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Objectives: Vestibular migraine (VM) is a common vestibular disorder, and familial

aggregation of VM with autosomal-dominant inheritance has been described, which

supports a genetic background. This study aimed to describe the clinical phenotype

of a family with VM, and identify a candidate gene for VM.

Methods: We recruited six individuals (four affected and two unaffected) from three

consecutive generations of a Korean family with VM, and performed whole-exome

sequencing to search for candidate genes.

Results: All affected individuals presented with recurrent vertigo, headache, and

nausea/vomiting that fulfilled the diagnostic criteria of VM. Two individuals also

experienced transient hemiparesis or dysarthria during the episodes. The symptoms

were triggered by physical or emotional stress. Interictal examinations showed uni- or

bi-directional horizontal gaze-evoked nystagmus in three of the individuals. They had no

causative mutations in genes causing familial hemiplegic migraine or episodic ataxia.

Through whole-exome sequencing from three affected individuals, we identified a

nonsense mutation c.3526C>T in TRPM7 that encodes a cation channel selective to

Ca2+ and Mg2+.

Conclusions: Alterations in intracellular Ca2+ and Mg2+ homeostasis by TRPM7

mutation may contribute to the development of the VM phenotype. Our result suggest

that TRPM7 is a novel candidate gene for VM.

Keywords: vestibular migraine, genetics, whole-exome sequencing, TRPM7 channel, ion homeostasis

INTRODUCTION

Vestibular migraine (VM) is one of the most common vestibular disorders, affecting around 1%
of the general population (1). It is characterized by recurrent attacks of vestibular symptoms, a
current or previous history of migraine, and the existence of one or more migraine features during
the vestibular episodes. Recently, VM has been included as a diagnostic category in the latest
International Classification of Headache Disorders (ICHD) criteria (2).

Most cases of VM are considered sporadic, but familial aggregation of VM with
autosomal-dominant inheritance has been described in several families, supporting
a genetic background for the condition (3, 4). Genome-wide association studies
(GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated
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with a genetic predisposition for migraine with or without aura
(5, 6). Familial hemiplegic migraine (FHM), which is a subtype
of migraine with aura, is caused by mutations in CACNA1A,
ATP1A2, and SCN1A (7). However, no candidate gene has
been validated in VM, although several genetic loci such as
chromosomes 5q35, 9q13-q22, 11q, and 22q12 are known (8–
11). Furthermore, previous studies have not detected pathogenic
mutations in FHM or episodic ataxia (EA) genes in VM patients
(12, 13).

Transient receptor potential (TRP) channels are a family of
cation channels expressed mostly on the cell (14, 15). They
are divided into seven subfamilies including TRPC, TRPV,
TRPM, TRPA, TRPN, TRPP, and TRPML, which mediate
sensory transduction such as pain, touch, hearing, and thermal
sensation. In addition, TRP channels enable individual cells
to respond to changes in their local environment. These ion
channels have a relatively non-selective permeability to cations
including Ca2+ and Mg2+, and modulate ion entry driving
forces. TRP channels have been linked to neurodegenerative
disorders, kidney disease, and cancers by altering intracellular
ion homeostasis (15–18). Interestingly, they have been repeatedly
hypothesized to contribute to migraine via the activation of
meningeal nociceptors or the release of calcitonin gene-related
peptide (CGRP) (19–22).

The present study investigated the clinical phenotype of
a Korean family with VM showing autosomal-dominant
inheritance. Here we report one novel mutation in TRPM7 that
may explain the VM phenotype in the family.

MATERIALS AND METHODS

Subjects
Six individuals from three consecutive generations of a Korean
family with VM (four affected and two unaffected individuals)
were recruited at the Dizziness Clinic of Pusan National
University Yangsan Hospital (Figure 1). VM was diagnosed
based on the criteria of the Bárány Society (1). All individuals
underwent full neurological and neuro-otological examinations
by the author (J-HC), and the four affected individuals received

FIGURE 1 | Pedigree of the Korean family with vestibular migraine. Solid symbols (squares for males and circles for females) indicate clinically affected individuals

(open symbols are unaffected individuals and slashed symbols are deceased individuals). The proband is indicated by an arrow.

brain magnetic resonance imaging to exclude other possible
causes of their symptoms.

All experiments followed the tenets of the Declaration
of Helsinki, and informed consents were obtained from the
participants after the nature and possible consequences of
this study had been explained to them. This study was
approved by the institutional review boards of Pusan National
University Hospital.

Whole-Exome Sequencing and Data
Analysis
To systematically search for candidate genes, we applied trio
exome sequencing to blood samples from three of the affected
individuals (II-5, II-8, and III-3). Genomic DNA was extracted
from the blood samples, and whole-exome sequencing was
conducted using the SureSelect Focused Exome Kit (Agilent,
Technologies, Santa Clara, CA, USA). Qualified genomic DNA
samples were randomly fragmented by Covaris, followed by
adapter ligation, purification, hybridization, and PCR. Captured
libraries were analyzed using a bioanalyzer (Agilent 2100, Agilent
Technologies) to estimate the quality, and they were loaded
onto a sequencing system (Illumina HiSeq 2500, Theragen
Etex Bio Institute, Suwon, Korea). Raw image files were
processed for base-calling using HCS software (version 1.4.8)
with default parameters, and the sequences of each individual
were generated as 100-bp paired-end reads. Sequence reads were
aligned to the human reference genome sequence (GRCh37.3,
hg19) using the Burrows-Wheeler Aligner (version 0.7.12). PCR
duplicate reads were marked and removed using Picard tools
(version 1.92). The Genome Analysis Toolkit (version 2.3-9)
was used for indel realignment and base recalibration. Variation
annotation and interpretation analysis were performed using
SnpEff (version 4.2).

For candidate gene screening, we first filtered heterozygous
single-nucleotide variants (SNVs) and insertions/deletions
(indels) shared by all affected individuals (Figure 2). Then,
variants causing non-synonymous amino acid substitutions,
stop codons, indels in coding regions, and changes to splice-site
sequences at exon-intron boundaries were included. Common
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FIGURE 2 | Filtering steps applied to the whole-exome sequencing data. CADD, Combined Annotation-Dependent Depletion; FATHMM, Functional Analysis Through

Hidden Markov Models; Indels, insertions/deletions; PAVAR, pathogenic variants risk composite score; SNVs, single-nucleotide variants.

variants with a minor allele frequency (MAF) of >0.001 in
the dbSNP147, the 1,000 Genomes Project, the NHLBI GO
Exome Sequencing Project (ESP), and the Genome Aggregation
Database (gnomAD) were excluded. Since the frequency of
variants may differ between racial groups, we further filtered
rare variants with a MAF of <0.001 in the Korean Reference
Genome Database (KRGDB). Candidate variants were identified
and prioritized by performing functional annotation using
the following tools: (1) the pathogenic variants risk composite
score (PAVAR score), which is a seven-point scoring system
based on annotations using SIFT (Sort Intolerant From
Tolerant), PolyPhen2 (Polymorphism Phenotyping version
2), Grantham’s Matrix, GERP+ (Genomic Evolutionary Rate
Profiling), MutationTaster, PhastCons and PhyloP, (2) Combined
Annotation-Dependent Depletion (CADD), and (3) Functional
Analysis Through Hidden Markov Models (FATHMM). Variants
with PAVAR score ≥5, CADD score ≥20, and FATHMM
score ≤-1.5 were considered to be potentially pathogenic (23).
Finally, candidate variants were interpreted according to the
standards and guidelines recommended by the American College
of Medical Genetics and Genomics (ACMG) (24). The gene
expression patterns were analyzed using public databases such
as the Genotype-Tissue Expression (GTEx), BioGPS, and Serial

Analysis of Gene Expression (SAGE), and the gene function was
assessed using the HuGE Navigator, the GeneCards Human gene
database, the Online Mendelian Inheritance in Man database,
and PubMed. The candidate variants were validated by Sanger
DNA sequencing, and were screened in another individuals
within the family and 100 normal controls.

RESULTS

Clinical Phenotype
The clinical characteristics of the family are summarized in
Table 1. All affected individuals presented with rotatory vertigo,
headache, and nausea/vomiting lasting for several hours to
days. All had a history of migraine with or without visual
aura, and showed one or more migraine features during the
vestibular episodes. Two individuals (I-2 and II-8) experienced
transient hemiparesis during the attacks, one (II-8) of whom
also had dysarthria and facial dysesthesia on the same
side as the hemiparesis. The symptoms were triggered by
physical or emotional stress. Two individuals also had auditory
symptoms such as tinnitus (II-5) and ear fullness (II-8), but
air-conduction audiograms showed normal hearing functions
(Supplementary Figure 1). One individual (II-8) had a past
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TABLE 1 | Clinical characteristics of the affected family members.

Patient

no.

Sex/

age

Age at

onset

Duration Ictal symptoms Interictal signs Migraine features Additional

symptoms

I-2 F/86 50 Hours-days Vertigo, headache,

nausea/vomiting,

hemiplegia

Uni-directional

GEN

One sided location, pulsatile quality,

moderate pain intensity, nausea

(–)

II-5 F/54 53 Hours Vertigo, headache,

nausea/vomiting

Bi-directional

GEN

One sided location, pulsatile quality,

moderate pain intensity, photophobia,

nausea

Tinnitus

II-8 F/48 30 Hours-days Vertigo, headache,

nausea/vomiting,

hemiplegia, dysarthria,

facial dysesthesia

(–) One sided location, pulsatile quality Seizure,

ear fullness

III-3 F/30 19 Hours Vertigo, headache,

nausea/vomiting

Bi-directional

GEN

Visual aura, moderate or severe pain

intensity, aggravation by physical

activity, nausea/vomiting,

photophobia/phonophobia

(–)

F, female; GEN, gaze-evoked nystagmus.

TABLE 2 | Candidate variants identified using bioinformatics tools after applying filtering and prioritization processes.

Chr Position Gene cDNA Protein Variant effect PAVAR score CADD FATHMM ACMG

classification

MAF

15 50885896 TRPM7 c.3526C>T p.Gln1176* Nonsense 7 38 (–) Pathogenic

(PVS1,PS3,PM2,

PP1,PP3,PP4)

NR

17 45258960 CDC27 c.71C>G p.Ala24Gly Missense 6 32 −3.23 Uncertain

significance

(PM2,PP1,PP3,PP4)

NR

Transcript ID: TRPM7, NM_017672.5; CDC27, NM_001114091.2.

Evidence code descriptions according to the ACMG classification: PM, pathogenic moderate; PP, pathogenic supporting; PS, pathogenic strong; PVS, pathogenic very strong.

ACMG, American College of Medical Genetics and Genomics; CADD, Combined Annotation-Dependent Depletion; Chr, chromosome, FATHMM, Functional Analysis Through Hidden

Markov Models; MAF, minor allele frequency; NR, not reported; PAVAR, pathogenic variants risk composite score.

history of recurrent seizure during her childhood. Between
the vestibular episodes, three individuals (I-2, II-5, and III-3)
showed uni- or bi-directional horizontal gaze-evoked nystagmus.
The other neurological and neuro-otological examinations
were unremarkable. Three individuals who received treatments
showed a good response to flunarizine (II-5 and II-8) or
propranolol (III-3).

Genetic Analysis
An average of 5.49 billion bases were generated per individual,
with an average sequencing depth of approximately 63 in the
target region, achieving the high quality of the sequencing
(Supplementary Table 1). An initial screening of genes causing
FHM and EA revealed no causative mutation in CACNA1A,
ATP1A2, SCN1A, KCNA1, CACNB4, or SLC1A3.

The number of SNVs and indels identified per individual
ranged from 120,657 to 123,359. Among them, a total of
2,586 variants were shared by all three individuals, and
508 of them were heterozygous non-synonymous missense
variants, stop codons, coding indels, and splice-site variants
at exon-intron boundaries (Figure 2). Next, 36 rare variants
were filtered after excluding common variants with a MAF

of >0.001 in public databases including gnomAD and
KRGDB (Supplementary Table 2), but only two candidate
variants in CDC27 and TRPM7 were prioritized by the
functional annotations (Table 2). Both genes were found to
be widely expressed in the brain including the cerebellum
in public databases such as GTEx, BioGPS, and SAGE
(Supplementary Figure 2).

The CDC27 variant was a missense mutation c.71C>G of
exon 2, which results in the amino acid substitution of alanine
by glycine at codon 24. This gene participates in regulation of
the cell cycle by encoding the anaphase-promoting complex,
and is known to be associated with breast and prostate cancers.
However, this variant was classified as “uncertain significance” in
ACMG guidelines based on only one moderate (PM2) and three
supporting (PP1, PP3, PP4) pathogenic criterion. Furthermore, a
literature review did not reveal any evidence for a relationship
between the CDC27 and our family’s phenotypes including
migraine, vertigo, vestibular or ataxic disorders. Thus, this
variant was excluded as a candidate gene for VM.

The TRPM7 variant was a nonsense mutation c.3526C>T
of exon 25 that cause a premature stop codon and loss-
of-function in the protein. This variant was also present in
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FIGURE 3 | (A) Chromatograms of the affected individuals showing a heterozygous nonsense mutation (c.3526C>T) in exon 25 of TRPM7, which would result in a

premature stop codon (p.Gln1176*). (B) Conservation of the mutated residue (Gln, Q) of a “connecting helix” (CH) in the C-terminus, highlighted in gray. (C) Schematic

representation of the TRPM7 channel and localization of the mutation. The TRPM7 channel comprises a tetrameric complex with each subunit containing

six-transmembrane segments (S1–S6) and a pore-forming loop between S5 and S6. Its cytoplasmic N-terminus has four regions of TRPM subfamily homology

domain (MHD), whereas the C-terminus contains a TRP box of highly conserved residues, a coiled-coil (CC) domain, and an atypical serine/threonine protein kinase

domain. The mutation (p.Gln1176*) is located in a CH that links the transmembrane segment and the CC domain in the C-terminus (arrow).

another affected individual (I-2), while it was absent in the
unaffected individuals (II-1 and II-10), 100 normal controls,
gnomAD and KRGDB (Figures 3A,B). By applying ACMG
guidelines, the variant was considered “pathogenic” based on
one very strong (PVC1), one strong (PS3), one moderate (PM2),
and three supporting (PP1, PP3, PP4) pathogenic criterion.
The TRPM7 channel belongs to the melastatin subfamily of
TRP channels, and it plays a crucial role in maintaining
intracellular Ca2+ and Mg2+ homeostasis (Figure 3C). This has
led to proposals that genetic variations in TRPM7 influence
the susceptibility to neurodegenerative diseases (15, 16). In
addition, SNVs within some TRP genes have been linked to
migraine susceptibility (5, 25–27). Therefore, the TRPM7 variant
may be a causal variant for explaining the phenotypes in the
present family.

DISCUSSION

This study identified a nonsense mutation in TRPM7 in a Korean
family with VM. This variant may cause a premature stop codon

and loss-of-function in the protein, thus contributing to the
development the VM phenotype by altering the homeostasis of
intracellular ions.

Several hypotheses have been proposed for explaining the
pathophysiology of VM, which remains unclear. The genetic
susceptibility of migraine suggests ionic channelopathy involved
in glutamate homeostasis as the underlying pathophysiology
of VM (28, 29). Indeed, there is accumulating evidence
that Ca2+ channels could be involved in migraine and VM
pathophysiology. Mutations in CACNA1A, which encodes
Cav2.1, the α1A subunit of the P/Q-type voltage-gated
Ca2+ channel, cause three neurological channelopathies:
FHM type 1, EA type 2 (EA2), and spinocerebellar ataxia
type 6 (30). Patients with FHM or EA2 often experience
paroxysmal vertigo, and more than half of EA2 patients
have migraine that meets the ICHD criteria. Some members
of the present family also presented with hemiplegia and
dysarthria during their episodes. Nevertheless, previous
studies failed to detect mutations in patients with VM in
the genes causing FHM or EA, such as CACNA1A, ATP1A2,
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SCN1A, and CACNB4 (12, 13), which is consistent with the
present study.

TRPM7 reported here encodes the cation selective ion channel
that is highly permeable to Ca2+, Mg2+, and metal ions such as
Zn2+ (16). This channel comprises a tetrameric complex, with
each subunit containing six-transmembrane segments (S1–S6)
and a pore-forming loop between S5 and S6 [Figure 3C; (31)].
Its C-terminus contains a TRP box of highly conserved residues,
a coiled-coil (CC) domain, and an atypical serine/threonine
protein kinase domain (32). The TRPM7 mutation identified
in the present study is located in a long “connecting helix”
that links the transmembrane segment and the CC domain
in the C-terminus, thus predicting truncation of the C-
terminus including the CC and kinase domains (32). These
domains play an important role in the tetrameric assembly
of the channel or in regulating channel function by Mg2+

nucleotides (31–34). Therefore, the mutation identified in the
present study seems to affect TRPM7 channel activity via
structural instability or functional impairment. This hypothesis is
supported by a previous animal study which generated knockout
mice with the deletion of TRPM7 kinase domain (35). These
mice carried truncated mutation quite similar to the mutation
described in this study. Although homozygous knockout mice
caused embryonic lethality, heterozygous mice were viable, but
showed abnormality in the regulation of Mg2+ homeostasis and
alterations in TRPM7 channel properties. These mice exhibited
abnormal behaviors such as clasping, tremor, seizure, and violent
sudden leaps as a reaction to the light and noise, similar
to photophobia and phonophobia seen in VM. Furthermore,
one of the affected individuals in this family had a history of
recurrent seizure.

Ca2+ and Mg2+ play important roles in regulating various
neuronal functions. In particular, they exert opposite effects
in the signaling of the excitatory neurotransmitter glutamate:
glutamate release is triggered by an influx of Ca2+, whereas
Mg2+ inhibits glutamate release by antagonizing Ca2+ (36).
Thus, a tight balance between Ca2+ and Mg2+ is needed in order
to maintain the proper excitability of neurons. Since TRPM7
channels that are abundantly expressed in neuronal cells are
highly selective to Ca2+ and Mg2+ (37, 38), mutation in TRPM7
may cause alterations in Ca2+ and Mg2+ homeostasis and
neuronal excitability. Migrainous headache is the consequence
of cortical spreading depression evoked by glutamate release and
N-methyl-D-aspartate (NMDA) receptor activation in the brain.
These processes have been linked to low Mg2+ concentrations,
which contribute to the hyperexcitability of the NMDA receptor
(36). A beneficial effect of Mg2+ supplementation has also
been reported in migraine patients (39). In addition, low
Mg2+ concentrations increase the amount of substance P
released, which is a neuroinflammatory mediator (40). Since
the TRPM7 channel is an important Mg2+ transporter, it may
contribute to VM attacks by affecting intracellular Ca2+ and
Mg2+ homeostasis.

Recently, several TRP channels have been linked to migraine
pathophysiology, including TRPV1, TRPV4, TRPM8, and
TRPA1 (19). These channels are expressed on trigeminal sensory

neurons that innervate the meninges (20, 41). The activation of
TRP channels promotes the excitation of nociceptive afferent
fibers and potentially leads to pain and allodynia (19, 20). In
addition, it can elicit the release of CGRP, causing vasodilation
and neurogenic inflammation (19, 42, 43). Several SNPs in
TRPV1, TRPV3, and TRPM8 were found to be associated
with migraine susceptibility in meta-analyses of observational
studies and GWAS (5, 25–27). Based on these findings, TRP
channels have been proposed as a therapeutic target in migraine
(19, 21, 22, 44). More studies are needed to better explore
the potential role for these channels including TRPM7 in
migraine pathophysiology.

This study was subjective to some potential limitations. We
did not perform functional study determining pathogenicity
of the candidate variants. Despite the rarity and putative
pathogenicity in functional annotations, establishing the
pathogenicity of the variants may be difficult without a functional
assay. However, previous functional studies demonstrated that
the deletion of TRPM7 kinase domain reduced channel activity
and increased its sensitivity to Mg2+ inhibition (33–35). Another
limitation is difficulty in detecting copy number variations
(CNVs) through whole-exome sequencing. CNV analysis can
aid the detection of large deletions or duplications of causative
genes, but whole-genome sequencing may be more suitable than
whole-exome sequencing for CNV analysis. Finally, we used the
hg19 as the reference genome for the reads mapping instead
of hg38.

In summary, we have presented the clinical characteristics of
a Korean family with VM. Whole-exome sequencing identified
a potential disease-causing variant in TRPM7, which may cause
alterations in intracellular Ca2+ and Mg2+ homeostasis and
neuronal excitability. Our results highlight TRPM7 as a novel
candidate gene for VM.
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