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Abstract: Cerebral venous thrombosis (CVT), a rare thrombotic event that can cause serious neu-
rologic deficits, has been reported after some ChAdOx1 nCoV-19 vaccinations against coronavirus
disease 2019 (COVID-19). However, there are few reports of associations between COVID-19 mRNA
vaccination and CVT. We retrospectively analyzed CVT occurrence, time of onset after vaccina-
tion, outcomes (recovered/not recovered), and death after COVID-19 vaccination from adverse
drug reactions (ADR) reports in VigiBase. A disproportionality analysis was performed regarding
COVID-19 mRNA vaccines (BNT162b2 and mRNA-1273) and the ChAdOx1 nCoV-19 vaccine. We
identified 756 (0.07%) CVT cases (620 (0.05%) after BNT162b2 and 136 (0.01%) after mRNA-1273) of
1,154,023 mRNA vaccine-related ADRs. Significant positive safety signals were noted for COVID-19
mRNA vaccines (95% lower end of information component = 1.56; reporting odds ratio with 95%
confidence interval (CI) = 3.27). The median days to CVT onset differed significantly between the
BNT162b2 and ChAdOx1 nCoV-19 vaccines (12 (interquartile range, 3–22) and 11 (interquartile range,
7–16), respectively; p = 0.02). Fewer CVT patients died after receiving mRNA vaccines than after
receiving the ChAdOx1 nCoV-19 vaccine (odds ratio, 0.32; 95% CI, 0.22–0.45; p < 0.001). We noted a
potential safety signal for CVT occurrence after COVID-19 mRNA vaccination. Therefore, awareness
about the risk of CVT, even after COVID-19 mRNA vaccination, is necessary.

Keywords: adverse drug reaction; COVID-19; COVID-19 vaccines; venous thrombosis; vaccines

1. Introduction

Coronavirus disease 2019 (COVID-19) is spreading rapidly [1–5]. Herd immunity is
important for the prevention and suppression of the spread of COVID-19, and vaccination
is an essential requirement for herd immunity [6]. Two mRNA-based vaccines, BNT162b2
(Pfizer–BioNTech) and mRNA-1273 (Moderna), and a recombinant adenoviral vector vaccine,
ChAdOx1 nCoV-19 (AstraZeneca), are currently being administered globally for COVID-19
vaccination [7,8]. Although these vaccines are effective against COVID-19 infection due to
their ability to neutralize antibody formations, several side effects related to COVID-19 vacci-
nation have been reported [9–12]. Notably, COVID-19 vaccination can cause thrombosis and
thrombocytopenia through a mechanism related to the production of pathologic antibodies to
platelet factor 4 (PF4), leading to systemic venous thrombosis [12,13].

Cerebral venous thrombosis (CVT) is defined as the presence of a blood clot in the
cerebral veins or dural venous sinuses. CVT is accompanied by headaches, stroke-related
symptoms, and seizures [14]. Hematologic disorders, inflammatory diseases, pregnancy,
malignancy, hormonal abnormality, and meningitis are the main associative or risk factors
for the development of CVT [14]. The risk factors of CVT after COVID-19 vaccination were
similar, with the exception that allergic reactions to the vaccine components and platelet
abnormalities were additional factors [15]. Since the initiation of COVID-19 vaccination, cases
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of CVT associated with COVID-19 vaccines have been reported, with some being fatal [16–20].
Because CVT is a rare disease, case reports or case series of CVT after COVID-19 vaccination
are very rare. Moreover, because these reports mainly focus on unusual or interesting cases, it
is necessary to investigate the effect of COVID-19 vaccination on real-world CVT occurrence.
In addition, although case reports and series have been reported on the association between the
ChAdOx1 nCoV-19 vaccine and CVT [16–20], there have been few studies on the associations
between mRNA COVID-19 vaccines and CVT.

We hypothesized that COVID-19 vaccines, particularly mRNA-based COVID-19 vac-
cines, are related to an increased risk of CVT in real-world settings. Therefore, we aimed to
perform a disproportionality analysis to investigate the potential safety signals of mRNA-
based COVID-19 and ChAdOx1 nCoV-19 vaccines and the clinical characteristics of CVT
following these vaccinations using the World Health Organization’s (WHO) global phar-
macovigilance database of individual case safety reports: VigiBase.

2. Materials and Methods
2.1. Study Design and Data Sources

In our study, a disproportionality analysis of adverse drug reactions (ADRs) relative to
mRNA-based COVID-19 vaccines and the ChAdOx1 nCoV-19 vaccine was performed using
individual case safety reports in VigiBase, WHO’s global deduplicated database, from more
than 130 countries [21]. VigiBase is managed by the Uppsala Monitoring Centre (UMC) and
has collected information about medication-related ADRs from national pharmacovigilance
centers in all countries since 1967. Information about ADRs mainly comes from physicians
and various other sources (pharmacists, pharmaceutical companies, or government bodies,
such as ministries of food and drug safety). Currently, VigiBase officially provides ADR
data for all manufacturers of COVID-19 vaccines but not for each type of COVID-19
vaccine. Furthermore, VigiBase makes no recommendations for comparisons of drugs and
states that there are no options for drug–drug or vaccine–vaccine comparisons. Therefore,
we analyzed individual case safety reports to identify potential safety signals for CVT
after exposure to mRNA-based COVID-19 vaccines and the ChAdOx1 nCoV-19 vaccine
compared with the entire database as the control group. Studies using this anonymized,
prospectively updated electronic database were approved by the institutional review board
of the Ewha Womans University Seoul Hospital (EUMC-2021-08-021). Informed consent
was waived because all data were fully anonymized.

2.2. Procedures

In our observational case–control study, we extracted all ADR cases of CVT related to
mRNA-based COVID-19 vaccines and the ChAdOx1 nCoV-19 vaccine reported in VigiBase
using the following preferred terms for CVT in the Medical Dictionary for Drug Regulatory
Activities from 20 October 2021 [22]: “transverse sinus thrombosis”, “superior sagittal
sinus thrombosis”, “cerebral venous sinus thrombosis”, and “cerebral venous thrombosis”.
Information was obtained about age, sex, type of vaccine, time to CVT onset, reporting
continents, seriousness, and final outcomes. Seriousness was defined as resulting in
significant disability/incapacity, requiring hospitalization, life-threatening, and death. To
confirm the differences in the occurrence of CVT by vaccine, the daily numbers of CVT
cases were compared over four weeks among the three COVID-19 vaccines.

2.3. Disproportionality Analysis

VigiBase uses disproportionality analysis, a case/noncase analysis, to compare ADRs
from the entire database with ADRs after COVID-19 vaccinations to detect potential safety
signals for vaccine-related ADRs. Disproportionality analysis compares the proportion
of ADRs reported for a particular drug to the proportion of ADRs reported in the entire
database. If the proportion of ADRs related to COVID-19 vaccinations is greater than
those associated with subjects who have not received COVID-19 vaccinations, this suggests
potential safety signals of ADRs for COVID-19 vaccination.
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Disproportionality is evaluated by calculating the information component (IC) or
reporting odds ratio (ROR) using the entire database as a comparator. Detailed methods
have been described for the calculation of IC [23,24]. IC calculation was performed using a
Bayesian confidence propagation neural network developed and validated by the UMC [21].
Thus, ADR signals for a specific drug can be detected by comparing the possibility of
differences in the associated expected and observed drug ADRs from the entire database.
IC025 is the 95% lower end of the IC. A positive IC025 value (> 0) is the threshold for statistical
signal detection as defined by the UMC [25]. For sensitivity analysis, we also investigated
RORs, which were frequently utilized as potential safety signals before the concept of IC
was established [26]. The lower end of the 95% confidence interval (CI) ≥ 1 of RORs with
the entire database as the control was defined as the ADR signal detection threshold [27].
Subgroup analyses were performed for the mRNA-based COVID-19 vaccines and the
ChAdOx1 nCoV-19 vaccine. As recommended by VigiBase, BNT162b2 and mRNA-1273
were analyzed together as mRNA-based COVID-19 vaccines to reduce selection bias and
due to the small sample size.

2.4. Statistical Analysis

The characteristics of the subjects were summarized by descriptive statistics; pro-
portions were used for categorical variables and medians with interquartile ranges for
non-normally distributed continuous variables, such as time to onset. Categorical variables
were compared using the chi-square test or Fisher’s exact test. Differences in time to onset
among vaccines were analyzed using the Kruskal–Wallis test with a Bonferroni’s post hoc
analysis for intergroup comparison. Two-sided p ≤ 0.05 were considered statistically signif-
icant. Statistical analyses were performed using R software, version 3.3.3 (R Foundation for
Statistical Computing, Vienna, Austria), and SAS 9.4 (SAS Inc., Cary, NC, USA).

3. Results

On 30 September 2021, 1513 ADR cases (0.09%) of CVT out of 1,730,636 reports were
observed for the mRNA-based COVID-19 vaccines (BNT162b2 and mRNA-1273) and the
ChAdOx1 nCoV-19 vaccine. Of these, ADRs of CVT were reported as 756 (0.07%) out
of 1,154,023 cases for the mRNA-based COVID-19 vaccines (620 (0.05%) for BNT162b2
and 136 (0.01%) for mRNA-1273) and 757 (0.13%) out of 577,124 cases for the ChAdOx1
nCoV-19 vaccine.

The characteristics of the patients, locations, seriousness, time to onset of CVT after
vaccination, and the outcomes of all cases and cases grouped by vaccination are described
in Table 1. CVTs were commonly reported in patients aged 18–44 and 45–64 years, more
frequently in women, and mainly in Europe and America. In dichotomized age groups of
65 years, there was no significant difference in the reports of CVT between men and women
(p = 0.16). The median time to onset (days) of CVT was significantly different between
the BNT162b2 and ChAdOx1 nCoV-19 vaccines (median 12 (interquartile range 3–22) vs.
median 11 (interquartile range 7–16), respectively, p = 0.02). The differences in the time to
onset within 28 days of vaccination, grouped by vaccine, are presented in Figure 1. There
were significant differences in the time to onset among all vaccines (p = 0.03). However, post
hoc analysis revealed significant differences only between the BNT162b2 and ChAdOx1
nCoV-19 vaccines (p = 0.02). Supplementary Figure S1 shows the daily numbers of CVT
cases and the cumulative frequency for all vaccines for the entire period. The time to onset
of CVT was significantly earlier in the age group less than 65 years than that in people older
than 65 years (95% CI, −10.82–−2.76; p = 0.001), but there was no significant difference
between sexes (95% CI, −0.06–6.33; p = 0.05) (Figure S2).
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Table 1. Demographics and characteristics of reported cases of cerebral venous thrombosis according
to type of COVID-19 vaccine.

Characteristics Total
(N = 1513)

BNT162b2
(N = 620)

mRNA-1273
(N = 136)

ChAdOx1 nCoV-19
(N = 757)

Age, years
≤11 2 (0.1) 0 (0.0) 0 (0.0) 2 (0.3)

12–17 12 (0.8) 12 (1.9) 0 (0.0) 0 (0.0)
18–44 479 (31.7) 161 (26.0) 54 (39.7) 264 (34.9)
45–64 482 (31.9) 129 (20.8) 40 (29.4) 313 (41.3)
65–74 185 (12.2) 60 (9.7) 26 (19.1) 99 (13.1)
≥75 124 (8.2) 71 (11.5) 11 (8.1) 42 (5.5)

Unknown 229 (15.1) 187 (30.2) 5 (3.7) 37 (4.9)

Sex
Male 574 (37.9) 229 (36.9) 65 (47.8) 280 (37.0)

Female 928 (61.3) 386 (62.3) 71 (52.2) 471 (62.2)
Unknown 11 (0.7) 5 (0.8) 0 (0.0) 6 (0.8)

Continentals
Africa 1 (0.1) 1 (0.2) 0 (0.0) 0 (0.0)

Americas 447 (29.5) 325 (52.4) 98 (72.1) 24 (3.2)
Asia 7 (0.5) 3 (0.5) 0 (0.0) 4 (0.5)

Europe 1006 (66.5) 286 (46.1) 38 (27.9) 682 (90.1)
Oceania 52 (3.4) 5 (0.8) 0 (0.0) 47 (6.2)

Seriousness
Yes 1439 (95.1) 568 (91.6) 129 (94.9) 742 (98.0)
No 74 (4.9) 52 (8.4) 7 (5.1) 15 (2.0)

Time to onset
(day) 12 (5.0–21.0) 12 (3.0–22.0) 15 (4.5–27.5) 11 (7.0–16.0)

Outcome
Recovered 267 (17.6) 76 (12.3) 21 (15.4) 170 (22.5)

Recovered with
sequelae 316 (20.9) 175 (28.2) 53 (39) 88 (11.6)

Recovering 369 (24.4) 182 (29.4) 38 (27.9) 149 (19.7)
Not recovered 319 (21.1) 101 (16.3) 13 (9.6) 205 (27.1)

Death 184 (12.2) 44 (7.1) 5 (3.7) 135 (17.8)
Unknown 58 (3.8) 42 (6.8) 6 (4.4) 10 (1.3)

Data are presented as numbers (%) or medians (interquartile range). Seriousness: resulting in significant disabil-
ity/incapacity, requiring hospitalization, life-threatening, and death. Time to onset (days): calculated time to
onset of cerebral venous thrombosis. Based on vaccination date and adverse drug reaction start date, expressed as
medians and interquartile ranges. Unknown: cases for which information was unavailable from VigiBase.

More than 90% of the patients were in serious condition, and 33% did not recover or
died. The outcome of death after CVT was significantly higher in patients who received
the ChAdOx1 nCoV-19 vaccine than in those who received the mRNA-based COVID-19
vaccines (odds ratio (OR) = 0.32; 95% CI, 0.22–0.45; p < 0.001). In pairwise comparisons
of the different types of vaccines, vaccination with ChAdOx1 nCoV-19 more often led to
death after CVT than vaccination with BNT162b2 (OR = 0.35; 95% CI, 0.25–0.50; p < 0.001)
or mRNA-1273 (OR = 0.18; 95% CI, 0.07–0.44; p < 0.001) (Supplementary Table S1).

A significant signal of disproportionality of CVT was noted for all COVID-19 vac-
cines (IC025 = 2.01; ROR025 = 5.14) and separately for the mRNA-based COVID-19 vac-
cines (IC025 = 1.56; ROR025 = 3.27) and the ChAdOx1 nCoV-19 vaccine (IC025 = 2.56;
ROR025 = 6.70) with respect to IC025 and ROR (Figure 2).
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Figure 2. Disproportionality analysis between mRNA-based vaccines and the ChAdOx1 nCoV-19
vaccine to compare cerebral venous thrombosis occurrence in vaccinated individuals with the entire
VigiBase database. The information component (IC) and reporting odds ratio (ROR) were calculated
for the disproportionality analysis. In this forest plot, overall COVID-19 vaccines showed significantly
positive associations with cerebral venous thrombosis by IC025 (2.01) and ROR025 (5.14).
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4. Discussion

The key findings of our study of CVT cases from VigiBase reported by 130 countries
are that the potential safety signal for the development of CVT was noted in mRNA-
based COVID-19 vaccines as well as the ChAdOx1 nCoV-19 vaccine compared with the
entire dataset.

There are few reports on CVT after mRNA-based COVID-19 vaccination [17,28]. These
studies suggested that CVT occurrences related to mRNA-based COVID-19 vaccines may be
due to endothelial dysfunction caused by spike glycoprotein interactions with endothelial
cells resulting in immunothrombosis. If the spike glycoprotein of mRNA-based COVID-19
vaccines binds to the angiotensin-converting enzyme 2 receptor, several inflammatory and
thrombogenic molecules, such as leukocyte chemotactic factors, cell adhesion molecules
(vascular cell adhesion molecule 1 and intercellular adhesion molecule 1), and procoagulant
cytokines, can be activated. This mechanism may cause endothelial dysfunction, particu-
larly in brain endothelial cells [29], which could contribute to a significant disruption of
brain endothelial barrier integrity, ultimately promoting thrombus formation. Moreover,
a previous study suggested that the spike glycoprotein may induce platelet aggregation
and activation and eventually result in thrombus formation [30]. Although the period
of time in which the spike glycoprotein persists has not been clearly established, several
studies have suggested that it may last for weeks. Thus, spike glycoprotein-related platelet
activation triggered by mRNA-based COVID-19 vaccines could explain the trend of CVT
occurrences after mRNA-based COVID-19 vaccinations [30,31]. Furthermore, in line with
these previous case reports, our results showed that CVT occurred mainly within a few
weeks of mRNA-based COVID-19 vaccinations.

In agreement with the well-known relationship between the ChAdOx1 nCoV-19 vac-
cine and CVT [32,33], our results showed a potential safety signal of the ChAdOx1 nCoV-19
vaccine for CVT. Additionally, in one recent study, about 90% of CVT cases following
COVID-19 vaccination occurred after the administration of the ChAdOx1 nCoV-19 vac-
cine [15]. The ChAdOx1 nCoV-19 vaccine can cause systemic thromboembolism due to
thrombosis with thrombocytopenia syndrome [34]. The Food and Drug Administration
has found a causal link between the adenovirus vector COVID-19 vaccine and thrombosis
with thrombocytopenia syndrome and has provided updates on rare clotting or thrombotic
events following adenovirus vector COVID-19 vaccination, primarily in young women [35].
Clinical courses and laboratory test results suggest that the pathogenesis of thrombosis
with thrombocytopenia syndrome is similar to that of autoimmune heparin-induced throm-
bocytopenia. Autoimmune heparin-induced thrombocytopenia is caused by the formation
of antibodies to PF4, a component of platelet alpha granules released during platelet activa-
tion. Unlike classical heparin-induced thrombocytopenia, endogenous polyanions, such
as chondroitin sulfate or polyphosphate, may trigger PF4 antibody formation in autoim-
mune heparin-induced thrombocytopenia [19,35]. Other previous studies and reports by
the European Medicines Agency have demonstrated that an adverse immune reaction
called immunosenescence may occur in young people, leading to disseminated intravas-
cular coagulation-like blood changes after ChAdOx1 nCoV-19 vaccination [36–39]. Our
research supports the evidence for the risk of CVT after ChAdOx1 nCoV-19 vaccination
with real-world data.

Interestingly, our results showed that there was a difference in the onset of CVT after
exposure to the mRNA-based COVID-19 vaccines and ChAdOx1 nCoV-19 vaccine. The me-
dian values of 13 and 11 days for the time to onset of CVT for the mRNA-based COVID-19
vaccines and the ChAdOx1 nCoV-19 vaccine, respectively, were similar. However, the
mRNA-based COVID-19 vaccines had the highest number of CVT cases in the first week
after vaccination, after which the incidence decreased gradually. In contrast, the ChAdOx1
nCoV-19 vaccine showed the highest incidence of CVT in the second week after vaccination
and a sharp decrease thereafter. These timelines suggest that the thrombosis mechanisms
of these vaccines differ. The mRNA-based COVID-19 vaccines, which target the spike
glycoprotein of SARS-CoV-2, directly induce intracellular production of the spike protein.



Vaccines 2022, 10, 799 7 of 10

This spike protein plays a key role in the initiation of the immune response, which may
last for up to a few weeks. CVT occurred from 1 to 9 days after vaccination [17,28], and the
neutralizing antibody titer after vaccination was maintained for 35 to 119 days [40,41]. This
evidence supports a wide temporal distribution of CVT occurrence related to mRNA-based
COVID-19 vaccination in our study. In contrast, the formation of PF4 antibodies and PF4–
polyanion complexes in vaccine-induced immune thrombotic thrombocytopenia, the most
well-known thrombotic complication after ChAdOx1 nCoV-19 vaccination, takes time [11].
A type-II heparin-induced thrombocytopenia that develops via a similar mechanism occurs
5 to 14 days after exposure due to the time required for the formation of antibodies [42].
In another study of the ChAdOx1 nCoV-19 vaccine, CVT was reported 5 to 30 days (me-
dian 14 days) after vaccination [43]. Regardless, it is possible that other mechanisms of
thrombosis have not yet been elucidated.

In this study, the time until CVT occurrence after vaccination was significantly different
between the BNT162b2 and ChAdOx1 nCOV-19 vaccines but not between the mRNA-1273
and ChAdOx1 nCOV-19 vaccines. Various factors, such as vaccine components or immune
responses, might cause this difference between mRNA vaccines. However, our study could
not provide acceptable evidence related to these differences. Recently, several studies that
compared the BNT162b2 and mRNA-1273 vaccines reported the possibility of differences in
clinical responses or outcomes in addition to SARS-CoV-2 antibody responses [44,45]. The
rates of breakthrough infections and 60-day hospitalizations were significantly lower in
those vaccinated with mRNA-1273 compared with BNT162b2; this result suggests that these
vaccines may act via different mechanisms [45]. Further studies on the specific mechanism
of CVT occurrence after mRNA vaccination and prospective studies on clinical outcomes
are needed.

In our study, the number of deaths in CVT patients was lower after mRNA vaccination
than after vaccination with ChAdOx1 nCoV-19. A previous study showed that significant
risk factors for mortality due to thrombosis with thrombocytopenia syndrome after ChAdOx1
nCoV-19 vaccination were intracerebral hemorrhage and CVT [46]. However, there have
been few studies on CVT occurrence after mRNA vaccination and CVT-related mortality.
Furthermore, it is difficult to present accurate evidence because VigiBase does not provide
information on various parameters related to mortality, such as laboratory data, brain-imaging
findings, or the occurrence of systemic thromboembolism.

Our study has limitations. First, if the national drug-monitoring center of a country
does not report ADRs, these cases will not be present in VigiBase. However, VigiBase in-
cludes rare ADRs and generalized ADR information from more than 130 countries. Second,
VigiBase does not provide any validation of laboratory findings, radiologic information, or
accuracy of diagnosis. Information on whether CVT occurred after the first or the second
vaccine dose was also not included. Third, vaccine-induced immune thrombotic thrombocy-
topenia received major public attention after April 2021 [13], and this may have affected the
increased reports of CVT cases after COVID-19 vaccination. Lastly, as mentioned above, it
is difficult to directly compare outcome parameters, including death, between the different
types of COVID-19 vaccines in VigiBase.

5. Conclusions

Our study demonstrated a potential safety signal for occurrence of CVT for COVID-19
mRNA vaccination. It is necessary to be aware of the risk of CVT occurrence, even after
COVID-19 mRNA vaccination.



Vaccines 2022, 10, 799 8 of 10

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/vaccines10050799/s1. Figure S1: The daily numbers of cerebral
venous thrombosis cases and the cumulative frequency of occurrence for all vaccines for the entire
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