration	or	(b)	EV	mean	size
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The	 regression	 tree	 models	 determined	 four	 features	 of	
interest	 in	 discriminating	 resilience	 based	 on	 changes	
in	EV	features	in	response	to	stress:	(a)	Average	change	
in	EV	side	scatter	minimum	pixel	 intensity,	 specifically	
within	 medium-	sized	 EVs;	 (b)	 average	 change	 in	 maxi-
mum	pixel	intensity	of	THSD1,	specifically	within	large-	
sized	 EVs;	 (c)	 median	 change	 in	 area	 of	 the	 brightfield	
image	of	all	EVs;	and	(d)	the	variability	of	the	change	in	
bright	detail	intensity	of	THSD1+	large-	sized	EVs.	These	
four	features	were	then	analyzed	to	determine	which	fea-
tures	displayed	significant	differences	between	high	and	
low	resilient	individuals.

3.7	 |	 Comparison of EV feature changes 
in response to stress between high and low 
resilient soldiers

While	 no	 differences	 were	 observed	 between	 groups	
when	 comparing	 circulating	 neuroendocrine	 biomarker	
changes	in	response	to	stress,	select	EV	features	responded	

differently	 to	 stress	 when	 individuals	 were	 stratified	 ac-
cording	 to	 resilience	 score	 (Figure	 6).	 Three	 of	 the	 four	
EV	feature	change	scores	were	normally	distributed	and,	
thus,	analyzed	using	an	 independent	 samples	 t-	test.	The	
median	change	in	the	area	of	the	brightfield	image	among	
large-	sized	 EVs	 was	 analyzed	 using	 the	 Mann–	Whitney	
U	 test	 due	 to	 violations	 of	 normality.	 Most	 notably,	 the	
variability	of	the	change	in	bright	detail	intensity	of	large-	
sized	THSD1+	EVs	was	significantly	greater	among	high	
resilient	individuals	compared	to	low	resilient	individuals	
[p = 0.002,	Hedges’	g = 1.59	(95%	CI:	0.59,	2.56)]	(Figure	
6a).	In	contrast,	the	average	change	in	minimum	side	scat-
ter	 pixel	 value	 among	 medium-	sized	 EVs	 decreased	 in	
high	resilient	 individuals	 in	response	 to	stress	compared	
to	 the	 minimum	 change	 observed	 in	 low	 resilient	 indi-
viduals	[p = 0.014,	Hedges’	g = 1.17	(95%	CI:	0.12,	2.16)]	
(Figure	6b).	No	significant	differences	were	observed	be-
tween	 groups	 in	 the	 average	 change	 of	 maximum	 pixel	
intensity	 of	 large-	sized	 THSD1+	 EVs	 (p  =  0.262)	 or	 the	
median	change	in	the	area	of	the	brightfield	image	of	all	
EVs	(p = 0.446).

F I G U R E  5  Comparison	of	EV	features	at	baseline	between	low	and	high	resilient	(Res)	individuals.	Independent	samples	t-	test	or	
Mann-	Whitney	U	test	(as	appropriate)	were	used	to	compare	differences	in	EV	features	at	baseline	between	low	resilient	(n = 10)	and	
high	resilient	(n = 10)	individuals.	No	significant	differences	were	observed	at	baseline	in	(a)	the	average	maximum	pixel	intensity	in	
brightfield	images	of	large-	sized	EVs,	(b)	the	average	intensity	among	medium-	sized	THSD1+	EVs,	(c)	the	median	maximum	pixel	intensity	
in	brightfield	images	of	large-	sized	EVs,	(d)	the	median	intensity	of	localized	THSD1+	bright	spots	(defined	as	bright	sports	in	the	image	
that	are	3	pixels	in	radius	or	less)	among	large-	sized	EVs,	and	(e)	the	variability	of	side	scatter	aspect	ratio,	a	measure	of	circularity,	with	an	
aspect	ratio	of	1	indicating	a	perfect	circle
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3.8	 |	 Characteristic performance of 
EV features

To	 determine	 how	 well	 the	 variability	 of	 the	 change	 in	
bright	 detail	 intensity	 of	 THSD1+	 large-	sized	 EVs	 and	
the	average	change	 in	minimum	side	scatter	pixel	value	
among	 medium-	sized	 EVs	 distinguished	 high	 from	 low	
resilient	individuals,	we	plotted	ROC	curves	based	on	the	
rule	used	to	classify	individuals	as	being	highly	resilient.	
For	variability	of	 the	change	 in	bright	detail	 intensity	of	
THSD1+	large-	sized	EVs,	the	area	under	the	ROC	curve	
was	 0.90	 (95%	 CI:	 0.76–	1.00,	 p  =  0.003)	 (Figure	 7a).	 In	
this	sample	population,	the	optimal	cutoff	as	determined	
by	the	Youden	index	(J)	was	a	change	score	standard	de-
viation	 of	 >101.00	 with	 80%	 sensitivity	 (95%	 CI:	 49.02–	
96.45%)	 and	 90%	 specificity	 (95%	 CI:	 59.58%–	99.49%),	
yielding	an	8.00 likelihood	ratio	(LH).	The	ROC	curve	for	
the	average	change	 in	minimum	side	scatter	pixel	value	
among	medium-	sized	EVs	displayed	an	AUC	of	0.79	(95%	
CI:	0.58–	0.99,	p = 0.028)	with	an	optimal	cut	off	at	an	aver-
age	change	<0.140	corresponding	to	90%	sensitivity	(95%	
CI:	 59.58–	99.49%)	 and	 60%	 specificity	 (95%	 CI:	 31.27–	
83.18%)	with	a	2.25	LH	(Figure	7b).

4 	 | 	 DISCUSSION

The	 purpose	 of	 this	 investigation	 was	 to	 identify	 a	 bi-
ological	 profile	 able	 to	 discriminate	 highly	 resilient	
individuals	 from	 low	 resilient	 counterparts	 based	 on	
CD-	RISC	 scores.	 Contrary	 to	 our	 hypothesis,	 none	 of	
the	 neuroendocrine	 biomarkers	 or	 EV	 features	 were	
able	 to	 discriminate	 highversus	 low	 resilience	 at	 base-
line.	 However,	 the	 results	 supported	 our	 hypothesis	
that	EVs	were	a	more	 sensitive	 indicator	of	high	resil-
ience	 compared	 to	 neuroendocrine	 biomarkers	 in	 re-
sponse	to	a	controlled	stress	scenario.	While	changes	in	

F I G U R E  6  Comparison	of	EV	feature	changes	in	response	to	
stress	between	low	and	high	resilient	(Res)	individuals.	Absolute	
change	scores	were	compared	between	low	resilient	(n = 10)	and	
high	resilient	(n = 10)	individuals	using	independent	samples	t-	test	
or	Mann-	Whitney	U	test,	as	appropriate.	A	significant	(*p < 0.05)	
difference	between	high	and	low	resilient	individuals	in	response	to	
the	stressor	were	observed	in	(a)	the	change	in	intensity	variability	
of	localized	THSD1+	bright	spots	among	large-	sized	EVs	and	
(b)	the	change	in	average	minimum	side	scatter	intensity	among	
medium-	sized	EVs.	No	significant	differences	were	observed	in	
response	to	stress	in	(c)	average	maximum	pixel	intensity	of	large-	
sized	THSD1+	EVs	or	(d)	the	median	area	in	brightfield	images	of	
large-	sized	EVs

F I G U R E  7  Receiver-	operating	
characteristic	(ROC)	curve	depicting	
the	ability	of	EV	features	to	characterize	
resilience	among	soldiers.	(a)	the	change	
in	intensity	variability	of	localized	
THSD1+	bright	spots	among	large-	sized	
EVs	(b)	the	change	in	average	minimum	
side	scatter	intensity	among	medium-	
sized	EVs.	AUC,	area	under	the	curve;	
(95%	Confidence	Interval)
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neuroendocrine	 biomarkers	 were	 unable	 to	 differenti-
ate	resilience,	we	observed	changes	within	EV	features	
following	48 h	of	sleep	and	caloric	restriction	that	were	
significantly	 different	 between	 high	 and	 low	 resilient	
individuals.	 Specifically,	 the	 variability	 of	 change	 in	
bright	 spot	 intensities	 of	 large-	sized	 THSD1+	 EVs,	 a	
marker	associated	with	apoptotic	bodies,	 following	the	
restriction	period	was	significantly	greater	among	high	
resilient	individuals.	Additionally,	highly	resilient	indi-
viduals	exhibited	a	decrease	in	a	minimum	side	scatter	
pixel	intensity,	a	measure	of	cell	complexity.	Low	resil-
ient	individuals	demonstrated	little	to	no	change	in	EV	
features	following	the	48 h	sleep	and	caloric	restriction	
period.	The	responses	observed	were	likely	a	reflection	
of	cumulative	stress,	 rather	 than	acute	stress,	as	blood	
was	 obtained	 at	 rest	 on	 both	 baseline	 and	 peak	 stress	
days.

4.1	 |	 High trait- resilience is 
characterized by greater heterogeneity 
among EVs associated with apoptotic 
bodies, which may be beneficial for 
adaptation during stress

The	average	CD-	RISC	score	of	 the	cohort	 in	 the	present	
study	(82.4 ± 13.7)	mirrors	that	of	other	military	popula-
tions,	namely	U.S.	Navy	SEAL	candidates	(Ledford	et	al.,	
2020)	 and	 active	 duty	 U.S.	 Air	 Force	 service	 members	
(Bezdjian	et	al.,	2017),	which	are	above	mean	scores	 re-
ported	among	U.S.	college	students,	ranging	from	67.7	to	
70.6	 (Steinhardt	 &	 Dolbier,	 2008).	 Interviews	 conducted	
with	individuals	presumed	to	embody	resilience,	includ-
ing	 Navy	 SEALs	 and	 children	 of	 the	 Great	 Depression,	
have	revealed	common	core	characteristics	among	resil-
ient	individuals	to	include	calm-	thinking,	decisive	action,	
tenacity,	and	a	positive	perspective	on	 life	 (Everly	et	al.,	
2012).	 Our	 results	 also	 demonstrated	 that	 high	 resilient	
individuals	were	more	likely	to	use	positive	reinterpreta-
tion,	 active	 coping,	 planning,	 seeking	 of	 social	 support,	
and	 suppression	 of	 competing	 activities	 to	 cope	 with	
stress—	all	of	which	are	characterized	as	problem-	focused	
coping	strategies	aimed	at	taking	action	to	alter	the	source	
of	the	stress	(Carver	et	al.,	1989).	Certainly,	these	are	key	
attributes	 in	 a	 military	 environment	 where	 remaining	
calm	under	pressure	can	be	critical	to	mission	readiness	
and	the	difference	between	life	or	death.

Individuals	 with	 CD-	RISC	 scores  >90	 in	 the	 present	
study	 demonstrated	 greater	 heterogeneity	 among	 large-	
sized	THSD1+	EVs,	associated	with	apoptotic	bodies,	 in	
response	 to	 the	multi-	factorial	 stress	 scenario.	THSD1	 is	
part	of	a	family	of	thrombospondin	extracellular	proteins	
involved	in	cell-	to-	cell	and	cell-	to-	matrix	communication,	

regulating	 cellular	 processes	 from	 tissue	 genesis	 and	 re-
pair	to	cell	attachment,	motility,	and	proliferation	(Friedl	
et	al.,	2002).	THSD1	acts	as	a	molecular	bridge	between	
phagocytic	 and	 apoptotic	 cells	 and	 plays	 a	 key	 role	 in	
the	 recognition	 and	 phagocytosis	 of	 cells	 undergoing	
apoptosis,	or	programmed	cell	death	(Friedl	et	al.,	2002).	
Apoptotic	bodies,	which	are	formed	by	the	breakdown	of	
nuclear	 chromatin,	 are	 the	 largest-	sized	 subpopulation	
of	EVs	(Akers	et	al.,	2013).	Our	results	demonstrated	that	
increased	heterogeneity	of	THSD1+	EVs	in	high	resilient	
individuals	was	specific	to	large-	sized	EVs,	providing	ad-
ditional	support	that	these	changes	were	occurring	within	
the	 apoptotic	 body	 subpopulation.	 Viable	 cells	 contain	
numerous	 intracellular	 structures	and	are	complex,	pro-
ducing	high	amounts	of	side	scatter	with	flow	cytometry	
as	the	photon	strikes	the	inner	contents;	however,	as	cells	
fragment	into	apoptotic	bodies,	side	scatter	decreases	due	
to	less	photon	obstruction	(Jiang	et	al.,	2016).	The	lower	
minimum	side	scatter	 intensity	among	high	resilient	 in-
dividuals	in	response	to	stress	further	endorse	an	increase	
in	apoptotic	bodies	observed	in	those	with	high	CD-	RISC	
scores.

Apoptotic	bodies	were	once	regarded	as	nothing	more	
than	 cellular	 debris.	 However,	 they	 are	 now	 known	 to	
carry	a	considerable	amount	of	RNA	relative	to	other	EV	
subpopulations	that	can	be	engulfed	by	macrophages	and	
prime	 molecular	 memory	 through	 the	 transfer	 of	 inter-
cellular	 contents	 (Battistelli	 &	 Falcieri,	 2020;	 Liu	 et	 al.,	
2018b).	 Furthermore,	 the	 lipid	 membrane	 of	 apoptotic	
bodies	precludes	 the	 inner	contents	 from	being	 released	
into	the	surroundings,	preventing	an	inflammatory	reac-
tion	(Battistelli	&	Falcieri,	2020).	The	protein	composition	
of	 plasma	 apoptotic	 cells	 in	 healthy	 humans	 are	 associ-
ated	 with	 various	 biological	 processes	 including	 cellular	
component	 organization,	 biogenesis,	 metabolism,	 and	
response	 to	 stimuli,	 among	 others	 (Serrano-	Heras	 et	 al.,	
2020).	It	is	hypothesized	that	acute	stress-	triggered	apop-
tosis	may	be	beneficial	for	adaptations	to	the	environment	
as	it	can	cause	physiological	changes	in	the	brain,	gener-
ating	 new	 neurons	 and	 increasing	 plasticity	 (McKernan	
et	al.,	2009).	Therefore,	the	increase	in	variability	THSD1+	
EVs	in	high	resilient	individuals,	but	not	low	resilient	in-
dividuals,	 following	 48  h	 multi-	factorial	 stress	 may	 sug-
gest	 high	 resilience	 is	 accompanied	 by	 stress-	triggered	
apoptotic	adaptations	to	the	environment.

The	beneficial	 role	of	apoptotic	bodies	has	been	 in-
vestigated	in	animal	models	by	observing	the	physiolog-
ical	impact	of	an	absence	of	apoptotic	bodies.	Liu	et	al.	
(2018b)	observed	that	apoptosis-	deficient	mice,	charac-
terized	by	Fas	deficiency	and	caspase	three	knockouts,	
had	significantly	reduced	apoptotic	body	formation	ac-
companied	by	impaired	self-	renewal	and	differentiation	
of	 bone	 marrow	 mesenchymal	 cells.	 However,	 when	
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the	 apoptosis-	deficient	 mice	 were	 infused	 with	 exoge-
nous	apoptotic	bodies	weekly	for	4 weeks,	mesenchymal	
cells	 were	 restored	 and	 the	 osteopenia	 phenotype	 was	
mitigated	(Liu	et	al.,	2018b).	Similarly,	apoptotic	bodies	
were	shown	to	functionally	modulate	liver	macrophage	
homeostasis	 to	 counteract	 Type	 2	 diabetes,	 improving	
glucose	 tolerance	 and	 insulin	 sensitivity	 (Zheng	 et	 al.,	
2021).	 Apoptotic	 bodies	 are	 enveloped	 and	 ingested	
by	 macrophages,	 dendritic	 cells,	 and	 endothelial	 cells,	
then	degraded	by	lysosomes	(Liu	et	al.,	2018b).	The	pro-
teomic	and	transcriptomic	components	within	apoptotic	
bodies	 are	 conjectured	 to	 facilitate	 molecular	 memory	
and	the	transfer	of	cellular	information	via	the	engulf-
ment	 and	 degradation	 process	 (Liu	 et	 al.,	 2018b).	 Of	
note,	excessive	rates	of	apoptosis	can	lead	to	pathology	
(Liu	et	al.,	2018b);	therefore,	optimal	rates	of	apoptosis	
under	specific	environmental	conditions	need	to	be	fur-
ther	investigated.

4.2	 |	 Neuroendocrine biomarkers were 
unable to distinguish high trait- resilience

While	we	observed	significant	declines	in	IGF-	I	(–	13.5%),	
α-	Klotho	(–	8.9%),	and	NPY	(–	17.2%)	from	baseline	to	peak	
stress	among	all	participants,	 there	was	no	difference	 in	
neuroendocrine	response	between	high-		and	low-	resilient	
individuals.	 The	 observed	 decreases	 in	 IGF-	I	 concentra-
tions	 are	 consistent	 with	 previous	 reports	 demonstrat-
ing	 IGF-	I	 concentrations	 are	 attenuated	 during	 rigorous	
military	 training	 (Nindl	 et	 al.,	 2007,	 2012).	 Likewise,	
high-	stressed	 individuals	 have	 been	 reported	 to	 have	
lower	 concentrations	 of	 α-	Klotho	 (Prather	 et	 al.,	 2015).	
Previous	military	studies	have	demonstrated	increases	in	
NPY	concentrations	immediately	following	mock	captiv-
ity	 (Morgan	 et	 al.,	 2000b;	 Szivak	 et	 al.,	 2018).	 However,	
Szivak	 et	 al.	 (2018)	 demonstrated	 NPY	 concentrations	
significantly	declined	24-	hr	following	completion	of	mili-
tary	survival	training	compared	to	baseline.	In	the	present	
study,	blood	was	collected	in	the	morning	upon	awaken-
ing,	not	following	acute	stress,	which	may	have	contrib-
uted	to	the	directional	changes	observed	in	NPY.	Despite	
the	fact	that	no	changes	in	BDNF	concentrations	were	ob-
served	in	the	present	investigation,	the	parent	study	dem-
onstrated	 declines	 in	 BDNF	 were	 more	 apparent	 at	 the	
onset	of	stress,	rather	than	at	peak	stress	(Beckner	et	al.,	
2021).	Contrary	to	numerous	studies	reporting	significant	
increases	 in	 cortisol	 during	 military	 training	 scenarios	
(Lieberman	et	al.,	2016;	Morgan	et	al.,	2000a;	Szivak	et	al.,	
2018),	we	observed	no	changes	in	cortisol	concentrations	
from	 baseline	 to	 peak	 stress.	 Considering	 the	 baseline	
blood	was	collected	approximately	~14 h	after	the	onset	of	
the	study	protocol	due	to	one	night	of	familiarization	sleep	

in	 the	sleep	 laboratory,	 it	 is	plausible	participants’	corti-
sol	may	have	already	been	elevated	at	the	time	of	baseline	
blood	collection.	In	support	of	this,	cortisol	concentration	
at	the	baseline	time	point	in	the	present	study	(~26–	28 µg/
dl)	was	more	similar	to	average	concentrations	following	
mock	interrogations	than	baseline	concentrations	in	other	
military	stressors	 (Lieberman	et	al.,	2016;	Morgan	et	al.,	
2000a;	Szivak	et	al.,	2018).

EVs	 present	 several	 advantages	 over	 circulating	 neu-
roendocrine	 biomarkers	 that	 may	 have	 contributed	 to	
the	 changes	 observed	 among	 EVs,	 but	 not	 circulating	
biomarkers,	in	response	to	the	48 h	sleep	and	caloric	re-
striction.	 Unlike	 circulating	 biomarkers,	 EVs	 are	 a	 com-
prehensive	package	of	biological	content	that	is	protected	
from	degradation	in	circulation	by	the	EV’s	 lipid	bilayer	
(Beninson	&	Fleshner,	2014).	Furthermore,	 the	EV	 lipid	
bilayer	increases	the	stability	of	biological	content	during	
extended	 exposure	 to	 room	 temperature	 or	 freeze	 and	
thaw	 cycles	 (if	 stored	 below	 −70°C),	 which	 makes	 it	 a	
desirable	biomarker	in	field	studies	that	often	encounter	
unexpected	delays	in	sample	processing	or	analysis	(Hackl	
et	al.,	2016).

EV	cargo	 includes	nucleic	acids	and	proteins,	as	well	
as	 non-	coding	 RNA	 such	 as	 microRNA	 (miRNA),	 that	
mirror	the	biological	content	of	the	parent	cell	and	regu-
late	gene	expression	post-	transcription	(Akers	et	al.,	2013;	
Keifer	et	al.,	2015;	Meldolesi,	2018).	Exposure	to	physio-
logical	challenges	or	stressors	has	been	reported	to	modify	
miRNA,	which	 is	packaged	 in	a	 targeted	manner	 rather	
than	coincidental	incorporation	into	EVs,	that	act	on	hun-
dreds	of	messenger	RNA	and	modifies	protein	expression	
(Beninson	 &	 Fleshner,	 2014).	 Provided	 that	 resilience	 is	
a	 multi-	factorial	 phenomenon,	 EVs	 may	 provide	 a	 more	
individualized	biological	signature	of	resilience	that	may	
be	masked	at	the	hormone/peptide	level	due	to	a	lack	of	
sensitivity	and	specificity	 (Schmidt	et	al.,	2011).	Though	
the	biological	content	of	EVs	was	not	investigated	in	the	
present	study,	consideration	in	future	studies	is	warranted	
to	understand	the	relationship	between	resilience	and	EV	
cargo.

4.3	 |	 Unbiased selection confirmed 
by diagnostic accuracy support EVs as a 
candidate biomarker of resilience

The	 utilization	 of	 imaging	 flow	 cytometry	 for	 EV	
analysis	 provided	 a	 high-	throughput	 measurement	 of	
morphometric	 features	 at	 the	 single-	EV	 level.	 Due	 to	
the	 abundance	 of	 information	 collected,	 feature	 selec-
tion	was	an	important	first	step	in	the	analysis	as	more	
features	 do	 not	 necessarily	 improve	 the	 performance	
of	 a	 diagnostic	 or	 classification	 algorithm	 (Sommer	 &	
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Gerlich,	 2013).	 For	 example,	 Loo	 et	 al.	 (2007)	 demon-
strated	that	of	approximately	300 single-	cell	phenotypic	
features,	only	~20	features	enhanced	the	interpretability	
of	drug	response	and	detection	of	phenotypic	changes	in	
the	cells,	with	 little	compromise	 in	classification	accu-
racy.	Here,	we	utilized	machine	learning-	based	RT	mod-
els	for	an	unbiased	approach	to	down	select	EV	features	
most	 capable	 of	 classifying	 resilience.	 The	 RT	 model	
used	in	this	study	is	a	non-	parametric	method	that	does	
not	require	assumptions	about	the	distribution	of	the	in-
dependent	variables,	is	not	affected	by	multicollinearity,	
and	can	be	used	on	small	datasets	(Mendeş	&	Akkartal,	
2009).	Furthermore,	the	RT	model	can	simplify	compli-
cated	 relationships	 between	 the	 independent	 variables	
and	the	dependent	variable	by	splitting	the	sample	into	
subgroups	based	on	select	independent	variables	(Song	
&	Lu,	2015).

The	EV	features	down-	selected	by	the	RT	model	based	
on	 resilience	 scores	 were	 supported	 by	 subsequent	 di-
agnostic	 accuracy	 testing.	 Circulating	 biomarkers	 that	
reflect	 biological	 pathways	 activated	 during	 a	 stressful	
scenario,	such	as	the	HPA	axis,	have	been	associated	with	
favorable	 military	 performance	 and,	 presumably,	 resil-
ience	(Morgan	et	al.,	2001).	However,	a	statistically	signif-
icant	association	(p < 0.05)	between	biomarkers	and	the	
outcome	 is	 not	 sufficient	 to	 determine	 the	 diagnostic	 or	
predictive	value	(Wang,	2011).	Discrimination,	the	ability	
to	distinguish	 those	with	 the	outcome	of	 interest	versus	
those	that	do	not,	is	an	important	criterion	when	consid-
ering	the	utility	of	a	biomarker	(Wang,	2011).	The	change	
in	EV	features	related	 to	apoptotic	bodies	 in	 the	present	
study	 was	 not	 only	 significantly	 different	 between	 high	
and	low	resilient	individuals,	but	the	AUCs	demonstrated	
both	 features	 exhibited	 moderate	 to	 high	 discrimination	
accuracy.

4.4	 |	 Considerations

There	is	not	currently	a	consensus	for	defining	resilience	
in	 the	scientific	 literature	and	objective	quantification	 is	
elusive.	Resilience	is	a	phenomenon	which	is	 largely	in-
ferred,	primarily	through	self-	report	questionnaires,	lead-
ing	to	variability	in	how	it	is	defined,	operationalized,	and	
measured	(Kalisch	et	al.,	2017;	Windle	et	al.,	2011).	Self-	
report	assessments	depend	on	the	individual's	knowledge	
of	 the	objective	 truth,	ability	 to	recognize	 the	 truth,	and	
willingness	to	report	it	(Lazarus,	2000).	Demand	charac-
teristics,	the	tendency	for	a	subject	being	evaluated	to	alter	
responses	 or	 behaviors	 in	 a	 way	 that	 is	 perceived	 as	 fa-
vorable,	can	lead	to	inflated	scores	on	self-	assessments	of	
personality	constructs,	such	as	resilience	(Bartone,	2006).	
However,	 studies	 by	 Farina	 et	 al.	 (2019)	 and	 Bezdjian	

et	 al.	 (2017)	 have	 demonstrated	 the	 utility	 of	 self-	report	
resilience	in	that	settings.	Additionally,	this	study	was	ex-
ploratory	in	nature	and	conducted	with	a	small	sample	of	
10 highly	 resilient	and	10  low-	resilient	 individuals	 from	
a	larger	study	(Beckner	et	al.,	2021).	Therefore,	these	re-
sults	should	be	interpreted	with	caution	and	confirmed	in	
a	larger	sample	of	individuals	covering	a	broad	spectrum	
of	 resilience	 scores	 and	 military	 experience.	 It	 is	 impor-
tant	to	note	that	the	blood	measures	in	this	study	were	ob-
tained	at	rest	rather	than	immediately	following	an	acute	
stressor,	which	may	have	yielded	a	different	response	pat-
tern.	Rather,	resting	blood	measures	collected	on	the	third	
day	reflect	the	cumulative	stress	of	two	consecutive	nights	
of	sleep	restriction	and	reduced	caloric	intake.	Lastly,	this	
study	aimed	to	examine	differences	in	the	overall	hetero-
geneity	 of	 the	 EV	 subpopulation	 between	 high	 and	 low	
resilience,	using	one	surface	marker	protein	per	subpop-
ulation.	 Including	 measurements	 of	 the	 nucleic	 and/or	
proteomic	material	carried	by	EVs	is	warranted	in	future	
studies	and	would	enrich	our	knowledge	of	EVs	with	re-
spect	to	resilience	and	stress	tolerance.

5 	 | 	 CONCLUSION

Whether	resilience	is	a	trait	or	a	process	remains	largely	
debated	 in	 the	 literature	 (Liu	 et	 al.,	 2018b).	 Our	 results	
suggest	that	trait-	like	resilience	(based	on	CD-	RISC	score)	
is	 accompanied	 by	 a	 physiological	 process,	 as	 demon-
strated	by	EV	adaptations	 in	response	to	stress	observed	
in	 highly	 resilient	 individuals,	 but	 not	 observed	 in	 low	
resilient	 individuals	 (Liu	et	al.,	2018b).	Similar	 to	physi-
ological	adaptations	that	occur	with	strength	and	aerobic	
training	 (Friedl	 et	 al.,	 2015),	 physiological	 adaptations	
may	 occur	 as	 a	 result	 of	 repeated	 environmental	 expo-
sures,	altering	cognitive	appraisal,	which	may	contribute	
to	enhancing	resilience	(Kalisch	et	al.,	2015;	Yao	&	Hsieh,	
2019).	Furthermore,	the	future	of	EVs	shows	promise	for	
more	sensitive	diagnostic	power	and	the	capability	for	en-
gineered	EVs	to	be	potential	therapeutic	interventions	for	
various	diseases	(Dou	et	al.,	2020;	Man	et	al.,	2020),	which	
could	be	the	future	of	enhancing	resilience.
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