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Abstract

Background

The electrocardiographically quantified QRS duration measures ventricular depolarization

and conduction. QRS prolongation has been associated with poor heart failure prognosis

and cardiovascular mortality, including sudden death. While previous genome-wide associ-

ation studies (GWAS) have identified 32 QRS SNPs across 26 loci among European,
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African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has

not been previously explored.

Methods

We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n =

15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age,

sex, global ancestry, clinical and study-specific covariates). Study-specific results were

combined using fixed-effects, inverse variance-weighted meta-analysis.

Results

We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a

nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top

SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with

a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African

descent populations. The most significant QRS duration association was with intronic SNP

rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci,

CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among His-

panics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to

generalize in Hispanics/Latinos.

Conclusions

Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci,

underscoring the utility of extending large scale genomic studies to currently under-exam-

ined populations.

Introduction

The duration of the QRS complex on a resting, standard 12-lead electrocardiogram (ECG) rep-

resents the electrical depolarization of the ventricles as an impulse travels through the cardiac

conduction system and the ventricular myocardium. Delay in cardiac ventricular conduction

results in increased QRS durations, and has been shown to predict heart failure prognosis,[1,

2] sudden death,[3] and cardiovascular (CV) mortality in patients with and without left ven-

tricular dysfunction, independent of traditional CV risk factors.[4] In turn, shortening of the

QRS duration with the use of cardiac-resynchronization therapy (CRT) has been shown to

decrease heart-failure related events in patients with QRS prolongation.[5]

To date, heritability estimates of QRS duration have varied, with up to ~40% heritability

found in more recent studies.[6–9] While previous genome-wide association studies have

focused predominantly on European populations,[10–12] there have been several smaller

studies of Asian,[13–15] Pacific Islander,[16] and African American populations.[17, 18] Col-

lectively, these GWAS analyses have identified 32 SNPs across 26 loci associated with QRS

duration. These loci harbor ion channel and transcription factor genes involved in cardiac

conduction, including SCN5A, SCN10A, TBX3, TBX5, TBX20, and HAND1.[10–14, 16–18] To

our knowledge, there has been no GWAS performed to study the genetics of QRS duration in

Hispanic/Latino ancestry populations. We therefore performed a GWAS of QRS duration in

QRS GWAS in Hispanics/Latinos
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four Hispanic/Latino study populations: the Hispanic Community Health Study/Study of Lati-

nos (HCHS/SOL), the Multi-Ethnic Study of Atherosclerosis (MESA), the Starr County Study

(Starr), and the Women’s Health Initiative (WHI).

Results

Our GWAS included 15,124 Hispanic/Latino individuals from four contributing cohorts.

Baseline characteristics varied substantially across the four cohorts. For example, WHI is a

study of women only. The average age of the participants across the four cohorts ranged from

45 to 61 years. The prevalence of hypertension and diabetes across the four cohorts ranged

from 26% to 42% for hypertension and 8% to 46% for diabetes (S1 Table).

Genome-wide association analysis

Following quality control (see Materials and Methods), individual studies contributed between

5.8 M and 20.2 M individual SNPs, yielding 21.1 M combined, unique SNPs overall. Neither

the individual studies (λ range = 0.96–1.03) nor the combined meta-analysis (λ = 1.03) exhib-

ited evidence of test-statistic inflation (S1 and S2 Figs). SNPs in six loci exceeded the genome-

wide threshold for significance (Table 1, Fig 1). Two of the loci (MYOCD and SYT1) were

novel, whereas the remaining four (SCN5A-SCN10A, HAND1, CDKN1A, and VTI1A) were

previously identified in other ethnic groups. There was no evidence of heterogeneity

(Cochran’s Q test P-value>0.05, S2 Table), and effect direction was consistent across all con-

tributing studies for all index SNPs (S3 Fig). All index SNPs were either directly genotyped or

were imputed with high quality (S3 Table).

Novel associations. The meta-analysis identified two novel loci (MYOCD and SYT1) asso-

ciated with QRS duration. The index SNP (rs16946539) in MYOCD (myocardin, a nuclear

protein found in cardiac and smooth muscle), as well as the only SNP (rs139859815) in high

LD (r2>0.5) with it, are monomorphic in the European-descent and African-descent 1000

Genomes super populations (S4 Table).

Table 1. Genome-wide significant SNPs identified in a GWAS meta-analysis of n = 15,124 participants of Hispanic/Latino ancestry from four studies.

Locus Nearest Genea[19] Index SNP Chrb A1/A2c Function CAFd β (SE)e P Multi Pf

1 SCN5A rs3922844 3 C/T Intronic 0.63 1.03 (0.10) 1.19e-24 3.36e-15

1 �SCN5A rs62241190 3 G/A Intronic 0.04 2.46 (0.27) 5.82e-20 1.09e-12

1 �SCN10A rs10428132 3 T/G Intronic 0.38 0.79 (0.10) 1.43e-15 3.57e-11

1 �SCN5A rs9856387 3 C/T Intronic 0.73 0.76 (0.11) 2.12e-12 1.68e-08

2 HAND1 rs13165478 5 G/A Intergenic 0.67 0.68 (0.10) 2.69e-11 —

3 CDKN1A rs3176326 6 A/G Intronic 0.17 1.15 (0.13) 1.54e-19 4.26e-13

3 †SPRK1 rs2395642 6 T/C Intronic 0.16 0.93 (0.13) 4.71e-09 3.94e-06

4 VTI1A rs7906312 10 A/C Intronic 0.19 0.77 (0.13) 8.14e-10 —

5 SYT1 rs4842438 12 C/A Intronic 0.93 1.04 (0.19) 4.24e-08 —

6 MYOCD rs16946539 17 T/C Intronic 0.06 1.28 (0.22) 1.74e-09 —

a � Denotes a secondary signal.
† Denotes a secondary SNP no longer genome-wide significant after multi-SNP testing at the locus. For the intergenic SNP (rs13165478), the nearest gene was

determined by the nearest protein coding gene in base pairs from the National Center for Biotechnology Information RefSeq database.
bChr: Chromosome
cA1/A2: Coded/non-coded alleles
dCAF: Coded allele frequency
eβ: Effect estimate measured in milliseconds.
fP for the association of index SNP with QRS duration, upon fixed effects meta-analysis using a model which includes all index SNPs in the same locus.

https://doi.org/10.1371/journal.pone.0217796.t001
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The second novel locus was on chromosome 12 near SYT1 (synaptotagmin-1), an integral

membrane protein of synaptic vesicles that responds to calcium signaling. The index SNP in

SYT1 (rs4842438) was examined in both European and African ancestry GWAS efforts, but

failed to reach nominal significance (P>0.05; Fig 2). Indeed, the effect size of rs4842438 in His-

panics/Latinos (beta = 1.04 ms) is statistically larger than in European-descent (beta = 0.13

ms) and African-descent (beta = 0.00 ms) individuals (P for difference = 5.69x10-5 and

8.65x10-6, respectively, Fig 2, S5–S7 Tables). Moreover, the broad LD pattern seen in

Fig 1. Manhattan plot of SNP-QRS associations. Manhattan plot showing the association of SNPs with QRS duration

in the GWAS meta-analysis containing 15,124 individuals of Hispanic/Latino ethnicity. The horizontal line represents

the genome-wide significance threshold of (P = 5E-08). SNPs mapping to 6 loci exceeded the GWAS threshold for

significance.

https://doi.org/10.1371/journal.pone.0217796.g001

Fig 2. Transethnic comparison of QRS effect sizes for Hispanic/Latino SNPs. Comparison of effect sizes and 95%

confidence intervals for the 9 index SNPs that were genome-wide significant in the Hispanic/Latino QRS duration

GWAS, and the effect sizes for corresponding SNPs in the European and African American GWAS. SNP rs10428132

was not directly measured in the European or African American studies, but instead a SNP in perfect LD (r2 = 1) was

used (rs6800541). Other SNPs that were not directly measured in Europeans or African Americans are not presented

(rs62241190, rs9856387, rs3176326, and rs16946539). � Refers to SNPs where the difference in effect size between two

ethnic groups was significant at the Bonferroni corrected P-value. Two SNPs showed larger effects in Hispanics/

Latinos than in European-descent individuals: rs3922844 in SCN5A and rs4842438 in SYT1. See S7 Table for

additional details.

https://doi.org/10.1371/journal.pone.0217796.g002
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Hispanics/Latinos is entirely absent in Europeans and African Americans (S4E Fig). The lack

of associations among European and African descent individuals is not explained by lack of

power from a smaller sample size or lower MAF (European MAF = 0.06; African MAF = 0.20;

Hispanic/Latino MAF = 0.07).

SCN5A-SCN10A. The most significant association with QRS duration was found in chro-

mosome region 3p22 (rs3922844) at locus 1, bridging SCN5A and SCN10A, two adjacent car-

diac sodium-channel genes (Fig 3). This SNP had previously been found to be genome-wide

significant among European and African American descent individuals (S5 and S6 Tables).

Similar to our findings in Hispanics/Latinos, rs3922844 is the most significantly associated

QRS SNP in African Americans (Fig 3). In contrast, among European-descent individuals, the

strongest SNP association (rs1601957) resides with an intron of the SCN10A gene. The effect

size of rs3922844 in Hispanics/Latinos is statistically larger than in Europeans (1.03 ms vs 0.56

ms decrease in QRS duration, respectively, P for difference = 5.8x10-5), and is closer to the

effect size seen among African Americans (0.94 ms, Fig 3 and S5–S7 Tables). Conditional anal-

yses at the SCN5A-SCN10A locus among Hispanics/Latinos revealed three additional indepen-

dent genome-wide significant secondary signals (Table 1). Two of the secondary index SNPs

(rs62241190 and rs9856387) were not tested in either the European or African American

GWAS, because those analyses were based on HapMap rather than 1000 Genomes imputation.

There are no SNPs in these two populations that are in high LD (r2>0.75) with rs62241190

and rs9856387. Therefore, whether these SNPs are also significantly associated with QRS dura-

tion among non-Hispanic/Latino groups is unknown.

Additional Hispanic/Latino associations in known loci. Three additional previously dis-

covered SNP-QRS associations were also found in Hispanics/Latinos. These include intronic

SNPs within CDKN1A and VTI1A, and an intergenic SNP near HAND1. While the Hispanic/

Latino index SNP in CDKN1A (rs3176326) was not directly evaluated in the European or

African American GWAS, it was in high LD with a SNP that had been found to be highly

Fig 3. Regional association plots of SCN5A-SCN10A. A (top-left)–Hispanic/Latino GWAS. B (top right)–European

GWAS. C (bottom left)–African American GWAS. Plots created with LocusZoom software.[20] The most significant

SNP identified in the Hispanic Latino and African American GWAS was rs3922844 in SCN5A. The most significant

SNP in the European GWAS was rs6801957 in SCN10A.

https://doi.org/10.1371/journal.pone.0217796.g003
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significant in the previous European ancestry GWAS (r2 = 0.71 with rs9462210). Interestingly,

a conditional analysis of the CDKN1A locus revealed a suggestive secondary signal located in

an intron of SPRK1 approximately 1 Mb upstream from the primary CDKN1A signal

(rs2395642, P = 4.58x10-6 in conditional analyses; Table 1 and S4C Fig). The index SNP in

VTI1A (rs7906312) is a novel SNP within a known locus, but it is not in high LD with the pre-

viously known SNP associated with QRS duration in Europeans (S5 Table and S4D Fig). Find-

ings for HAND1 (rs13165478) show that five SNPs in the region (all in very high LD with each

other) were significantly associated with QRS duration in this 1000 Genomes imputation anal-

ysis. No other SNPs had near significant associations. This same haplotype was also identified

as significant among European descent individuals (S4B Fig).

Transethnic analyses

Generalization of previously known SNPs to Hispanics/Latinos. We examined 32 index

SNPs from published GWAS analyses (27 European,1 African-American, 2 East Asian, and 2

from a meta-analysis of the European and African American GWAS results) for association

with QRS duration among Hispanics/Latinos[11, 13, 18] (S8 Table, Fig 4). Of the 32 previously

identified independent SNPs, 27 generalized in Hispanics/Latinos (r-value <0.05). These

included 26 of the 27 SNPs from the European GWAS, with rs1362212 as the exception (S8

Table).

Effect size comparisons. We then the effect sizes of the independent index SNPs identi-

fied in Hispanic/Latino, European descent, and African descent populations (using the current

analysis for Hispanic/Latinos, and published meta-analyses for European and African descent

individuals; Figs 2 and 4). Not all Hispanic/Latino SNPs were available in European and Afri-

can-descent individuals, due to differences in imputation sets (HapMap imputation in those of

European and African descent versus 1000 genomes imputation in the current analysis).

Hence, there are missing European and African-descent data for 4 SNPs, because 3 had no

proxy SNP in high LD (r2>0.9) with the index Hispanic/Latino SNP, and one was monomor-

phic in European and African-descent populations. After Bonferroni correction, 4 of the 29

independent SNPs showed evidence of significant differences in genotype-phenotype effect

sizes (Figs 2 and 4, S7 Table).

Fig 4. Transethnic comparison of QRS effect sizes for previously known SNPs. Comparison of effect sizes and 95%

confidence intervals for 28 previously discovered SNPs for QRS duration across European, Hispanic/Latino, and

African American GWAS results. Findings are largely similar across ethnic groups. � Refers to SNPs where the

difference in effect size between two ethnic groups was significant at the Bonferroni corrected P-value. See S7 Table for

additional details.

https://doi.org/10.1371/journal.pone.0217796.g004
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Cross phenotype analyses

The 9 index SNPs identified in the Hispanic/Latino QRS duration GWAS were also examined

for their association with other ECG phenotypes: QT duration,[21] PR duration,[22] heart

rate,[23] and SDNN[23] (the standard deviation of normal to normal R-R intervals, a measure

of heart rate variability, Table 2, S9 Table). The 4 SNPs in the SCN5A-SCN10A locus were

genome-wide significantly associated with both QT and PR interval duration. SNPs that pro-

long the QRS interval also prolong the PR interval, but conversely shorten the QT interval.

This pattern was also observed in the CDKN1A locus. The index SNPs met the Bonferroni cor-

rected significance level for QT duration, but fell just short of significance for PR duration

(P = 1.44E-03). Intriguingly, the novel MYOCD locus was significantly associated with PR

duration at the Bonferroni corrected significance level, with the SNP that prolongs QRS dura-

tion but shortens PR duration. None of the QRS index SNPs were significantly associated with

heart rate or SDNN.

Functional annotation

The function of all 9 index SNPs was investigated using the HaploReg 4.1 web server.[24]

Functional information was obtained for 3 loci: SCN5A-SCN10A, CDKN1A, and MYOCD.

SNPs in CDKN1A showed evidence for activating transcription in heart tissues, including fetal

heart tissue, the right atrium, the right ventricle, and the left ventricle. SCN5A-SCN10A and

MYOCD SNPs were identified as possible enhancers of transcription in the same heart tissues

(S10 Table).

Discussion

Our GWAS meta-analysis of four cohorts (15,124 individuals) of Hispanic/Latino ethnicity

found 9 index SNPs across 6 loci with genome-wide significant associations with QRS dura-

tion. Two loci were novel (MYOCD and SYT1), and four loci (SCN5A-SCN10A, CDKN1A,

HAND1, and VTI1A) were previously identified in QRS GWAS analyses of European[11] and

African-descent[18] individuals. This is the first GWAS of QRS duration in Hispanics/Latinos,

a genetically admixed group, comprised of European, African, and Native American ancestry

populations, coming from what is now Mexico, Central America, South America, and the

Caribbean islands. Hispanics/Latinos were excluded in prior published QRS duration GWAS,

Table 2. Pleiotropic analyses. Comparison of the effect size and significance level of QRS prolonging index SNPs with QT and PR duration in Hispanics/Latinos. There

was no association of QRS SNPs with heart rate or heart rate variability (SDNN). Only significant results (P<0.05) are shown.

Nearest Genea[19] SNP QRS β (ms) QRS P b PR β (ms) PR P b QT β (ms) QT P b

SCN5A rs62241190 2.46 5.82E-20 4.72 2.90E-12 -3.58 1.83E-09

SCN5A rs3922844 1.03 1.19E-24 3.39 3.57E-11 -1.77 9.52E-16

SCN5A rs9856387 0.76 2.12E-12 1.88 8.90E-12 -1.42 3.43E-09

SCN10A rs10428132 0.79 1.43E-15 3.81 4.89E-53 -1.29 3.04E-09

HAND1 rs13165478 0.68 2.69E-11 - -

CDKN1A rs3176326 1.15 1.54E-19 1.02 1.44E-03 -1.1 8.59E-05

VTI1A rs7906312 0.77 8.14E-10 - -

SYT1 rs4842438 1.04 4.24E-08 - -

MYOCD rs16946539 1.28 1.74E-09 -2.28 1.82E-05 -

aFor the intergenic SNP (rs13165478), the nearest gene was determined by the nearest protein coding gene in base pairs from the National Center for Biotechnology

Information RefSeq database.
bBonferroni corrected significance: P<1.39E-03 for 36 tests

https://doi.org/10.1371/journal.pone.0217796.t002
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and the genetic as well as non-genetic determinants of cardiovascular risk remain under-

examined in this population.[25, 26]

We identified two novel loci associated with QRS duration among Hispanic descent indi-

viduals: MYOCD and SYT1. MYOCD encodes a nuclear protein (myocardin) expressed in car-

diomyocytes and smooth muscle cell-containing tissues. MYOCD has been shown to be

essential for maintaining adult heart function.[27] Mice in which MYOCD is postnatally

knocked down develop dilated cardiomyopathy and fatal heart failure.[28] A genetic study of

Dominican families found evidence that MYOCD was associated with left atrial size.[29]

Recent GWAS studies have found SNPs in MYOCD associated with PR interval duration[30]

and atrial fibrillation[31] in European populations. The index SNP associated with QRS dura-

tion in MYOCD (rs16946539) is more common among Hispanics/Latinos (defined by the Ad

Mixed American 1000 Genomes population, MAF = 0.04) than among any other 1000

Genomes super population, and is monomorphic among European- and African-descent indi-

viduals (European MAF = 0.0; Asian MAF = 0.02; African MAF = 0.0). Therefore, a QRS

GWAS in Hispanics/Latinos is uniquely advantageous in uncovering this genotype-phenotype

association. The finding illustrates one of the main imperatives for conducting genetic studies

in diverse and under-examined populations, both for ECG traits, and for other traits. Because

underlying genetic architecture can differ across racial and ethnic populations, examining new

populations may uncover novel genotype-phenotype associations.

The second novel locus found in this study involves an intronic SNP in SYT1. Interestingly,

a different synaptotagmin gene, SYT10, was previously associated with heart rate.[32] The

SYT1 intronic SNP was not associated with heart rate in our study. It is noteworthy that this

SYT1 SNP showed no evidence of association with QRS among European and African-descent

individuals. Further studies are warranted to validate this novel association in additional His-

panics/Latinos populations.

The most significant association signal was found in and surrounding two voltage-gated

sodium channel genes: SCN5A and SCN10A. Whereas SCN5A is the canonical cardiac sodium

channel responsible for cellular depolarization and enables conduction of the electrical signal,

SCN10A appears to be particularly enriched in the specialized His Purkinje conduction fibers.

[11] Transethnic analyses intriguingly show that the regional association plot for QRS in His-

panics/Latinos more closely resembles African Americans plots than European-descent plots,

with rs3922844 being the most significant SNP in the region among Hispanics/Latinos and

African Americans.

The generalization study of the 28 independent index SNPs from QRS GWAS analyses in

Hispanic/Latino, European, and African ancestry individuals shows remarkable consistency in

the magnitude and direction of the effects overall. Although the genetic architecture of QRS

duration in the three ethnic groups is largely comparable, differences are also present, such as

the larger effect size at rs3922844 among Hispanics/Latinos than among European descent

individuals.

Several limitations deserve consideration. First, our GWAS represents the largest per-

formed in Hispanics/Latinos, but our sample size was nonetheless small. Additional Hispanic/

Latino cohort studies are needed to extend these findings. However, novel associations were

identified, and known associations were confirmed in a new ethnic population, despite the rel-

atively small sample size. Larger sample sizes may reveal more genome-wide significant loci.

For example, a SNP in the previously identified NFIA locus fell just short of genome-wide sig-

nificance in Hispanics/Latinos (P = 5.1x10-8). Furthermore, while we excluded individuals

with QRS durations longer than 120 ms in order to exclude individuals who have conduction

defects and/or bundle branch blocks due to acquired heart disease, interesting genetic associa-

tions may be missed by this approach.
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In conclusion, our findings indicate that the genetics of QRS duration are largely similar

among ethnic groups. However, important differences do exist, illustrated, by the novel

genome-wide significant SNP in MYOCD that is monomorphic in both Europeans and Afri-

can Americans. Our study underscores the importance of conducting genetic studies in diverse

and under-examined populations, such as Hispanics/Latinos, to uncover novel loci.

Materials and methods

Study populations

Primary meta-analysis of individuals with Hispanic/Latino ancestry. Our meta-analysis

included 15,124 participants of self-identified Hispanic/Latino descent from the following four

studies: the HCHS/SOL (n = 11,566), the Multi-Ethnic Study of Atherosclerosis (MESA,

n = 1431), the Starr County Study (n = 582), and the WHI (n = 1545) (see Supplementary

Material for cohort descriptions and S1 Table for baseline characteristics by cohort). Ancestry

was confirmed through principal components analysis, and a small number of genetic outliers

(individuals determined to be of primarily Asian ancestry) were excluded. All participants con-

sented to the use of their genetic information for health-related research purposes.

Comparison with meta-analyses of individuals with European and African ancestry. Com-

parisons of results were made between the Hispanic/Latino meta-analysis, and two published

meta-analyses of QRS duration in individuals of European (n = 40,407) and African American (n =

13,301) ancestries. Details of these studies can be obtained from their original publications.[11, 18]

Electrocardiography

Participants in each of the four cohorts underwent a standard 12-lead ECG by a certified tech-

nician (see S11 Table). Participants were excluded from further analysis if they had any of the

following: poor quality ECGs, atrial flutter or fibrillation, a ventricular paced rhythm, QRS

duration�120 ms, Wolff-Parkinson-White on ECG, a history of previous myocardial infarc-

tion or heart failure, or were taking class I or class III antiarrhythmic medications.

Genotyping and imputation

HCHS/SOL participants were genotyped on an Illumina custom array that included the Illu-

mina Omni 2.5M array (HumanOmmni2.5-8v1-1) and an additional ~150,000 SNPs. The

additional SNPs were chosen to contain markers relevant to Hispanic/Latino ancestry, mark-

ers informative of Native American ethnicity, and significant loci from previous association

studies.[26] MESA, WHI, and Starr County participants were genotyped using the Affymetrix

Genome-Wide Human SNP Array 6.0. SNP genotyping inclusion criteria varied slightly across

studies. After individual cohort genotype QC, imputation based on the 1000 Genomes phase 1

reference panel[33] was performed resulting in roughly 38 million SNPs (S11 Table).

Statistical analysis

Genome wide association. To assess the association between genotype and QRS duration,

individual cohort studies used additive genetic linear regression models, either in a regression

model (MESA, WHI, Starr County) or a mixed model (HCHS/SOL, to account for relatedness

and shared environment between individuals). The two methods estimate the same effect.

Models were adjusted for age, sex, heart rate, systolic blood pressure, BMI, height, study site/

region, and principal components of genetic ancestry. After we received the results from the

studies, we applied an individual cohort QC filter, which excluded SNPs with low imputation

quality (<0.30) or small effective sample sizes for each individual SNP (effN<30), with effN =
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2 x MAF x (MAF-1) x N x Imputation Quality; where N is the number of participants. Each

cohort contained between ~6M and ~20M imputed SNPs, after applying this filter.

Meta-analysis. Results were combined using fixed-effects inverse variance meta-analysis

using the METAL software package,[34] using genomic control for summary statistics to

reduce test-statistic inflation. Study heterogeneity was evaluated using the Cochran Q test.

Approximately 21M unique SNPs were contained in the meta-analysis. Results were consid-

ered genome-wide significant for P-values < 5x10-8. Secondary signals were identified using

iterative rounds of conditional analysis, with adjustment for additional Hispanic/Latino index

SNPs in the model, until there were no SNPs found to be genome-wide significant.

Transethnic generalization analysis. Previous meta-analyses in European, East Asian,

African American ancestry populations identified a total of 32 genome-wide significant SNPs.

To assess whether these significant findings generalize to Hispanics/Latinos, we used the

method of Sofer et al.[35] An association is considered generalized if a significant effect in the

same direction exists in both the non-Hispanic/Latino discovery population as well as the His-

panic/Latino population. This method controls the false discovery rate (FDR) of the generali-

zation null hypotheses, and generates an r-value for each SNP (with r-values < 0.05 showing

evidence that an association is generalizable under FDR control at the α = 0.05 level.)

Transethnic effect size analysis. Comparisons of effect size differences of SNPs on QRS

duration across the Hispanic/Latino, European, and African American GWAS were done

using a procedure analogous to Welch’s t-tests for each of the 33 independent SNPs that were

identified as having a primary or secondary independent association in any of those studies.

For the purposes of Bonferroni correction, there were 29 independent SNPs available for test-

ing in all 3 cohorts. Some SNPs were not available in all cohorts due to use of different imputa-

tion panels. Comparisons for 29 SNPs among 3 studies resulted in 87 tests. Therefore,

differences in effect size were determined to be significant when P<5.75E-04.

Cross phenotype analysis. Index SNPs discovered in the QRS duration analysis were also

examined for associations with other ECG phenotypes, including QT, PR, heart rate, and

SDNN. These GWAS efforts were based upon the same underlying Hispanic/Latino cohorts as

the QRS duration GWAS. However, due to different inclusion/exclusion criteria, differences

in the study samples do exist between studies. Full details of these studies can be obtained

from their original publications.[21–23] Significance for these other traits exceeded either: a

genome-wide significance threshold (P<5.0E-08); Bonferroni corrected significance

(P<1.39E-03 for 36 tests); or nominal significance (P<0.05).

Functional annotation

The HaploReg v4.1 online web resource was used to functionally annotate genome-wide sig-

nificant SNPs.[24] HaploReg utilizes data obtained from the ENCODE[36] and RoadMap

projects,[37] to give information on how SNPs might alter gene expression in diverse tissue

types. We restricted our analysis to only specific heart tissues—namely, fetal heart tissue, the

right atrium, the right ventricle, and the left ventricle. Based on the chromatin-15 state model,

we summarized the potential function of SNPs in the genome-wide significant loci in each of

the different heart tissues. For each loci, we examined primary SNPs, secondary signal SNPs,

and all other SNPs in high LD (r2>0.80) with these SNPs. The LD structure pattern used for

this analysis was the 1000 Genomes AMR Phase-1 super-population.

Supporting information

S1 Fig. QQ plot of Hispanic/Latino QRS duration GWAS meta-analysis.
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S2 Fig. Individual Cohort QQ plots.

(DOCX)

S3 Fig. Forest plots showing 95% confidence intervals of the effect size of each Hispanic/

Latino index SNP on QRS duration in milliseconds across each contributing study and the

combined meta-analysis.

(DOCX)

S4 Fig. Regional association plots showing all results in the European, Hispanic/Latino,

and African American QRS duration GWAS surrounding each of the Hispanic/Latino sig-

nificant loci. Plots created with LocusZoom software.[21] The index SNP in each figure is

labeled and colored purple. All other SNPs in the region are plotted at their significance levels.

The color of each SNP corresponds to the linkage disequilibrium (r2) between the plotted SNP

and the index SNP.

(DOCX)

S5 Fig. Regional association plots for the HCHS/SOL cohort for each of the index SNPs

which was imputed rather than being directly genotyped in the cohort. Plots created with

LocusZoom software.[21] Each plot shows all GWAS results surrounding the index SNP. The

index SNP in each figure is labeled and colored purple. All other SNPs in the region are plotted

at their significance levels. The color of each SNP corresponds to the linkage disequilibrium

(r2) between the plotted SNP and the index SNP. SNPs plotted as circles were directly geno-

typed, and SNPs plotted as X’s were imputed.

(DOCX)

S1 Table. Participant characteristics from the studies contributing to the meta-analysis.

(DOCX)

S2 Table. Heterogeneity tests for index SNPs across the participating cohorts.

(DOCX)

S3 Table. Summary of genetic imputation of index SNPs across the participating cohorts.

(DOCX)

S4 Table. Coded allele frequencies for index SNPs significantly associated with QRS dura-

tion among participants of Hispanic/Latino ancestry (n = 15,124).

(DOCX)

S5 Table. Index SNPs in Hispanic/Latino QRS duration GWAS (n = 15,124) and corre-

sponding SNPs in the European QRS duration GWAS (n = 40,407).

(DOCX)

S6 Table. Index SNPs in Hispanic/Latino QRS duration GWAS (n = 15,124) and corre-

sponding SNPs in the African American QRS duration GWAS (n = 13,301).

(DOCX)

S7 Table. Significant results for Welch’s t-tests of differences in effect sizes at Hispanic/

Latino index SNPs across Hispanic/Latino, European, and African American GWAS

results.

(DOCX)

S8 Table. Generalization of the associations in Hispanic/Latino QRS duration GWAS

meta-analysis (n = 15,124) for previously discovered loci from QRS duration GWAS
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among European (n = 40,407), African American, (n = 13,301), and East Asian (n = 6805)

populations, and a European-African America meta-analysis (n = 53,708).
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S9 Table. Associations of QRS duration index SNPs with other ECG phenotypes (QT dura-

tion, PR duration, Heart Rate, and Heart Rate Variability) in the same Hispanic/Latino

study population.

(DOCX)

S10 Table. Summary of functional annotations in heart tissues for QRS duration signifi-

cant loci in the HaploReg v4.1 database.
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S11 Table. ECG and genotype measurement methods for the participating cohorts.
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S1 Appendix. Descriptions of cohort studies used in analysis and references for supporting

information.
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